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Abstract Nowadays, frame theory plays an important role in many areas and fields, from ap-
plied mathematics to engineering applications such as image processing and sampling theory. In
the present paper, we will study some algebraic structures of K-frames for divisible submodule
in Hilbert C∗-modules and we are often interested in constructing some new K-frames.

1 Introduction and Preliminaries

Frames were first introduced by Duffin and Schaeffer [8] and used them as a tool in the study
of nonharmonic Fourier series. They were reintroduced and developed in 1986 by Daubechies,
Grossmann and Meyer [6]. Today, frame has been a useful tool in many areas such signal
processing [11], sampling theory [9]. For special applications, various generalizations of frames
were proposed, such as K-frames by L. Găvruta [15] to study the atomic systems with respect
to a bounded linear operator. Khosravi and Asgari [21] introduced frames in tensor product
of Hilbert spaces that is useful in the approximation of multi-variate functions of combinations
of univariate ones. Further, we pay attention that Our methods are derived from abelian group
theory, which must be translated to A[X]-modules and then specialized to the case of A[X]-
modules before it can be applied to linear algebra [14, 20]. Frank and Larson [13] introduced
the notion of frames in Hilbert C∗-module as a generalization of frames in Hilbert spaces. For
background material on frame theory and related topics, we refer the reader to [5, 3, 4].

Definition 1.1 ([28]). A left Hilbert C∗-module over the unital C∗-Algebra A is a left A-module
H equipped with an A-valued inner product:

〈x, y〉 : H×H −→ A

satisfying the following conditions:

1. 〈x, x〉 ≥ 0, for all x ∈ H and 〈x, x〉 = 0 if and only if x = 0;

2. 〈ax+ y, z〉 = a〈x, z〉+ 〈y, z〉, for all a ∈ A and x, y, z ∈ H;

3. 〈x, y〉 = 〈y, x〉∗ for all x, y ∈ H;

4. H is complete with respect to the norm ||x|| = ||〈x, x〉|| 12 .

Let H and K be two Hilbert A-modules. A map T : H → K is said to be adjointable if there
exists a map T ∗ : K → H such that 〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ H and y ∈ K. We also reserve
the notation End∗A(H,K) for the set of all adjointable operators from H to K and End∗A(H,H)
is abbreviated to End∗A(H).

For T ∈ End∗A(H), we denote by R (T ) and N (T ) the range and the kernel subspaces of
T respectively. Throughout this paper, we suppose that H is a Hilbert C∗-module and J is a
countable index set of N.

Example 1.2. Let us consider

l2 (C) =
{
{an}n ⊂ C :

∞∑
n=1

| an |2<∞
}
,
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and
A =

{
{an}n ⊂ C : sup

n≥0
{| an |} <∞

}
.

It is easy to see that l2 (C) with the A-valued inner product

〈{an}, {bn}〉 =
∑
n≥0

anb
∗
n

is a Hilbert C∗-module which is called the standard Hilbert C∗-module over A.

Example 1.3. If {Hk}k∈N is a countable set of HilbertA-modules, then their sum direct
⊕

k∈NHk

is Hilbert A-module. We define the inner product by

〈x, y〉 =
∑
k∈N
〈xk, yk〉, for all xk, yk ∈ Hk.

An operator T is called positive if

〈Tx, x〉 ≥ 0, for all x ∈ H.

Recall first that the center of A is defined as follows

Z (A) = {a ∈ A : ab = ba, for all b ∈ A}.

Remark 1.4. Let T ∈ End∗A(H) and a ∈ Z (A), then aT is adjointable.

Definition 1.5. [13] Let H be a Hilbert C∗-module. A sequence {xj}j∈J is said to be a frame if
there exist constants λ, µ > 0 such that

λ〈x, x〉 ≤
∑
j∈J
〈x, xj〉〈xj , x〉 ≤ µ〈x, x〉, (x ∈ H).

The constants λ, µ are called frame bounds.
If just the last inequality in the above definition holds, we say that {xj}j∈J is a Bessel se-

quence. The operator

Φ : H → l2 (A) defined by : Φ (x) = {〈x, xi〉}i∈I.

is called the analysis operator and it’s adjoint operator is given by:

Φ
∗ : l2 (A)→ H, defined by : Φ

∗ (a) =
∑
j∈J

ajxj , a = (aj)j∈J ∈ l
2 (A)

is called synthesis operator.
The frame operator for {xj}j∈J is defined by

S : H → H, S (x) = Φ (Φ∗ (x)) =
∑
j∈J
〈x, xj〉xj

For each x ∈ H
〈Sx, x〉 =

∑
j∈J
〈x, xj〉〈xj , x〉.

Then, S is bounded positive, self-adjoint. Moreover, S verifie

λI ≤ S ≤ µI.

Thus, S is invertible.

Definition 1.6. [15] Let K ∈ End∗A (H). The sequence {xj}j∈J is called a K-frame for H, if
there exist constants λ, µ > 0 such that

λ〈K∗x,K∗x〉 ≤
∑
j∈J
〈x, xj〉〈xj , x〉 ≤ µ〈x, x〉, for all x ∈ H.
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Later we will need the following lemmas to prove our mains results.

Lemma 1.7. [27] Let {xj}j∈J be a Bessel sequence. Then {xj}j∈J is a K-frame for H if and
only if there exists α > 0 such that

S ≥ αKK∗.

where S is the frame operator for {xj}j∈J.

Lemma 1.8. [28] Let H be a Hilbert C∗-module and T ∈ End∗A (H) . Then

〈Tx, Tx〉 ≤|| T ||2 〈x, x〉, for all x ∈ H.

Lemma 1.9. ([30]) LetH be a Hilbert C∗-module and T,G ∈ End∗A (H). If R(G) is closed, then
the following statements are equivalent:

1. R(T ) ⊆ R(G).

2. TT ∗ ≤ αGG∗, for some α > 0.

It is well known that H has a structure of A[X]-module defined by setting px = p (T )x, for
every x ∈ H and p ∈ A[X]. We denote HT the module obtained and we also denote pK by a
bounded linear operator on H defined as follows:

pK (x) = p (T ) (Kx) , (x ∈ HT ) .

A subspace M ⊂ H is said to be T -invariant if T (M) ⊂ M. The lattice of all T -invariant
subspaces in H will be denoted by Lat (T,H) .
Obviously, we have

Lat (T,H) ⊂ Lat (p (T ) ,H) , for all p ∈ A[X].

Motivated by the work of [25], we introduce the concept of divisible submodule in Hilbert C∗-
module. We refer to [14, 17, 23], for further information.
In the sequel, we take (A[X])

∗
= A[X]− {0}.

Definition 1.10. ([17]) Let T be A-lineair map and M ∈ Lat (T,H) . We shall say that M is
T -divisible if

M = pM, for all p ∈ (A[X])
∗
.

More precisely, for all x ∈M and p ∈ (A[X])
∗
, there exists y ∈M such that

x = py = p (T ) y.

Example 1.11. let E be a complex vector space and T be a lineair map on E. We suppose that
there exists an irreducible polynomial q in C[X] such that

E =
⋃
k≥1

N
(
qk (T )

)
.

If M ∈ Lat (T,E) such that M ⊂ q (T )M. Then M is T -divisible. Indeed
For x ∈M, there exists k0 ≥ 1 such that

qk0 (T ) (x) = 0.

If p ∈ C[X] is coprime with q, then there exist two polynomials u, v such that

up+ vqk0 = 1.

Thus
x = p (T )u (T )x.

So
M ⊂ p (T )M.
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Then, M is T -divisible.
Otherwise, there exists n ≥ 1 and q′ ∈ C[X] coprime with q such that

p = qnq′.

So, there exist u, v ∈ C[X] such that

uq′ + vqk = 1

hence
x = q′ (T )u (T ) (x) .

Thus
M ⊂ q′ (M) .

Since
M ⊂ qn (T )M.

Then
M ⊂ p (T )M

So, M is T -divisible.

Example 1.12. Let {ei}i∈N be an orthonormal basis for H and T ∈ B (H) such that

T (e1) = e2 and T (e2) = e1,

and
N (T ) ⊂

⊕
k≥3

Cek.

Consider
M = Ce1 +Ce2

By a simple calculations, we conclude that

M = (T − λ)M, for all λ ∈ C.

Since C[X] is a principal ring. Then

M = p (T )M

Consequently, M is T -divisible.

Now, Let us consider {Hk}1≤k≤n be a countable set of Hilbert A-modules and the following
map : ⊕

1≤k≤n

Tk :
⊕

1≤k≤n

Hk −→
⊕

1≤k≤n

Hk

defined as follow ⊕
1≤k≤n

Tk

 ⊕
1≤k≤n

ak

 = T1a1 ⊕ T2a2...⊕ Tnan, for all ak ∈ Hk.

So, it is easy to check the following result

⊕
1≤k≤n

Lat (Tk,Hk) ⊂ Lat

 ⊕
1≤k≤n

Tk,
⊕

1≤k≤n

Hk

 .

Proposition 1.13. [14]Let Tk be A-linear map and Mk be Tk-divisible. Then
⊕

1≤k≤n (Mk, Tk)

is
(⊕

1≤k≤n Tk

)
-divisible, for every 1 ≤ k ≤ n.
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Example 1.14. Let Ej be a complex vector space and Tj be a linear map on Ej such that, for
each 1 ≤ j ≤ n.

Ej = N
(
(Tj − λj)kj

)
, (λj ∈ C) .

Suppose Mj ∈ Lat (Tj ,Ej) such that

Mj ⊂ (T − λjI)Mj .

Thus, similarly of the example 1.3, we obtain that Mj is Tj-divisible. Therefore
⊕

1≤j≤n (Mj , Aj)

is
(⊕

1≤j≤nAj

)
-divisible.

In addition, the concept of semi-regularity was originated by Kato’s classical treatment [18]
of perturbation theory and its has benefited from the work of many authors in the last years, in
particular from the work of Mbekhta and Ouahab [26].

Definition 1.15. [26] An operator T ∈ End∗A(H) is said to be semi-regular if R(T ) is closed and
N
(
T k
)
⊂ R (T ) , for every k ≥ 1.

Obviously, all surjective and injective with closed range operators are semi-regular operators.
Some examples of semi-regular operators may be found in [22].

Proposition 1.16. [2] Assume that T ∈ End∗A(H) is semi-regular and G ∈ End∗A(H) such that
TGT = T. Then

TnGnTn = Tn, for all n ≥ 1.

Xu and Sheng [32] showed that a bounded adjointable operator between two Hilbert A-
modules admits a bounded Moore-Penrose inverse if and only if it has closed range.

Definition 1.17. ( [30]) The pseudo-inverse of an operator T ∈ End∗A (H) with closed range is
defined as the unique operator T † ∈ End∗A (H) such that

TT †u = u, for all u ∈ R (T ) .

The main purpose of this manuscript is to describe some algebraic structure of the set of
K-frames for divisible submodule in Hilbert C∗-modules and we mainly give some operators
preserving K-frames.

2 Maint results

In the sequel, we will assume that K ∈ End∗A(HT ) with closed range such that KT = TK and
we fix the following notation

DT = {M ⊂ HT : M is T − divisible}.

The next lemma will be useful as a tool in the our paper.

Proposition 2.1. Let M ∈ DT and p ∈ (Z (A) [X])
∗
. Then there exists λ > 0 such that

λ〈K∗x,K∗x〉 ≤ 〈K∗px,K∗px〉, (x ∈M).

Proof. Let x ∈M and q ∈ (Z (A) [X])
∗
. Then, there exists y ∈M such that

x = qy = q (T ) y.

So, we have
K (x) = K (qy) = Kq (T ) y.

Thus
R (K) ⊂ R (Kq (T )) .

Since
R (Kq (T )) = K (R (q (T ))) .
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Then
R (K) = R (Kq (T ))

Using lemma 1.9, there exists λ > 0 such that

λ〈K∗x,K∗x〉 ≤ 〈(Kq (T ))∗ x, (Kq (T ))∗ x〉.

Now, let p ∈ (Z (A) [X])
∗ such that p (T ) = (q (T ))

∗
. Then

λ〈K∗x,K∗x〉 ≤ 〈K∗px,K∗px〉.

Which completes the proof.

Theorem 2.2. Let {xj}j∈J be a K-frame for HT and M ∈ DT . Then {pxj}j∈J is a K-frame for
M with frame operator Sp defined by

Sp =
∑

0≤i,k≤n

ai,kT
iST k, (ai,k ∈ Z (A)) .

for all p ∈ (Z (A) [X])
∗
.

Proof. Suppose that {xj}j∈J is a K-frame for HT with frame bounds λ and µ. Then, for all
x ∈M

λ〈K∗x,K∗x〉 ≤
∑
j∈J
〈x, xj〉〈xj , x〉 ≤ µ〈x, x〉.

So, there exists y ∈M such that

x = qy = q (T ) y, for all q ∈ (Z (A) [X])
∗
,

thus
λ〈K∗qy,K∗qy〉 ≤

∑
j∈J
〈qy, xj〉〈xj , qy〉 ≤ µ〈qy, qy〉, for all y ∈M.

Hence

λ〈K∗qy,K∗qy〉 ≤
∑
j∈J
〈y, q (T )∗ xj〉〈q (T )∗ xj , y〉 ≤ µ〈q (T ) y, q (T ) y〉, for all y ∈M.

From Proposition 2.1, there exists α > 0 such that

α〈K∗x,K∗x〉 ≤ 〈K∗qy,K∗qy〉.

So, there exists λ′ = αλ > 0 and µ′ = µ || q (T ) ||2> 0 such that

λ′〈K∗y,K∗y〉 ≤
∑
j∈J
〈y, q (T )∗ xj〉〈q (T )∗ xj , y〉 ≤ µ′〈y, y〉, for all y ∈M.

Now, let p ∈ (Z (A) [X])
∗ such that p (T ) = q (T )

∗, we can write

λ′〈K∗y,K∗y〉 ≤
∑
j∈J
〈y, pxj〉〈pxj , y〉 ≤ µ′〈y, y〉, for all y ∈M.

Therefore, {pxj}j∈J is a K-frame for M.
On the other hand, let S be the frame operator for {xj}j∈J. Then, for x ∈M

S (x) =
∑
j∈J
〈x, xj〉.xj

So, we have
p (T )Sp∗ (T ) y =

∑
j∈J
〈y, p (T )xj〉p (T )xj , for all y ∈M.
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Then, the frame operator for {pxj}j∈J is defined as follow

Sp = p (T )Sp∗ (T ) .

By letting p (X) =
∑n

k=0 akX
k and ai,k = aia

∗
k, we also obtain

Sp =
∑

0≤i,k≤n

ai,kT
iST k.

This complete the proof.

Example 2.3. Let {ei}i≥1 be an orthonormal basis of l2 (C) with inner product defined by:〈
(an) , (bn)

〉
=
∑
n≥1

anb̄n, (an) ∈ C.

Let K ∈ B
(
l2 (C)

)
defined as follows

K (x1, x2, ..) = (x1, x2, 0, 0, .., 0) .

Since K = K∗, then
〈K∗x,K∗x〉 =| x1 |2 + | x2 |2 .

Now, Let {θi}i∈I be a sequence of l2 (C) such that

θ1 = e1, θ2k+1 = (0, 0, 0, ..) and θ2k =
1√
2k
e2k, for k 6= 0

For (x1, x2, ..) ∈ l2 (C), we have

∑
j≥1

〈x, θj〉.〈θj , x〉 =| x1 |2 +
∑
j≥1

| x2j |2

2j
.

Thus
1
8
〈K∗x,K∗x〉 ≤

∑
j≥1

〈x, θj〉.〈θj , x〉 ≤ 〈x, x〉.

Then {θj}j∈I is a K-frame for H.
Let T ∈ B

(
l2 (C)

)
defined by

T (x1, x2, ..) = (x2, x1, 0, 0, .., 0)

and Let M ⊂ l2 (C) defined by
M = Ce1 +Ce2.

Using the Example 1.4, we obtain that M is T -divisible.
For λ ∈ C and j ≥ 2, we have

(T − λ) θ1 = e2 − λe1 ; (T − λ) θ2 =
1√
2
(e1 − λe2) ; (T − λ) θ2j = −

λ√
2
e2j .

For m = m1e1 +m2e2 ∈M, A straightforward calculation gives∑
j≥1

〈m, (T − λ) θj〉.〈(T − λ) θj ,m〉 = 〈m, (T − λ) θ1〉.〈(T − λ) θ1,m〉+
∑
j≥1

〈m, (T − λ) θ2j〉.〈(T − λ) θ2j ,m〉

=| λm1 |2 + | m2 |2 +
1
2
(
| λm2 |2 + | m1 |2

)
=

(
| λ |2 +1

2

)
| m1 |2 +

(
1 +

1
2
| λ |2

)
| m2 |2 .
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Therefore

1
2
〈K∗m,K∗m〉 ≤

∑
j≥1

〈m, (T − λ) θj〉.〈(T − λ) θj ,m〉 ≤
(
1+ | λ |2

)
〈m,m〉, (m ∈M) .

Since C[X] is a principal ring, there exist α, β > 0 such that

α〈K∗m,K∗m〉 ≤
∑
j≥1

〈m, p (T ) θj〉.〈p (T ) θj ,m〉 ≤ β〈m,m〉.

where p (T ) = a
∏

1≤i≤n (T − λi)
ni , a ∈ C and ni ∈ N.

Example 2.4. Let T ∈ End∗A(H) be self-adjoint such that || T ||< 1 and M ∈ DT . We define
the exponential operator of T by :

eT =
∑
k∈N

1
k!
T k.

If {xj}j∈J is a K-frame for HT . Then {eT (xj)}j∈J is a K-frame for M.

In [1], we Recall that the left A-module R is finitely generated if there exist r1, r2, ..., rn in
R such that for any x in R, there exist a1, a2, ..., an in A with

x =
n∑

k=1

rkak.

Proposition 2.5. The following set

Γ = {Sp : p ∈ (Z (A) [X])
∗} ∪ {0}.

is a finitely generated module over Z (A) .

Proof. Let us consider p, q ∈ (Z (A) [X])
∗ such that

Sp =
∑

0≤i,k≤m

ai,kT
iST k,

and

Sq =
∑

0≤i′,k′≤m

bi′,k′T i′ST k′
.

If n < m, we put
ai,k = 0, for n ≤ i, k ≤ m.

Then
Sp + Sq =

∑
0≤i,k≤m

(ai,k + bi,k)T
iST k =

∑
0≤i,k≤m

ci,kT
iST k.

Then, Γ is a finitely generated module over Z (A) .

The following proposition shows that the sum of two K-frames under certain conditions is
again a K-frame.

Proposition 2.6. Let {xj}j∈J and {yj}j∈J be two K-frames for H with frame operator S1 and
S2 respectively and let the corresponding analysis operators be Φ and ψ respectively. Let α1, α2
be a lower K-frame bound of {xj}j∈J and {yj}j∈J respectively. If there exists β ∈ R such that
φ∗ψ+ ψ∗φ ≥ βKK∗ and 2α+ β > 0, where α = inf{α1, α2}. Then {xj + yj}j∈J is a K-frame
for H.
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Proof. Let x ∈ H, we have∑
j∈J
〈x, xj + yj〉.〈xj + yj , x〉 = 〈S1 (x) , x〉+ 〈S2 (x) , x〉+

∑
j∈J
〈x, yj〉.〈xj , x〉+

∑
j∈J
〈x, xj〉.〈yj , x〉.

= 〈S1 (x) , x〉+ 〈S2 (x) , x〉+ 〈φ∗ψx, x〉+ 〈ψ∗φx, x〉.

Since
φ∗ψ + ψ∗φ ≥ βKK∗.

Hence ∑
j∈J
〈x, xj + yj〉.〈xj + yj , x〉 ≥ (2α+ β)KK∗.

Applied the Minkowski’s inequality, it is easy to check that {xj + yj}j∈J is a bessel sequence
for H. By Lemma 1.7, we deduce that {xj + yj}j∈J is a K-frame for H.

Now, we will describe the algebraic structure of K-frames for DT .

Theorem 2.7. Let {xj}j∈J be a K-frame for HT . Then the following set

Γ = {xj : j ∈ J} ∪ {0}

is a left (Z (A) [X])
∗-module.

Proof. It follows immediately from Theorem 2.2 and Proposition 2.6.

In the following corollary, we give some new K-frames for HT1

⊕
HT2 .

Corollary 2.8. Let {xj}j∈J and {yj}j∈J be two K-frames for HT1 and HT2 , respectively. Then
{Xnxj

⊕
Xpyj}j∈J is a K-frame for (M1

⊕
M2, T1

⊕
T2) , where Mk ∈ DTk

, for all n, p ∈ N
and k=1, 2.

Proof. Result from Proposition 1.13 and Theorem 2.7.

The tensor product of Hilbert spaces is a certain linear space of operators which was repre-
sented by Folland in [12], Kadison and Ringrose in [19].

Definition 2.9. [24]. Let H1 and H2 be two Hilbert spaces. We define the tensor product of H1
and H2 as follows

u⊗ v : H′2 −→ H1

f 7−→ f (v)u.

For more details see [24, 29].

Theorem 2.10. Let {xj}j∈J be K1-frame for HT1 with frame bounds λ1 and µ1. Let {yj}j∈J′ be
K2-frame forHT2 with frame bounds λ2 and µ2 and Mi ∈ DTi

. Then, {(p
⊗
q) (xj

⊗
yj)}j∈J,j′∈J′

is a (K1
⊗
K2)-frame for (M1

⊗
M2) with frame operator defined as follows

Sp⊗q (z) = (Sp ⊗ Sq) (z) , z ∈
(
M1

⊗
M2

)
.

for all p, q ∈ (Z (A) [X])
∗
.

Proof. By Theorem 2.1, we have

λ1〈K∗1x,K∗1x〉 ≤
∑
j∈J,
〈x, pxj〉〈pxj , x〉 ≤ µ1〈x, x〉, for all x ∈M1

λ2〈K∗2 y,K∗2 y〉 ≤
∑
j∈J
〈y, qyj′〉〈qyj′ , y〉 ≤ µ2〈y, y〉, for all y ∈M2.
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Thus

λ1〈K∗1x,K∗1x〉 ⊗ λ2〈K∗2 y,K∗2 y〉 ≤
∑

j∈J,j′∈J′
〈x, pxj〉〈pxj , x〉 ⊗ 〈y, qyj′〉〈qyj′ , y〉

≤ µ1〈x, x〉 ⊗ µ2〈y, y〉.

Then

λ1λ2〈K∗1x⊗K∗2 y,K∗1x⊗K∗2 y〉 ≤
∑

j∈J,j′∈J′
〈x, pxj〉 ⊗ 〈y, qyj′〉〈pxj , x〉 ⊗ 〈qyj′ , y〉

≤ µ1µ2〈x⊗ y, x⊗ y〉,

Hence

λ1λ2〈(K1 ⊗K2)
∗
(x⊗ y) , (K1 ⊗K2)

∗
(x⊗ y)〉 ≤

∑
j∈J,j′∈J′

〈x, pxj〉 ⊗ 〈y, qyj′〉〈pxj , x〉 ⊗ 〈qyj′ , y〉

≤ µ1µ2〈x⊗ y, x⊗ y〉,

Consequently, we have, for all x⊗ y ∈M1 ⊗M2.

λ1λ2〈(K1 ⊗K2)
∗
(x⊗ y) , (K1 ⊗K2)

∗
(x⊗ y)〉 ≤

∑
j∈J,j′∈J′

〈x⊗ y, pxj ⊗ qyj′〉〈pxj ⊗ qyj′ , x⊗ y〉

≤ µ1µ2〈x⊗ y, x⊗ y〉.

Since
(p⊗ q) (xj ⊗ yj′) = pxj ⊗ qyj′ .

Then, {(p⊗ q) (xj ⊗ yj′)}j∈J,j′∈J′ is a (K1 ⊗K2) - frame for M1 ⊗M2.
On the other hand, we have(

Spxj ⊗ Sqyj′

)
(x⊗ y) = Spxjx⊗ Sqyj′ y

= p (T1)S1p
∗ (T1)x⊗ q (T2)S2q

∗ (T2) y.

= (p (T1)S1 ⊗ q (T2)S2) (p
∗ (T1)⊗ q∗ (T2)) (x⊗ y) .

= (p (T1)⊗ q (T2)) (S1 ⊗ S2) (p (T1)⊗ q (T2))
∗
(x⊗ y) .

Since, S1 ⊗ S2 is the frame operator for {(xj ⊗ yj′)}j∈J,j′∈J′ . Then(
Spxj

⊗ Sqyj′

)
(x⊗ y) = Spxj⊗qyj′ (x⊗ y) .

So, for all z ∈M1 ⊗M2, we have

Spxj⊗qyj′ (z) = Spxj
⊗ Sqyj′ (z) .

This complete the proof.

An immediate consequence is

Corollary 2.11. The subspace generated by

V = {xj ⊗ yj′ : i ∈ J, j′ ∈ J′}

is a left (Z (A) [X])
∗⊗

(Z (A) [X])
∗- module.

Theorem 2.12. Let {xj}j∈J be a K-frame for HT and p ∈ (Z (A) [X])
∗
. Then {xj}j∈J is a

(pK)-frame for HT .
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Proof. Suppose that {xj}j∈J is a K-frame for HT with frame bounds λ and µ. Then, for all
x ∈ HT

λ〈K∗x,K∗x〉 ≤
∑
j∈J
〈x, xj〉〈xj , x〉 ≤ µ〈x, x〉.

Since
R (Kp (T )) ⊂ R (K) .

Thus, by Lemma 1.9, there exists α > 0 such that

α〈(Kp (T ))∗ x, (Kp (T ))∗ x〉 ≤ 〈K∗x,K∗x〉.

Therefore

αλ〈(pK)
∗
x, (pK)

∗
x〉 ≤

∑
j∈J
〈x, xj〉〈xj , x〉 ≤ µ〈x, x〉, for all p ∈ (Z (A) [X])

∗
.

Which end this proof.

In the next theorem, we give some new K-frames for H.

Theorem 2.13. Let {xj}j∈J be a K-frame for H and K,L ∈ End∗A(H) such that KLK = K.
Then {(KL)xj}j∈J is a K-frame for H.

Proof. Suppose that {xj}j∈J is aK-frame forH with frame bounds λ and µ. Then, for all x ∈ H

λ〈K∗x,K∗x〉 ≤
∑
j∈J
〈x, xj〉〈xj , x〉 ≤ µ〈x, x〉.

Since
KLK = K,

hence

λ〈K∗L∗K∗x,K∗L∗K∗x〉 ≤
∑
j∈J
〈L∗K∗x, xj〉〈xj , L∗K∗x〉 ≤ µ〈L∗K∗x, L∗K∗x〉.

By taking µ′ = µ || KL ||2, we have

λ〈K∗x,K∗x〉 ≤
∑
j∈J
〈x, (KL)xj〉〈(KL)xj , x〉 ≤ µ′〈x, x〉.

Then {(KL)xj}j∈J is a K-frame for H.

Corollary 2.14. Let K ∈ End∗A(H) be semi-regular and {xj}j∈J be a K-frame for H. If L is
such that KLK = K, then {(KnLn)xj}j∈J is a Kn-frame for H, for every n ≥ 1.

Proof. It follows immediately from Proposition 1.16 and Theorem 2.13.

Corollary 2.15. Let K ∈ End∗A(H) be semi-regular and {xj}j∈J be a K-frame for H. Then
{(KnK†n)xj}j∈J is a Kn-frame for H, for every n ≥ 1.

Proof. The proof is straightforward.
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