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Abstract In the present work we investigate the existence and multiplicity of nontrivial solu-
tions for the Choquard Logarithmic equation (−∆)

1
2u+ a(x)u+ λ(ln | · | ∗ |u|2)u = f(u) in R,

for a : R → R a continuous potential, λ > 0 and a nonlinearity f with exponential critical
growth. We prove the existence of a nontrivial solution at the mountain pass level and a non-
trivial ground state solution under exponential critical and subcritical growth. Moreover, when f
has subcritical growth we guarantee the existence of infinitely many solutions, via genus theory.

1 Introduction

In the present paper we are concerned with existence and multiplicity results for the Choquard
logarithmic equation

(−∆)
1
2u+ u+ (ln | · | ∗ |u|2)u = f(u) in R, (1.1)

where (−∆)
1
2 is the fractional Laplacian, ln is the neperian logarithm and f : R→ R is continu-

ous with exponential growth and primitive F (s) =
s∫

0
f(t)dt. The study was motivated by recent

works dealing with logarithmic kernel, the possible applications to this kind of equations and the
development of an approach that can be applied to general potentials with not definite sign.

We recall that a function h has subcritical exponential growth at +∞, if

lim
s→+∞

h(s)

eαs2 − 1
= 0 , for all α > 0,

and we say that h has critical exponential growth at +∞, if there exists ω ∈ (0, π] and α0 ∈ (0, ω]
such that

lim
s→+∞

h(s)

eαs2 − 1
=

{
0, ∀ α > α0.

+∞, ∀ α < α0.

So, in the following we present some necessary conditions to obtain our main results. This
kind of hypothesis are usual in works with Moser-Trudinger inequality, such as [18, 19]. We
assume that f satisfies

(f1) f ∈ C(R,R), f(0) = 0 and has critical exponential growth.
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(f2) lim
|t|→0

f(t)

|t|
= 0.

From (f1) and (f2), for q > 2, ε > 0 and α > α0, there exists a constant b2 > 0 such that

|F (u)| ≤ ε

p
|u|2 + b2|u|q(eα|u|

2
− 1) , ∀ u ∈ X. (1.2)

and there exists a constant b3 > 0 satisfying

|f(u)| ≤ ε|u|+ b3|u|q−1(eα|u|
2
− 1) , ∀ u ∈ X. (1.3)

We also can derive from (1.2) a very useful inequality. Consider r1, r2 > 1, r1 ∼ 1 and r2 > 2,
such that 1

r1
+ 1

r2
= 1. Then, for all u ∈ H 1

2 (R), α > α0 and ε > 0, we get that

∫
R

|F (u)|dx ≤ ε

2
||u||22 + b2||u||qr2q

∫
R

(er1αu
2
− 1)dx

 1
r1

. (1.4)

Our strategy to prove Theorem 1.1 will consist in finding a Cerami sequence for the mountain
pass level. In order to verify that such sequence is bounded inH

1
2 (R), we will need the following

condition

(f3) there exists θ > 4 such that f(t)t ≥ θF (t) > 0, for all t ∈ R \ {0}.

Moreover, as we will be working with an exponential term, to guarantee that the mentioned
Cerami sequence and the minimizing sequence for the ground state satisfy the exponential esti-
mative, we rely in the next condition.

(f4) there exist q > 4 and Cq >
[2(q − 2)]

q−2
2

q
q
2

Sqq

ρq−2
0

such that F (t) ≥ Cq|t|q, for all t ∈ R,

for Sq, ρ0 > 0 to be defined in Lemma 2.13.
Hence, we are able to enunciate our first main result.

Theorem 1.1. Assume (f1)− (f4), q > 4 and Cq > 0 sufficiently large. Then,

(i) Problem (1.1) has a solution u ∈ X \ {0} such that

I(u) = cmp = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1], X) ; γ(0) , I(γ(1)) < 0}.
(ii) Problem (1.1) has a ground state solution u ∈ X \ {0} in the sense that

I(u) = cg = inf{I(v) ; v ∈ X is a nontrivial solution of (1.1)}.

For the second main result, we are concerned with multiplicity of solutions. However, to
obtain this we need to exchange the condition (f1) by the condition below.

(f ′1) f ∈ C(R,R), f is odd, has subcritical exponential growth and F (t) ≥ 0, for all t ∈ R.

Also, we need to add a condition that gives us the desired geometry for the associated functional.
That is,

(f5) the function t 7→ f(t)

t3
is increasing in (0,+∞).

From this condition, since f is odd, it follows that f(t)
t3 is decreasing in (−∞, 0).

Moreover, in this case we can also weaken the condition (f4), as follows.

(f ′4) there exists q > 4 and M1 > 0 such that F (t) ≥M1|t|q , ∀ t ∈ R.

Our strategy to prove the second main result consists in applying the genus theory and it is
inspired by the construction presented in [12].
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Theorem 1.2. Suppose (f ′1), (f2), (f3), (f ′4), (f5). Then, problem (1.1) admits a sequence of so-
lution pairs ±un ∈ X such that I(un)→ +∞ as n→ +∞.

The reader should pay attention that many difficulties arise while dealing with Choquard
logarithmic equations with exponential nonlinearities. Concerning the logarithmic term, one
will see that it is very difficult to guarantee when a Cerami sequence has a subsequence that
converges strongly in X (defined in (2.1)). Inspired by [12], we obtain such convergence module
translations. But, since the norm of X is not invariant under translations, new difficulties arise.
Also, we can mention that the key convergence result that we have so far, does not work for
functions satisfying un(x) → 0 a.e. in R. Besides that, we have the difficulties concerning the
controlling of exponential term, as we will mention later.

Next we make a quick overview of literature. In the first half of this overview, we recall
that problems with nonlocal operators arise in many areas, such as optimization, finance, phase
transitions, stratified materials, anomalous diffusion, crystal dislocation, soft thin films, semiper-
meable membranes, flame propagation, conservation laws and water waves. See e.g. [15, 9]. For
fractional problems involving (−∆)s, with N > 2s and s ∈ (0, 1), without logarithmic kernel,
we refer to [13, 21], where the authors have obtained ground state solution under subcritical
polynomial growth and, in addition, in [21], they studied the regularity and derived some prop-
erties for those solutions. Moreover, in [35], authors dealt with coercive potentials, while in
[17], they study the equation with potentials that vanish at infinity. In [18], the authors guarantee
the existence of ground state solution when the nonlinearity f has maximal exponential growth.
We also refer the reader for the works [19, 26, 3, 27], in which the authors dealt with fractional
Laplacian operator, and the works [10, 28, 32], for general problems with Moser-Trudinger type
behaviour.

For the second half, we take a look into works that deal with Choquard equations which are
well-known for their great range of applications in science, specially in physics and mechanics.
We cite, as example, the seminal papers due to Fröhlich and Pekar, [24, 23, 39], where the authors
describe the quantum mechanics of a polaron at rest, in the particular case, when V (x) ≡ a > 0
and γ > 0. It is curious that, although such equations are called “Choquard equations”, they
were introduced in the above mentioned papers.

We focus our overview in the recent works [12, 11, 20, 38, 2], where the authors study
problems involving the logarithmic kernel, considering equation (1.1) in the local situation.

In [12], the authors have proved the existence of infinitely many geometrically distinct so-
lutions and a ground state solution, considering V : R2 → (0,∞) continuous and Z2-periodic,
γ > 0, b ≥ 0, p ≥ 4 and f(u) = b|u|p−2u. Here because of the periodic setting, the global
Palais–Smale condition can fail, since the corresponding functional become invariant under Z2-
translations. Then, intending to fill the gap, in [20] it is proved the existence of a mountain pass
solution and a ground state solution for the local problem (1.1) in the case V (x) ≡ a > 0, λ > 0,
2 < p < 4 and f(u) = |u|p−2u. Also, they verified that, if p ≥ 3, both levels are equal and
provided a characterization for them. Moreover, in [11], the authors dealt with the existence of
stationary waves with prescribed norm considering λ ∈ R in a similar setting. Then, following
the ideas of the predecessors, in [38], they discuss a local version of problem (1.1) in R3 with
a polynomial nonlinearity. Finally, in [2], the authors proved the existence of a ground state
solution for local problem (1.1), with a nonlinearity of Moser-Trudinger type.

The present work aims to extend or complement those results already found in the literature,
combining the fractional Laplacian operator with Choquard logarithmic equations and exponen-
tial nonlinearities.

Throughout the paper, we will use the following notations: Lt(R) denotes the usual Lebesgue
space with norm || · ||t ; X ′ denotes the dual space of X ; Br(x) = (x − r, x+ r) is the ball
in R centred in x with radius r > 0 and simply Br when x = 0 ; Ac stands for R \ A, for any
subset A ⊂ R ; C,C1, C2, ... will denote different positive constants whose exact values are not
essential to the exposition of arguments.

The paper is organized as follows: in section 2 we present the framework’s problem and
some technical and essential results, some of them already derived in previous works and whose
application to our problem is immediate. Section 3 consists in the proof of a key proposition
and our first main result. Finally, in section 4, we prove our second main result, considering the
subcritical case.
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2 Preliminary Results

In this section we present the reader for the framework necessary to study problem (1.1) and
provide some technical results.

We start remembering that the operator (−∆)
1
2 : S(R)→ L2(R) is given by

(−∆)
1
2u(x) = C

(
1,

1
2

)
lim
ε→0

∫
R\Bε(x)

u(x)− u(y)
|x− y|2

dy , ∀ x ∈ R,

where the normalizing constant C
(
1, 1

2

)
is defined in [15] and S(R) denotes the Schwartz space.

Equivalently, for u ∈ S(R), by [15, Proposition 3.3], if F denotes the Fourier Transform,

(−∆)
1
2u = F−1(|ξ|(Fu)) , ∀ x ∈ R.

Moreover, in light of [15, Proposition 3.6], we have

||(−∆)
1
4u||22 =

1
2π

∫
R

∫
R

(u(x)− u(y))2

|x− y|2
dxdy , ∀ u ∈ H 1

2 (R),

even though we usually consider this equality omitting the normalizing constant 1
2π .

Now, we turn our attention to the Hilbert space

W
1
2 ,2(R) = H

1
2 (R) =

u ∈ L2(R) ;
∫
R

∫
R

|u(x)− u(y)|2

|x− y|2
dxdy < +∞

 ,

endowed with the norm || · ||2 = [·]21
2 ,2

+ || · ||22, where

[u]21
2 ,2

=

∫
R

∫
R

|u(x)− u(y)|2

|x− y|2
dxdy.

For further considerations about H
1
2 (R) and (−∆)

1
2 and some useful results, we refer to [15, 14,

1, 26, 3, 27].
Next, inspired in [37], in order to guarantee that the associated functional with the problem

is well-defined, we consider the slightly smaller space

X =

u ∈ H 1
2 (R) ;

∫
R

ln(1 + |x|)u2(x)dx < +∞

 . (2.1)

The space X endowed with the norm || · ||2X = || · ||2 + || · ||2∗, where

||u||2∗ =
∫
R

ln(1 + |x|)u2(x)dx,

is a Hilbert space.
Inspired by [12], we define three auxiliary symmetric bilinear forms

(u, v) 7→ B1(u, v) =

∫
R

∫
R

ln(1 + |x− y|)u(x)v(y)dxdy,

(u, v) 7→ B2(u, v) =

∫
R

∫
R

ln
(

1 +
1

|x− y|

)
u(x)v(y)dxdy,

(u, v) 7→ B0(u, v) = B1(u, v)−B2(u, v) =

∫
R

∫
R

ln(|x− y|)u(x)v(y)dxdy.



FRACTIONAL CHOQUARD LOGARITHMIC EQUATION 85

These definitions are understood to being over measurable functions u, v : R → R, such that
the integrals are defined in the Lebesgue sense. We also define the functionals V1 : H

1
2 (R) →

[0,∞], V2 : L4(R) → [0,∞) and V0 : H
1
2 (R) → R ∪ {∞}, given by V1(u) = B1(u2, u2),

V2(u) = B2(u2, u2) and V0(u) = B0(u2, u2), respectively.
By Hardy-Littlewood-Sobolev inequality (HLS) [31] and using that 0 ≤ ln(1 + r) ≤ r, for

r > 0, one can easily obtain

|B2(u, v)| ≤
∫
R

∫
R

1
|x− y|

u(x)v(y)dxdy ≤ K0||u||2||v||2 , ∀ u, v ∈ L2(R), (2.2)

where K0 > 0 is the HLS constant.
As a consequence of (2.2),

|V2(u)| ≤ K0||u||44 , ∀ u ∈ L4(R), (2.3)

so V2 takes finite values over L4(R). Also, observing that

ln(1 + |x± y|) ≤ ln(1 + |x|+ |y|) ≤ ln(1 + |x|) + ln(1 + |y|), for x, y ∈ R, (2.4)

and applying Hölder inequality, we estimate

B1(uv,wz) ≤ ||u||∗||v||∗||w||2||z||2 + ||u||2||v||2||w||∗||z||∗, (2.5)

for all u, v, w, z ∈ L2(R).
In our first lemma we determine in which spaces X can be embedded either continuously or

compactly.

Lemma 2.1. X is continuously embedded in H
1
2 (R) and compactly embedded in Lt(R), for all

t ∈ [2,+∞).

Proof. The continuous embedding is immediate, since ||u|| ≤ ||u||X , for all u ∈ X . In order to
prove the compact embeddings, let (un) ⊂ X such that un ⇀ 0 in X . Then, the result follows
from the coerciveness of ln(1 + |x|), [1, Theorem 7.41], [15, Theorem 7.1], the interpolation
inequality for Lt(R) spaces and a diagonal argument.

Next we make some considerations concerning the exponential behaviour of the nonlinearity.
First of all, we mention the celebrated Moser-Trudinger Lemma [10, 33, 18]

Lemma 2.2 (Moser-Trudinger, [33]). There exists 0 < ω ≤ π such that, for all α ∈ (0, ω), there
exists a constant Hα > 0 satisfying∫

R

(eαu
2
− 1)dx ≤ Hα||u||22,

for all u ∈ H 1
2 (R) with ||(−∆)

1
4u||22 ≤ 1.

Based on the above lemma, [18] proved the following result.

Lemma 2.3. [18, Proposition 2.1] For any α > 0 and u ∈ H 1
2 (R),∫

R

(eαu
2
− 1)dx < +∞.

Hence, from Lemma 2.3 and equation (1.2), for any u ∈ X we have

∫
R

F (u)dx ≤ 1
2
||u||22 + b2||u||qqr2

∫
R

(er1αu
2
− 1)dx

 1
r1

< +∞. (2.6)

The following lemma plays a key role on the continuity of the associated functional and while
guaranteeing that the functional is lower semicontinuous forH

1
2 (R). In order to do that, we need

a result that allow us to control the exponential term.



86 Eduardo de S. Böer and Olímpio H. Miyagaki

Lemma 2.4. Let (un) ⊂ X such that (un) is strongly convergent in H
1
2 (R). Then, there exists a

subsequence (unk
) ⊂ (un) and a function g ∈ H 1

2 (R) satisfying |unk
(x)| ≤ g(x) a.e. in R, for

all k ∈ N.

Proof. The proof can be done similarly as in [16]. We only highlight here why the function w
obtained in [16] belongs to H

1
2 (R). Since (wn) is bounded in H

1
2 (R), passing to a subsequence,

if necessary, wn ⇀ v ∈ H 1
2 (R). Then, by [15, Theorem 7.1], wn → v in L2(BR), for all R > 0.

Hence, up to a subsequence, wn(x) → v(x) a.e. in R. Once wn(x) → w(x) a.e. in R, we
conclude that w = v a.e. in R. Therefore, w ∈ H 1

2 (R).

Lemma 2.5. Let (un) ⊂ X and u ∈ X such that un → u on H
1
2 (R). Then, we have∫

R

F (un)→
∫
R

F (u) ,

∫
R

f(un)un →
∫
R

f(u)u and
∫
R

f(un)v →
∫
R

f(u)v , ∀ v ∈ X.

Proof. Since un → u in H
1
2 (R), un(x)→ u(x) a.e. in R and, from [15, Theorem 6.9], un → u

in Lt(R) for all t ≥ 2. By Lemma 2.4 and using the Dominated Convergence Theorem, the
result follows.

We need some technical lemmas in order to obtain boundedness and convergence when deal-
ing with logarithmic parts. Once the proofs found in [12] remains essentially the same, by only
exchanging R2 for R, we omit it here to make the paper concise.

Lemma 2.6. ([12, Lemma 2.1]) Let (un) be a sequence in L2(R) and u ∈ L2(R) \ {0} such that
un → u pointwise a.e. on R. Moreover, let (vn) be a bounded sequence in L2(R) such that

sup
n∈N

B1(u
2
n, v

2
n) <∞.

Then, there exist n0 ∈ N and C > 0 such that ||un||∗ < C, for n ≥ n0. If, moreover,

B1(u
2
n, v

2
n)→ 0 and ||vn||2 → 0, as n→∞,

then
||vn||∗ → 0 , as n→∞.

Lemma 2.7. ([12, Lemma 2.6]) Let (un), (vn) and (wn) be bounded sequences in X such that
un ⇀ u in X . Then, for every z ∈ X , we have B1(vnwn , z(un − u))→ 0, as n→ +∞.

Lemma 2.8. ([12, Lemma 2.2]) (i) The functionals V0, V1, V2 are of class C1 on X . Moreover,
V ′i (u)(v) = 4Bi(u2, uv), for u, v ∈ X and i = 0, 1, 2.
(ii) V2 is continuous (in fact continuously differentiable) on L4(R) .
(iii) V1 is weakly lower semicontinuous on H

1
2 (R). (iv) I is lower semicontinuous on H

1
2 (R).

Therefore, from Lemmas 2.5 and 2.8, (2.6) and [27, Lemma 2], we conclude that I : X → R
given by

I(u) =
1
2
||u||2 + V0(u)−

∫
R

F (u)dx

is well-defined in X and I ∈ C1(X,R).
Next, let us verify that I has the mountain pass geometry, in order to obtain a Cerami sequence

for the mountain pass level cmp.

Lemma 2.9. There exists ρ > 0 such that

mβ = inf{I(u) ; u ∈ X , ||u|| = β} > 0 , ∀ β ∈ (0, ρ] (2.7)

and
nβ = inf{I ′(u)(u) ; u ∈ X , ||u|| = β} > 0 , ∀ β ∈ (0, ρ]. (2.8)
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Proof. First of all, we choose r1, r2 > 1 such that r1 ∼ 1 and r2 > 2. Then, consider u ∈ X \{0}
such that r1α||u||2 < ω, in order to apply the exponential inequalities. Thus, from (1.4), HLS,
Lemma 2.2 and Sobolev embeddings, we have

I(u) =
1
2
||u||2 + 1

4
V0(u)−

∫
R

F (u)dx ≥ ||u||
2

2
[1− ε− C2||u||2 − C3||u||q−2].

Therefore, since q − 2 > 0, we can choose ρ > 0 sufficiently small, such that (2.7) is valid.
Similarly, as

I ′(u)(u) = ||u||2 + V0(u)−
∫
R

f(u)udx ≥ ||u||2[1− ε− C4||u||2 − C5||u||q−2],

once again one can pick ρ > 0 sufficiently small, such that (2.8) holds.

Lemma 2.10. Let u ∈ X \ {0} and q > 4. Then,

lim
t→0

I(tu) = 0 , sup
t>0

I(tu) < +∞ and I(tu)→ −∞ , as t→ +∞.

Proof. Let u ∈ X \ {0}. First, from (f4) and q > 4,

I(tu) =
t2

2
||u||2 + t4

4
V0(u)−

∫
R

F (tu) ≤ t2

2
||u||2 + t4

4
V0(u)− Cqtq||u||qq → −∞,

as t → +∞. Now, from (1.2) and Lemma 2.2, taking t > 0 sufficiently small such that
r1αt||u||2 < ω, we have ∫

R

F (tu)dx ≤ t2

2
||u||22 +Hαt

q||u||qqr2
→ 0,

as t → 0. Hence, I(tu) → 0 as t → 0. Finally, this behaviour combined with the fact that I is
C1, tell us that sup

t>0
I(tu) < +∞.

For the next results, consider a sequence (un) ⊂ X satisfying

∃ d > 0 s.t. I(un) < d , ∀ n ∈ N , and ||I ′(un)||X′(1 + ||un||X)→ 0 , as n→ +∞ (2.9)

Lemma 2.11. Let (un) ⊂ X satisfying (2.9). Then, (un) is bounded in H
1
2 (R).

Proof. From (2.9) and (f3), we have

d+ o(1) ≥ I(un)−
1
4
I ′(un)(un) ≥

1
4
||un||2 +

(
θ

4
− 1
)∫

R

F (un)dx ≥
1
4
||un||2.

Hence, we conclude that (un) is bounded in H
1
2 (R).

Remark 2.12. One can easily verify, from Lemma 2.10 and the Intermediate Value Theorem,
that 0 < mρ ≤ cmp < +∞. Then, since I has the mountain pass geometry, similarly as in [20,
Lemma 3.2], there exists a sequence (un) ⊂ X such that

I(un)→ cmp and ||I ′(un)||X′(1 + ||un||X)→ 0 , as n→ +∞. (2.10)

Moreover, this sequence satisfies (2.9).

Subsequently, we will guarantee that the norms of the sequence obtained in Remark 2.12 can
be taken sufficiently small such that the exponential inequalities are valid for it. Moreover, this
will be valid for any sequence (un) ⊂ X satisfying I(un) ≤ cmp, for all n ≥ n0, n0 ∈ N.
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Lemma 2.13. Let (un) ⊂ X satisfying (2.10) and q > 4. Then, for some ρ0 > 0 sufficiently
small,

lim sup
n
||un||2 < ρ2

0.

Proof. From Lemma 2.11, we have that (un) is bounded in H
1
2 (R) and 4cmp + o(1) ≥ ||un||2,

for all n ∈ N. Then, lim sup
n
||un||2 ≤ 4cmp. Hence, we need to find an estimative for the value

cmp. To do that, consider the set A = {u ∈ X ; u 6= 0 , V0(u) ≤ 0}. Defining ut(x) = t2u(tx),
for all t > 0, u ∈ X \ {0} and x ∈ R, we verify that

V0(ut) = t6V0(u)− t6 ln t||u||42 → −∞,

as t → +∞, and hence A 6= ∅. Moreover, from immersions [15, Theorem 6.9], there exists
C > 0 such that ||u|| ≥ C||u||q, for all u ∈ H 1

2 (R) \ {0}. Thus, it makes sense to define

Sq(v) =
||v||
||v||q

and Sq = inf
v∈A

Sq(v) ≥ inf
v 6=0

Sq(v) > 0.

Now we are ready to estimate cmp. From Lemma 2.10, for v ∈ A and T > 0 sufficiently large,
I(Tv) < 0. So, we can define γ ∈ Γ by γ(t) = tTv, such that

cmp ≤ max
0≤t≤1

I(γ(t)) = max
0≤t≤1

I(tTv) ≤ max
t≥0

I(tv).

Consequently, for ψ ∈ A, we have

cmp ≤ max
t≥0

I(tψ) ≤ max
t≥0

{
t2

2
||ψ||2 − Cqtq||ψ||qq

}
≤
(

1
2
− 1
q

)
Sq(ψ)

2q
q−2

(qCq)
2

q−2
.

Thus, taking the infimum over ψ ∈ A, we obtain

lim sup
n
||un||2 ≤

2(q − 2)
q

S
2q

q−2
q

(qCq)
2

q−2
≤ ρ2

0,

for Cq > 0 sufficiently large.

Lemma 2.14. Let (un) ⊂ X be bounded in H
1
2 (R) such that

lim inf
n→+∞

sup
y∈Z

∫
B2(y)

|un(y)|2dx > 0. (2.11)

Then, there exists u ∈ H 1
2 (R) \ {0} and (yn) ⊂ Z such that, up to a subsequence, yn ∗ un =

ũn ⇀ u ∈ H 1
2 (R).

Proof. From (2.11), lim inf properties, the boundedness of (un) in H
1
2 (R), [1, Theorem 7.41]

and [15, Theorem 7.1], one can construct the desired subsequence and obtain the result.

3 Proof of Theorem 1.1

In the present section, we finish the proof of Theorem 1.1. As a first step, we prove a key
proposition which provide us with nontrivial critical points.

Proposition 3.1. Let q > 4 and (un) ⊂ X satisfying either (2.10) or (2.9) with d = cmp. Then,
passing to a subsequence if necessary, only one between the following items is true:

(a) ||un|| → 0 and I(un)→ 0, as n→ +∞.

(b) There exists points yn ∈ Z such that ũn = yn ∗ un → u in X , for a nontrivial critical point
u ∈ X for I .
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Proof. First of all, from Lemma 2.11, (un) is bounded in H
1
2 (R) and, passing to a subsequence

if necessary, by Lemma 2.13, ∫
R

(er1αu
2
n − 1)dx ≤ Hα , ∀ n ∈ N.

Suppose that (a) does not happen.

Claim 1: lim inf
n→+∞

sup
y∈Z

∫
B2(y)

|un(x)|2dx > 0.

Suppose the contrary. Then, from an easy adaptation of Lion’s Lemma found in [40, Lemma
2.4], one has un → 0 in Lt(R), for all t > 2. Thus, from (2.3), V2(un) → 0. Moreover, since
q > 2, from (2.9), ∣∣∣∣∣∣

∫
R

f(un)undx

∣∣∣∣∣∣ ≤ ε||un||22 + C1||un||qqr2
→ 0,

as ε→ 0 and n→ +∞. Consequently,

||un||2 + V1(un) = I ′(un)(un) + V2(un) +

∫
R

f(un)undx→ 0,

as n→ +∞. Thus, ||un|| → 0 and V1(un)→ 0. From the continuous immersions [15, Theorem

6.9], ||un||2 → 0. Then, from (1.4),
∫
R

F (un)dx→ 0. As a consequence, I(un)→ 0, which is a

contradiction. Therefore, the claim is valid.
From Claim 1 and Lemma 2.14, up to a subsequence, there exists (yn) ⊂ Z and u ∈ H 1

2 (R)\
{0} such that ũn = yn ∗ un ⇀ u in H

1
2 (R). We can conclude that (ũn) is bounded in Lt(R), for

all t ≥ 2, and ũn(x)→ u(x) a.e. in R.
Observe that, as q > 2,

V1(ũn) = V1(un) = I ′(un)(un) + V2(un) +

∫
R

f(un)undx− ||un||2

≤ K0||un||24 + εC2 + C1||un||qqr2
+ o(1) ≤ C3 + o(1).

That is, sup
n
V1(ũn) < +∞. So, from (ũn) being bounded in L2(R) and Lemma 2.6, (||ũn||∗) is

bounded. Therefore, (ũn) is bounded in X and, once X is reflexive, passing to a subsequence, if
necessary, ũn ⇀ u in X . From Lemma 2.1, ũn → u in Lt(R), for all t ≥ 2.
Claim 2: I ′(ũn)(ũn − u)→ 0, as n→ +∞.

One can easily see, by a change of variable, that I ′(ũn)(ũn − u) = I ′(un)(un − (−yn) ∗ u).
Thus,

|I ′(ũn)(ũn−u)| = |I ′(un)(un− (−yn)∗u)| ≤ ||I ′(un)||X′(||un||X+ ||(−yn)∗u||X) , ∀ n ∈ N.
(3.1)

Then, we first seek for an useful inequality for ||(−yn) ∗ u||X . Once ||un||X already appears in
(3.1), a natural way is to look for a constant C > 0 such that ||(−yn) ∗ u||X ≤ C||un||X .

Observe that, since ũn → u in L2(R) and u ∈ L2(R) \ {0}, there are R1 > 0, n1 ∈ N and
C1 > 0 such that ||ũn||22,BR1

≥ C1 > 0, for all n ≥ n1. Let us prove that (yn) is bounded
in Z2. In fact, suppose, by contradiction, that any subsequence of (yn) satisfies |yn| → +∞.
Thus, there exists n2 ∈ N such that |yn| ≥ 2R1, for all n ≥ n2. Moreover, we recall that
1 + |x+ yn| ≥

√
1 + |yn|, for all x ∈ BR1 and n ≥ n2. Therefore, passing to a subsequence if

necessary, we have

||ũn||2∗ =
∫
R

ln(1 + |x+ yn|)|un(x)|2dx

≥ C2||un||22,BR1
ln(1 + |yn|) = C3 ln(1 + |yn|),∀ n ∈ N,
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which contradicts the fact that (ũn) is bounded in X .
Now, observe that

||un||2∗ =
∫
R

ln(1 + |x− yn|)|ũn(x)|2dx ≤ ||ũn||2∗ + ln(1 + |yn|)||ũn||22,∀ n ∈ N. (3.2)

Since (yn) is bounded in Z2, there are y0 ∈ Z2 and n ∈ N such that yn = y0, for all n ≥ n.
Then, from (3.2) and the fact that (ũn) is bounded in X , we have

||un||2∗ ≤ C4 where C4 = max{ln(1 + |yn1 |), ..., ln(1 + |yn|), ln(1 + |y0|)} > 0.

Therefore, once (un) is already bounded in H
1
2 (R), we conclude that (un) is bounded in X .

Thus, from (2.10),

|I ′(ũn)(ũn − u)| ≤ (1 + C
1
2

8 )||I
′(un)||X′ ||un||X → 0 , as n→ +∞.

Claim 3:
∫
R

f(ũn)(ũn − u)dx→ 0, as n→ +∞.

Since || · || is Z-invariant, Moser-Trudinger inequality and the exponential results above hold
for the sequence (ũn) as well. It follows that∣∣∣∣∣∣

∫
R

f(ũn)(ũn − u)dx

∣∣∣∣∣∣ ≤ ||ũn||2||ũn − u||2 + C9||ũn − u||qqr2
→ 0,

as n→ +∞, concluding the claim.
Moreover, observe that

|V ′2 (ũn)(ũn − u)| ≤ K0||ũn||34||ũn − u||4 → 0

and

V ′1 (ũn)(ũn − u) = B1(ũ
2
n, ũn(ũn − u)) = B1(ũ

2
n, (ũn − u)2) +B1(ũ

2
n, u(ũn − u)).

Also, since (ũn) is bounded in X , from Lemma 2.7, B1(ũ2
n, u(ũn−u))→ 0. So, from the above

estimations

o(1) = ||ũn||2 − ||u||2 +B1(ũ
2
n, (ũn − u)2) + o(1) ≥ ||ũn||2 − ||u||2 + o(1).

Hence, ||ũn|| → ||u|| and B1(ũ2
n, (ũn − u)2) → 0. Therefore, we conclude that ||ũn − u|| → 0

and, combined with Lemma 2.6, we have ||ũn − u||∗ → 0. Consequently, ũn → u in X .
Finally, we have to show that u is a critical point of I . Let v ∈ X . So, as we deduced above,

it is possible to find C10 > 0 such that

||(−yn) ∗ v||X ≤ C10||un||X , ∀ n ∈ N.

Thus,

|I ′(u)(v)| = lim
n→+∞

|I ′(ũn)(v)| = lim
n→+∞

|I ′(un)((−yn)∗v)| ≤ C10 lim
n→+∞

||I ′(un)||X′ ||un||X = 0.

Proof of Theorem 1.1. (i) From Lemma 2.9 and Proposition 3.1 there exists a nontrivial critical
point of I , u0 ∈ X , such that I(u0) = cmp.
(ii) Define K = {v ∈ X \ {0} ; I ′(v) = 0}. Since u0 ∈ K, K 6= ∅. Thus, we can consider
(un) ⊂ K satisfying I(un)→ cg = inf

v∈K
I ′(v).

Observe that cg ∈ [−∞, cmp]. If cg = cmp, nothing remains to be proved. Otherwise, if cg <
cmp, passing to a subsequence if necessary, we can assume that I(un) ≤ cmp, for all n ∈ N. So,
Lemma 2.13 holds for this sequence and we can apply all the results derived earlier. Therefore,
from Lemma 2.9, (un) ⊂ K and Proposition 3.1 there exists (yn) ⊂ Z such that ũn → u in X ,
for a nontrivial critical point u of I in X . Consequently, I ′(u) = lim I ′(ũn) = lim I ′(un) = 0
and we conclude that u ∈ K and I(u) = lim I(ũn) = lim I(un) = cg. Particularly, we see that
cg > −∞.
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4 Proof of Theorem 1.2

To finish this section, we will verify some properties of an important auxiliary function, namely,
ϕu : R→ R, given by ϕu(t) = I(tu), for all u ∈ X \ {0} and t ∈ R.

Lemma 4.1. Let u ∈ X \{0}. Then, ϕu is even and there exists a unique tu ∈ (0,+∞) such that
ϕ′u(t) > 0, for all t ∈ (0, tu), and ϕ′u(t) < 0, for all t ∈ (tu,∞). Moreover, ϕu(t) → −∞, as
t→ +∞.

Proof. Since f is odd, I is even and, consequently, ϕu is even as well.
(i) For t > 0 sufficiently small and α > 0, for (1.3), we have

ϕ′u(t) ≥ t||u||2[1− C2t
2||u||2 − ε− C4t

q−2||u||q−2].

Thus, ϕ′u(t) > 0 for t > 0 sufficiently small.
(ii) From (f3) and (f ′4), once q > 4,

ϕ′u(t) ≤ t||u||2 + t3V1(u)− C3t
q−1||u||qq → −∞ , as t→ +∞.

Hence, from (i)-(ii), since I is C1, there exists tu ∈ (0,+∞) such that ϕ′u(tu) = 0, which is
unique by (f5).

Corollary 4.2. Let u ∈ X \ {0}. Then, there exists a unique t′u ∈ (0,+∞) such that ϕu(t) > 0,
for t ∈ (0, t′u), and ϕu(t) < 0, for t ∈ (t′u,+∞). Moreover, tu given by Lemma 4.1 is a global
maximum for ϕu.

Lemma 4.3. For each u ∈ X \ {0}, the map u 7→ t′u is continuous.

Proof. First of all, observe that, from the uniqueness of t′u, the map is well-defined for all u ∈
X \ {0}. Consider now (un) ⊂ X \ {0} such that un → u in X \ {0}.

Suppose, by contradiction, that (t′un
) is not bounded. So, from Lemma 4.1, the definition of

ϕu, the continuity of I and Corollary 4.2, there exists t0 > 0 such that 0 ≤ ϕu(t0) < 0, which is
a contradiction. Therefore, (t′un

) is bounded.
Hence, there exists (t′unk

) ⊂ (t′un
) such that t′unk

→ t ∈ (0,+∞). Thus, we infer that

0 ≤ ||t′unk
unk
− tu||X ≤ |t′unk

− t|||unk
||X + t||unk

− u||X → 0.

Consequently, t′unk
unk
→ tu in X . From continuity of I , I(t′unk

unk
)→ I(tu).

On the other hand, from t′unk
definition, I(t′unk

unk
) = 0. Hence, I(tu) = 0. From unique-

ness given by Corollary 4.2, t = t′u. So, we conclude that t′unk
→ t′u. Since this argument can

be done to any subsequence of (tun
), by standard arguments one can see that t′un

→ t′u, proving
the continuity.

In this section we will provide the proof of the multiplicity result stated. In order to do so,
we will need to verify some results concerned with the genus theory, denoted by γ and which
definition, given over A = {A ⊂ X ; A is symmetric and closed} (with respect to the continuity
in X), and basic properties can be found in [36, Chapter II.5].

We start defining the sets

Kc = {u ∈ X ; I ′(u) = 0, I(u) = c} , c ∈ (0,+∞)

and
Ac,ρ = {u ∈ X ; ||u− v|| ≤ ρ , for some v ∈ Kc} , c ∈ (0,+∞).

It is easy to verify that the sets Kc and Ac,ρ are symmetric, closed (with respect to || · ||X ) and
invariant under Z translations, i.e, if u ∈ Kc, Ac,ρ, then z ∗ u ∈ Kc, Ac,ρ, for all z ∈ Z.

Next, we fix a continuous map β : L2(R) \ {0} → R that is equivariant under Z translations,
i.e, β(x ∗ u) = x+ β(u), for x ∈ Z and u ∈ L2(R) \ {0}. We also require that β(−u) = β(u).
Such map is called a generalized barycenter map and an example can be constructed as that one
in [4]. Hence, we can define the sets

K̃c = {u ∈ Kc ; β(u) ∈ [−4, 4]},
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which are clearly symmetric. Moreover, before we enunciate our first result, we need to recall
the Gauss bracket [·] : R → Z, given by [s] = max{n ∈ Z ; n ≤ s} (see [25, Chapter 3]). We
recall some properties of the Gauss bracket, that are needed inside of the proof of our result.

Lemma 4.4. Let [·] : R→ Z, given by [s] = max{n ∈ Z ; n ≤ s}. Then,
(i) 0 ≤ s− [s] < 1, for all s ∈ R.
(ii) if z ∈ Z and s ∈ R, then [z + s] = z + [s].

(iii) Let s ∈ R such that s− [s] ≥ 1
2

, then s− 1
2
−
[
s− 1

2

]
<

1
2

.

(iv) 0 ≤ s− [s] < 1, for all s ∈ R.

(v) Let s ∈ R. Then, s−
[
s− 1

2

]
< 1.

Proposition 4.5. Let c > 0. Then, there exists ρ0 = ρ0(c) > 0 such that γ(Ac,ρ) < ∞, for all
ρ ∈ (0, ρ0).

Proof. Fix a barycenter map β : L2(R) \ {0} → R.
Claim 1: The sets K̃c are compact in X .

Let (un) ⊂ K̃c. From Proposition 3.1, there exists (yn) ⊂ Z such that, passing to a subse-
quence if necessary, wn = yn ∗ un → u ∈ Kc in X . Consequently, as β is continuous,

yn + β(un) = β(yn ∗ un) = β(wn)→ β(u).

Since (un) ⊂ K̃c, β(un) ⊂ [−4, 4]. From compactness, passing to a subsequence if necessary,
there exists r ∈ [−4, 4] such that β(un) → r in R. Also, since (β(un)) and (yn + β(un)) are
bounded, (yn) ⊂ Z is bounded. Thus, we can assume that (yn) is convergent. Therefore,

β(u) = lim yn + limβ(un)⇒ lim yn = β(u)− r.

Moreover, since (yn) ⊂ Z, β(u)− r = y ∈ Z.
Lets prove that un → u0 = (−y) ∗ u, with respect to || · ||X . First of all, observe that, since

(yn) ⊂ Z and yn → y ∈ Z, there exists n0 ∈ N, such that for all n ≥ n0, yn = y. Moreover,

||un − (−yn) ∗ u||∗ ≤
∫
R

ln(1 + |y|)|yn ∗ un − u|2dy +
∫
R

ln(1 + |yn|)|yn ∗ un − u|2dy

≤ (1 + ln(1 + |yn|))||yn ∗ un − u||2X .

Since yn = y, for all n ≥ n0, and yn ∗ un → u in X , we have

lim ||un − (−yn) ∗ u||2∗ ≤ lim[(1 + ln(1 + |yn|))||yn ∗ un − u||2X ]

= (1 + ln(1 + |y|)) lim |yn ∗ un − u||2X = 0.

Also, as ||yn ∗ un− u|| = ||un− (−yn) ∗ u|| and yn ∗ un → u in H
1
2 (R), ||un− (−yn) ∗ u|| → 0,

as n→ +∞. Hence, ||un−(−yn)∗u||X → 0. Finally, since yn = y, for all n ≥ n0, we conclude
that un → u0, as desired.

Therefore, from the Z-invariance of Kc, (−y) ∗ u ∈ Kc and, by continuity of β, β(un) →
β(u0) ∈ [−4, 4]. Consequently, u0 ∈ K̃c, and the claim is valid.

For c > 0, from the facts that β is even and X ↪→ H
1
2 (R), one can see that K̃c is compact in

H
1
2 (R) and, also, K̃c ∈ A. Thus, since 0 6∈ K̃c, γ(K̃c) < +∞.
Hence, from the genus definition, there exists a continuous and odd function g0 : K̃c →

Rk \ {0}, for some k ≥ 0. Then, from Claim 1, one can easily verify that g0 is continuous with
respect to || · ||.

Therefore, since H
1
2 (R) is a normal topological space and K̃c is closed in H

1
2 (R), we can

apply a corollary of Tietze’s Theorem in order to extend g0 to a continuous and odd function
(with respect to || · ||), g : H

1
2 (R)→ R.

Claim 2: There exists ρ > 0 such that g(u) 6= 0, for all u ∈ Uρ = {u ∈ H 1
2 (R) ; ||u − v|| ≤

ρ , for some v ∈ K̃c}.
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First of all, observe that g(K̃c) = g0(K̃c) ⊂ Rk \ {0}, that is, {0} ∩ g(K̃c) = ∅ or, equiv-
alently, g−1({0}) ∩ K̃c = ∅. From continuity of g, we have that g−1({0}) is closed in H

1
2 (R).

Consequently, d = dist(g−1({0}), K̃c) > 0.

Set ρ =
d

2
. Suppose, by contradiction, that there exits u ∈ Uρ such that g(u) = 0, i.e,

u ∈ g−1({0}). Thus, there exists v ∈ K̃c satisfying

dist(u, v) = ||u− v|| ≤ ρ = d

2
.

Hence, d ≤ ||u− v|| ≤ d

2
, which is a contradiction.

Therefore, g(u) 6= 0 for all u ∈ Uρ.
Also, one can verify that Uρ ∈ A. In the following, we need to define the set

L1 =

{
u ∈ Lp(R) \ {0} ; |β(u)− [β(u)]| ≤ 1

2

}
.

One can easily see that z ∗ u ∈ L1, for all z ∈ Z and u ∈ L1. Now, define a map h1 : L1 → L1
by h1(u) = (−[β(u)]) ∗ u. It is easy to verify that h1 is well-defined, odd, invariant under Z

translations and an isometry. Also, setting a =
1
2

and L2 = a ∗ L1 ⊂ L2(R) \ {0}, it is easy to

see, from item (iii) of Lemma 4.4, that L2(R) \ {0} ⊂ L1 ∪ L2.
Now, define the map h2 : L2 → L2 by h2(u) = a ∗ [h1((−a) ∗ u)], for u ∈ L2. Once again,

it is easy to verify that h2 is odd, Z-invariant and an isometry. Moreover, it follows immediately
from the properties of β, definition of h2 and h1 and Lemma 4.4-(v), that β(h2(u)) ∈ [0, 1] for
u ∈ L2.

Next, define the sets Ai = h−1
i (Uρ) ⊂ Li, for i = 1, 2. One can see that Ai ∈ A and that they

are Z-invariant, for i = 1, 2. Set A = A1 ∪A2.
Claim 3: There exists ρc ∈ (0,+∞), such that Ac,ρ ⊂ A, for all ρ ∈ (0, ρc).

Suppose, by contradiction, that for every n ∈ N, there exists ρn ∈ (0, 1
n) such thatAc,ρn * A.

Then, there exists un ∈ Ac,ρn \A, for every n ∈ N.
We can suppose that un ∈ L1, for all n ∈ N. By definition, there exists vn ∈ Kc such that

||un − vn|| ≤ 1
n , for all n ∈ N.

Now, observe that, setting ũn = (−[β(un)])∗un and ṽn = (−[β(vn)])∗vn, we have ũn ∈ L1
and ṽn ∈ Kc, for all n ∈ N. From Z-invariance, ||ũn − ṽn|| = ||un − vn|| ≤ 1

n .
Moreover,

β(ṽn) = β((−[β(vn)]) ∗ vn) = −[β(ṽn)] + β(ṽn)

and, from item (iv) of Lemma 4.4, β(ṽn) ∈ [0, 1]. Hence, (ṽn) ⊂ K̃c. Since K̃c is compact
in H

1
2 (R), considering a subsequence if necessary, ṽn → v ∈ K̃c. From the continuity of β,

β(ṽn)→ β(v) ∈ [0, 1].
On the other hand,

||ũn − v|| ≤ ||ũn − ṽn||+ ||ṽn − v|| ≤
1
n
+ o(1)→ 0,

as n → +∞. Therefore, ũn → v in H
1
2 (R). Once more, from β continuity, there exists n0 ∈ N

such that β(ũn) ∈ [−2, 2], for all n ≥ n0.
Define wn = (−[β(ũn)]) ∗ ṽn. Since ṽn ∈ Kc, wn ∈ Kc and β(wn) = β(ṽn) − [β(ũn)].

Consequently,

|β(ṽn)− β(ũn) + (β(ũn)− [β(ũn)])| ≤ 1 +
1
2
+ 2 < 4.

Hence, β(wn) ∈ [−4, 4], for all n ≥ n0. So, we conclude that wn ∈ K̃c, for n sufficiently large.
Now, as ũn ∈ L1, makes sense to apply h1. Thus,

||h1(ũn)− wn|| = ||(−[β(ũn)]) ∗ ũn − (−[β(ũn)]) ∗ ṽn||

= ||(−[β(ũn)]) ∗ (ũn − ṽn)|| = ||ũn − ṽn|| ≤
1
n
.
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Therefore, taking n ≥ max{n0,
1
ρ}, we have that wn ∈ K̃c and ||h1(ũn) − wn|| ≤ ρ, which

implies that h1(ũn) ∈ Uρ.
Hence, ũn ∈ A1 and, since A1 is Z-invariant, un ∈ A1 ⊂ A, which is a contradiction. So, the

claim is valid.
Claim 4: γ(Uρ) ≤ γ(K̃c).

If γ(K̃c) = 0, then K̃c = ∅, which implies Uρ = ∅ and, by definition, γ(Uρ) = 0. Suppose
then, γ(K̃c) > 0. So, we can consider a function g̃ : Uρ → Rk{0}, given by g̃(u) = g(u).
Observe that g̃ is well-defined, since Uρ ⊂ H

1
2 (R) and g 6= 0 over Uρ. Moreover, as g is odd

and continuous, so is g̃. Consequently, from genus definition, γ(Uρ) ≤ k = γ(K̃c), proving the
claim.

Finally, since K̃c, Ac,ρ, Uρ, Ai, A ∈ A, for i = 1, 2, make sense to apply γ in all of this
sets. Therefore, from the upper considerations, Claim 3, and standard properties of genus, for
ρ ∈ (0, ρc), we have

γ(Ac,ρ) ≤ γ(A) = γ (A1 ∪A2)

≤ γ(A1) + γ(A2) = γ(h−1
1 (Uρ)) + γ(h−1

2 (Uρ))

≤
2∑
i=1

γ(Uρ) ≤
2∑
i=1

γ(K̃c) = 2γ(K̃c) = 2k <∞.

Hence, taking ρ0 = ρc, we have the proposition.

For the next results we will need the definition and some basic properties of relative genus.
So, for convenience of the reader, we will include it here.

Definition 4.6. Let D,Y ∈ A with D ⊂ Y . We say that U, V ∈ A is a covering of Y relative to
D if it satisfies
(i) Y ⊂ U ∪ V and D ⊂ U ;
(ii) there exists an even continuous (in X) function χ : U → D, such that χ(u) = u, for all
u ∈ D.

If U, V ∈ A is a covering of Y relative to D, then the genus of this covering is γ(V ) = k.

Definition 4.7. Let D,Y ∈ A with D ⊂ Y . We define the Krasnoselskii’s genus of Y relative to
D, denoted by γD(Y ), as
(i) There exists a covering for Y relative toD and, in this case, γD(Y ) = k, where k is the lowest
genus of this coverings.
(ii) If we cannot find any such covering of Y relative to D, we set γD(Y ) = +∞.

In the following, we list some useful properties of relative genus that are needed to guarantee
that the results are valid.

Lemma 4.8. (i) Let D ⊂ A. Then, γD(D) = 0.
(ii) Let D,Y, Z ∈ A satisfying D ⊂ Y and D ⊂ Z. If there exists a function ϕ : Y → Z, even
and continuous (in X), such that ϕ(u) = u, for all u ∈ D, then γD(Y ) ≤ γD(Z).
(iii) Let D ⊂ Y ⊂ Z ∈ A. Then, γD(Y ) ≤ γD(Z).
(iv) Let D,Y, Z ∈ A satisfying D ⊂ Y . Then, γD(Y ∪ Z) ≤ γD(Y ) + γ(Z).

Proof. For item (i), take U = D,V = ∅ and χ = id, in the definition of relative genus. Proofs
for items (ii) and (iv) can be found, for example, in [12]. Finally, item (iii) is an immediate
consequence of item (ii).

For the next results, we define the sets

Ic = {u ∈ X ; I(u) ≤ c} , for c ∈ R and D = I0,

and the values
ck = inf{c ≥ 0 ; γD(Ic) ≥ k} , ∀ n ∈ N.
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Remark 4.9. (1) Since I is unbounded from bellow, D 6= ∅.
(2) Let c1, c2 ∈ R with c1 > c2. Then, if u ∈ Ic2 , I(u) ≤ c2 < c1, so u ∈ Ic2 . That is, if c1 > c2,
then Ic2 ⊂ Ic1 .
(3) If c1 > c2 ≥ 0, then D ⊂ Ic2 ⊂ Ic1 . Consequently, γD(Ic2) ≤ γD(Ic1).
(4) For ε > 0, γD(Ick+ε) ≥ k and γD(Ick−ε) < k, for every k ∈ N.

Lemma 4.10. We have that

inf
u∈X\{0}

sup
t∈R

I(tu) = inf
u∈X\{0}

sup
t>0

I(tu) < +∞. (4.1)

Proof. First of all, observe that, since I is even, sup
t∈R

I(tu) = sup
t>0

I(tu). Moreover, from Lemma

2.10, sup
t>0

I(tu) < +∞ for all u ∈ X \ {0}.

Consider the Nehari’s manifold for I , defined by

N = {u ∈ X \ {0} ; I ′(u)(u) = 0}. (4.2)

Lemma 4.11. Let N as in (4.2). Then,

inf
N
I = inf

u∈X\{0}
sup
t>0

I(tu).

Proof. We start proving the following statement.
Claim 1: Let u ∈ X \ {0}. Then, tuu ∈ N and sup

t>0
I(tu) = I(tuu).

Indeed, from Lemma 4.1, there exists an unique tu ∈ (0,+∞) such that ϕ′u(tu) = 0, which,
from Corollary 4.2, is a global maximum for ϕu, concluding the proof of claim 1.
Claim 2: Let u ∈ N . Then, sup

t>0
I(tu) = I(u).

Since, u ∈ N and ϕ′u(t) = I ′(tu)(u), we have 0 = I ′(u)(u) = ϕ′u(1). From Lemma 4.1, 1 is
a global maximum for ϕu. Consequently, sup

t>0
I(tu) = ϕu(1) = I(u), and the claim follows.

From Lemma 4.1 and Claims 1 and 2, we obtain the result.

Lemma 4.12. We have inf
X\{0}

sup
t∈R

I(tu) > 0.

Proof. Suppose that α1 = inf
X\{0}

sup
t∈R

I(tu) = 0. Then, there exists a sequence (un) ⊂ X \ {0}

such that sup
t∈R

I(tun)→ 0. From Lemma 4.11, the definition of ϕ◦ and Lemma 2.9 we can reach

a contradiction.

In order to prove the next results, we need to introduce the following sets

N+ = {u ∈ X ; I ′(u)(u) > 0} and N− = {u ∈ X ; I ′(u)(u) < 0}.

Note that X = {0} ∪ N+ ∪ N ∪ N− and that this sets are 2 − 2 disjoints. Moreover, using the
definition of a set’s boundary and Lemmas 2.9 and 4.1, it is possible to verify that ∂N− = N
and ∂N+ = {0} ∪ N .

Proposition 4.13. We have c1 = inf
N
I = inf

u∈X\{0}
sup
t>0

I(tu) > 0.

Proof. Observe that, from Lemma 4.11, remains to prove that c1 = inf
N
I > 0.

Claim 1: c1 > 0.
Suppose that c1 = 0. Then, by c1 definition, γD(D) ≥ 1, which contradicts Lemma 4.8-(i).

Therefore, c1 > 0.
Claim 2: c1 ≥ inf

N
I .

Suppose, by contradiction, that c1 < inf
N
I . Choose c ∈ (c1, inf

N
I). Define the function

F : Ic → X by

F(u) =

{
0 , if u ∈ {0} ∪ N+

max{1, t′u}u , if u ∈ N−
.
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Then, we mention some properties of F that can be easily verify: (i) F is well-defined, since
X = {0} ·∪ N+ ·∪ N ·∪ N−; (ii) by the definition of F , Lemma 4.3, the continuity of max
function and ∂({0} ∪ N+) = N = ∂N−, F is continuous; (iii) from Corollary 4.2 and direct
computations, one concludes that F odd; (iv) F

∣∣
D

= id, it clearly follows from Corollary 4.2
and Lemma 4.1.

Consider U = Ic and V = ∅. Since I is C1 and even, U is closed and symmetric. That
is, U ∈ A. Also, V = ∅ ∈ A. Moreover, Ic = U ∪ V and, since c ∈ (c1, inf

N
I), c > 0 and

D ⊂ Ic ⊂ U .
From properties (i)-(iv) and Definition 4.7, U and V is a covering for Ic relative to D. Then,

once γ(∅) = 0, from definition, the genus of this covering is zero. Hence, γD(Ic) = 0. But it
gives a contradiction, since 1 ≤ γD(Ic1) ≤ γD(Ic) = 0. Consequently, c1 ≥ inf

N
I .

Claim 3: c1 ≤ inf
N
I .

For u0 ∈ X \ {0}, without loss of generality, we can assume ||u0|| = 1.
Set d = sup

t>0
I(tu0). Lets prove that γD(Id) ≥ 1. Note that, if u ∈ B = {tu0 ; t > 0}, then

there exists t0 > 0 such that u = t0u0. Then,

I(u) = I(t0u0) ≤ sup
t>0

I(tu0)

and, consequently, u ∈ Id. Moreover, inf
u∈X\{0}

sup
t>0

I(tu) implies d > 0. On the other hand, if

u ∈ D, I(u) ≤ 0 < d. So, u ∈ Id. Hence, D ⊂ B ∪D ⊂ Id.
Thus, from Lemma 4.8-(iii), γD(B ∪ D) ≤ γD(Id). In this point of view, we will work to

prove that γD(B ∪D) ≥ 1.
Suppose that γD(B ∪ D) = 0. Then, by definition, U = B ∪ D and V = ∅, once only the

empty set has null genus. Moreover, there exists a function, continuous and odd, χ : B∪D → D
such that χ(u) = u, for all u ∈ D.

Define g : (0,+∞)→ (0,+∞) by g(t) = ||χ(tu0)||. Note that g is continuous.
Now, consider ρ > 0 given by Lemma 2.9. From Corollary 4.2, there exists t ∈ (t′u0

,+∞),
with t > ρ, such that ϕu0(t) < 0. It is equivalent to I(tu0) < 0, which implies tu0 ∈ D.

Consequently, g(tu0) = ||χ(tu0)|| = t. On the other hand, once 0 ∈ D, g(0) = 0. So,
since g is continuous, from the Intermediate Value Theorem, there exists tρ ∈ (0, t) such that
ρ = g(tρ) = ||χ(tρu0)||. But, from Lemma 2.9, I(χ(tρu0)) ≥ mρ > 0 and we have that
χ(tρu0) 6∈ D, which is a contradiction.

Therefore, claim 3 is valid and, combined with claim 2, we have the proposition.

Remark 4.14. (1) We can provide an equivalent definition to the the function F : Ic → X by

F(u) =

{
0 , if u ∈ {0} ∪ N+

σ(u)u , if u ∈ N−
,

where σ : N− → [1,+∞) is given by σ(u) = inf{t ≥ 1 ; ϕu(t) = I(tu) ≤ 0}.
(2) Let i, j ∈ N with i > j. Then,

{c ∈ (0,+∞) ; γD(Ic) ≥ i} ⊂ {c ∈ (0,+∞) ; γD(Ic) ≥ j}.

Therefore, cj ≤ ci.

In the following, we will consider W as a k-dimensional subspace of X . As a consequence
of (f ′1), (f

′
4), V2(u) ≥ 0 and V1(u) ≤ 2||u||4X , once can see that

I(u)→ −∞, as ||u||X → +∞, and sup
u∈W

I(u) < +∞. (4.3)

Lemma 4.15. There exists R > 0 such that {u ∈W ; ||u|| ≥ R} ⊂ D.

Proof. Set A = {u ∈ W ; ||u|| ≥ R}. Suppose, by contradiction, that for all n ∈ N, there exists
un ∈ A such that un 6∈ D. Allied with the definition of D, there exists a sequence (un) ⊂ W
satisfying ||un|| ≥ n and I(un) > 0, for all n ∈ N. But it contradicts (4.3), since for n ∈ N
sufficiently large we should have I(un) ≤ 0.
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For the next results, consider ρ > 0 given by Lemma 2.9 and χ : X → X a continuous and
odd function, such that χ(u) = u, for all u ∈ D. Define the sets

Oχ = {u ∈W ; ||χ(u)|| < ρ}.

For convenience, we set χ as a function having these properties, except we say otherwise.

Remark 4.16. One can easily verify that the sets Oχ have the following properties:
(1) Oχ is a neighbourhood of zero in W .
(2) Oχ is bounded and symmetric.
(3) If u ∈ ∂WOχ, then ||χ(u)|| = ρ.

Proposition 4.17. Let k ∈ N. Then ck < +∞.

Proof. Set α = sup
u∈W

I(u). From (4.3), α < +∞. Also, by definition of Iα, we see that W ⊂ Iα.

Suppose that γD(Iα) < k. Then, from Definition 4.7, there exists U, V ∈ A and χ : U → D
continuous and odd, such that Iα ⊂ U ∪ V , D ⊂ U , γ(V ) ≤ k − 1 and χ

∣∣
D
= id.

Since U ⊂ X is closed, by a corollary of Tietze’s Theorem, there exists a unique extension of
χ, that we still denote by χ, to X , which is continuous and odd. So, the setsOχ are well-defined.

Now, from Remark 4.16 and a genus property, since dimW = k, γ(∂WOχ) = k.
Let u ∈ ∂WOχ. From Remark 4.16, ||χ(u)|| = ρ. By Lemma 2.9, I(χ(u)) ≥ mρ > 0.

Thus, χ(u) 6∈ D. Equivalently, u 6∈ χ−1(D). Once the initial function χ satisfies χ(U) ⊂ D, we
conclude that u 6∈ U . Therefore, ∂WOχ ∩ U = ∅.

On the other hand,

∂WOχ ⊂W ⊂ Iα ⊂ U ∪ V =⇒ ∂WOχ ⊂ V.

Then, we have k = γ(∂WOχ) ≤ γ(V ) ≤ k − 1, which is a contradiction.
Therefore, from the definition of values ck and (4.3), ck ≤ α < +∞.

Before we prove that the values ck are critical values of I , we will provide a deformation
lemma. We start defining the sets S = X \Ac,ρ,

Sδ = {u ∈ X ; ||u− v||X ≤ δ , for some v ∈ S}

and
S̃δ = {u ∈ X ; ||u− v|| ≤ δ , for some v ∈ S},

for c, ρ, δ ∈ (0,+∞). Since the proofs of Lemma 4.18 and Corollary 4.19 can be done as [12,
Lemma 4.6], we omit it here.

Lemma 4.18. Let c, ρ > 0. Then, there exists δ0 = δ(c, ρ) > 0 such that, if δ ∈ (0, δ0), then
||I ′(u)||X′(1 + ||u||X) ≥ 8δ, for all u ∈ S̃2δ with I(u) ∈ [c− 2δ2, c+ 2δ2].

Corollary 4.19. Let c, ρ > 0. Then, there exists δ̃0 = δ̃0(c, ρ) > 0 such that, if δ ∈ (0, δ̃0), then
||I ′(u)||X′(1 + ||u||X) ≥ 8δ, for all u ∈ S2δ with I(u) ∈ [c− 2δ2, c+ 2δ2].

Lemma 4.20. Let c > 0. Then, there exists ρ1 = ρ1(c) > 0 such that, for all ρ ∈ (0, ρ1), we have
(i) Ac,ρ ∩D = ∅ .
(ii) There exists ε = ε(c, ρ) > 0 and a function φ : Ic+ε \Ac,ρ → Ic−ε, continuous and odd, such
that D ⊂ Ic−ε and φ

∣∣
D
= id.

Proof. (i) Suppose that the statement is false. Then, for all n ∈ N, there exists ρn ∈
(
0, 1

n

)
and

un ∈ Ac,ρn ∩ D. Note that ρn → 0. Thus, by Ac,ρn definition, there exists vn ∈ Kc such that
||un − vn|| ≤ ρn, for all n ∈ N.

As a consequence, I ′(vn) = 0 and I(vn) = c, for all n ∈ N. Hence, (vn) is a Cerami sequence
for I in level c > 0. Then, by Proposition 3.1, there exists (yn) ⊂ Z satisfying ṽn = yn ∗ vn → v
in X , where v is a non-zero critical point of I . Therefore,

||ũn − v|| ≤ ||ũn − ṽn||+ ||ṽn − v|| = ||un − vn||+ ||ṽn − v|| → 0.
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Finally, as Kc is closed, v ∈ Kc and, from the Z-invariance of I and Ac,ρn , ũn = yn ∗ un ∈
Ac,ρn ∩D. So, since (ũn) ⊂ D, I(ũn) ≤ 0, for all n ∈ N. Consequently, from Lemma 2.8-(iv),

c = I(v) ≤ lim inf
n→+∞

I(ũn) ≤ 0,

which is a contradiction.
(ii) Let δ0 as given by Corollary 4.19 and δ ∈ (0, δ0), such that δ2 < c

2 . Take ε = δ2. Then, from
[29, Deformation’s Lemma 2.6], there exists η : [0, 1]×X → X , continuous, satisfying
(a) η(t, u) = u, if t = 0 or u 6∈ I−1([c− 2ε, c+ 2ε]) ∩ S2δ ;
(b) η(1, Ic+ε ∩ (X \Ac,ρ)) ⊂ Ic−ε;
(c) t 7→ I(η(t, u)) is non-increasing, for all u ∈ X .

Moreover, since I is even, it is possible to modify the proof of the refereed lemma, such as
in [34], to obtain as well
(d) η(t,−u) = −η(t, u), for all t ∈ [0, 1] and u ∈ X .

Define φ : Ic+ε \ Ac,ρ → Ic−ε by φ(u) = η(1, u). Note that item (b) is equivalent to
η(1, Ic+ε ∩ \Ac,ρ) ⊂ Ic−ε, which guarantee that φ is well-defined. Also, as η is continuous, φ is
continuous as well, and from item (d), φ is odd.

Moreover, once ε = δ2 < c
2 , 0 6∈ [c−2ε, c+2ε]. Thus, D∩ I−1([c−2ε, c+2ε]) = ∅. Hence,

from item (a), if u ∈ D, φ(u) = η(1, u) = u, which implies that φ
∣∣
D
= id.

Finally, if u ∈ D, I(u) ≤ 0 < c− ε, then u ∈ Ic−ε.

Proposition 4.21. Let k ∈ N. Then, ck is a critical value of I .

Proof. Suppose, by contradiction, that for all u ∈ X , with I ′(u) = 0, I(u) 6= ck, for all k ∈ N.
Let ρ > 0. From definition of Kck , we have Kck = ∅ and, consequently, Ack,ρ = ∅, for all ρ > 0.

From Lemma 4.20, there exists ε = ε(ck, ρ) > 0 and φ : Ick+ε → Ick−ε, continuous and odd,
such that φ

∣∣
D
= id. Then, from Lemma 4.8-(ii), γD(Ick+ε) ≤ γD(Ick−ε).

On the other hand, as ck − ε < ck + ε, D ⊂ Ick−ε ⊂ Ick+ε and then, by Lemma 4.8-(iii),
γD(Ick+ε) ≥ γD(Ick−ε). Consequently, γD(Ick+ε) = γD(Ick−ε), which is a contradiction, since
γD(Ick+ε) ≥ k and γD(Ick−ε) < k.

Therefore, ck is a critical value of I .

Proposition 4.22. We have ck → +∞, as k → +∞.

Proof. Suppose that there exists M > 0, such that ck < M , for all k ∈ N. From Remark 4.14,
ck is monotonically nondecreasing. Then, there exists c > 0 such that ck → c.

From Proposition 4.5, there exists ρ0 > 0 such that γ(Ac,ρ) < +∞, for all ρ ∈ (0, ρ0).
Also, by Lemma 4.20-(i), there exists ρ1 > 0 such that Ac,ρ ∩ D = ∅, for all ρ ∈ (0, ρ1). Set
ρ2 = min{ρ0, ρ1} and let ρ ∈ (0, ρ2).

From Lemma 4.20-(ii), there exists ε > 0 and φ : Ic+ε \ Ac,ρ → Ic−ε, continuous and odd,
such that φ

∣∣
D
= id and D ⊂ Ic−ε. Moreover, once ck → c monotonically nondecreasing, there

exists k0 ∈ N, such that ck0 ≥ c− ε. Then, by Lemma 4.8-(ii),

γD(I
c+ε \Ac,ρ) ≤ γD(Ic−ε) < k0 < +∞.

Consequently, from Lemma 4.8-(iv),

γD(I
c+ε) = γD((I

c+ε \Ac,ρ) ∪Ac,ρ) ≤ γD(Ic+ε \Ac,ρ) + γ(Ac,ρ) < +∞.

Once more, as ck → c monotonically nondecreasing, c + ε > c ≤ ck, for all k ∈ N. Also, by
definition of values ck, γD(Ic+ε) ≥ k, for all k ∈ N, that is γD(Ic+ε) → +∞, as k → +∞,
which leads to a contradiction.

Therefore, ck → +∞, as k → +∞.

Proof of Theorem 1.2. From Proposition 4.22, we can extract a subsequence of (ck) such that
ck → +∞ monotonically increasing. Then, from Proposition 4.21, there exists uk ∈ X satisfy-
ing I(uk) = ck and I ′(uk) = 0, for all k ∈ N. Since (ck) is monotone, ci 6= cj , when i 6= j, and
ck > c1 > 0, for all k ≥ 2. Then, we conclude that the functions uk are distinct and that uk 6= 0,
for all n ∈ N. Also, as I is even, the same holds for −uk and I(±uk)→ +∞.
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5 Final Considerations

In this final section we call attention the reader that it is possible to adapt the results and tech-
niques derived in this work to solve versions of equation (1.1) considering a continuous potential
a : R→ R satisfying the following conditions

(a0) a : R→ R is continuous, Z-periodic , a ∈ L∞(R) and inf
x∈R

a(x) = a0 > 0.

One also could investigate the case where the potential a is not invariant under Z translations but
is an asymptotically Z-periodic function, that is, there exists a Z-periodic potential ap : R → R
such that ap satisfies (a0),

(a1) 0 < inf
x∈R

a(x) ≤ a(x) ≤ ap(x) , ∀ x ∈ RN

and

(a2) lim
|x|→+∞

|a(x)− ap(x)| = 0.
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