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Abstract In this work, we introduce the concept of C∗-algebra valued asymmetric metric
space, the concept of forward and the concept of backward C∗-valued asymmetric contractions.
We discuss the existence and uniqueness of fixed points for a self-mapping defined on a C∗-
algebra valued asymmetric metric space, and we give an application.

1 Introduction

The scientific starting point of the fixed point theory was set up in the 20th century. The fun-
damental outcome of this theory is the Picard-Banach-Caccioppoli contraction principle which
brought into crucial and relevant fields of research: the theory of functional equations, integral
equations, physic, economy, ...

Many researchers have dealt with the theory of fixed point in two ways: the first affirms the
conditions on the mapping whereas the second takes the set as a more general structure. Indeed
the fixed point theorem is established in several cases such as asymmetric metric spaces which
generalize metric spaces. These spaces are introduced by Wilson [1] and have been studied by
J. Collins and J. Zimmer . Other interesting results in asymmetric metric spaces have also been
demonstrated by Aminpour, Khorshidvandpour and Mousavi [10]. This research has contributed
to interesting applications, for example in rate-independent plasticity models [8], shape memory
alloys [9], material failure models [7]. In mathematics, we find other applications such as the
study of asymmetric metric spaces to prove the existence and uniqueness of Hamilton-Jacobi
equations [7].

Recently, in a more general context, Zhenhua Ma, Lining Jiang and Hongkai Sun introduced
the notion of C∗-algebra valued metric spaces and analogous to the Banach contraction principle
and established a fixed point theorem forC∗-valued contractive mappings [3]. These results were
generalized by Samina Batul and Tayyab Kamran in [5] by introducing the concept of C∗-valued
contractive type condition. M.Mlaiki et al. [4] define the C∗-algebra valued partial b-metric
spaces. In [11], G. Kalpana and Z. S. Tasneem introduce the definition of a C∗-algebra valued
rectangular b-metric spaces and interpret the notion of C∗-algebra valued triple controlled metric
type spaces and derive certain fixed point theorems for Banach and Kannan type contraction
mappings of the underlying spaces [12].

In this paper, we first introduce the notion of C∗-algebra valued asymmetric metric spaces
and we establish a fixed point theorem analogous to the results presented in [5]. Some examples
are provided to illustrate our results. Finally, existence and uniqueness results for a type of
operator equation is given.

2 Preliminaries

In this section, we give some basic definitions. A will denote a unitary C∗ -algebra with a unit
IA. An involution on A is a conjugate linear map a 7→ a∗ on A such that
a∗∗ = a and (ab)∗ = b∗a∗ for all a and b in A.

A Banach *-algebra is a algebra provided with a involution and a complete multiplicative
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norm such that ‖a∗‖ = ‖a‖ for all a in A.
A C∗-algebra is a Banach ∗-algebra such that ‖a∗a‖ = ‖a‖2. Ah will denote the set of all

self-adjoint elements a (i.e., satisfying a∗ = a ), and A+ will be the set of positive elements of
A, i.e., the elements a ∈ Ah having the spectrum σ(a) contained in [0,+∞). Note that A+ is a
(closed) cone in the normed space A [2], which infers a partial order � on Ah by a � b if and
only if b− a ∈ A+. When A is a unitary C∗-algebra, then for any x ∈ A+ we have |x| = (x∗x)

1
2 .

We will use the following results.

Lemma 2.1. [2] Suppose that A is a unitary C∗-algebra with a unit IA

(i) A+ = {a∗a : a ∈ A};
(ii) if a, b ∈ Ah, a � b, and c ∈ A, then c∗ac � c∗bc;

(iii) for all a, b ∈ Ah, if 0A � a � b then ‖a‖ ≤ ‖b‖;

(iv) 0 � a � IA ⇔ ‖a‖ ≤ 1.

Lemma 2.2. [2] Suppose that A is a unitary C∗-algebra with a unit IA.

(i) if a ∈ A+ with ‖a‖ < 1
2 , then IA − a is invertible and

∥∥a(IA − a)−1
∥∥ < 1;

(ii) suppose that a, b ∈ A with a, b � 0A and ab = ba, then ab � 0A;

(iii) by A′ we denote the set {a ∈ A : ab = ba,∀b ∈ A}. Let a ∈ A′, if b, c ∈ A with b � c � 0A
and IA − a ∈ A′+ is a invertible operator, then (IA − a)−1b � (IA − a)−1c.

3 Main results

To begin with, let us start from some basic definitions.

Definition 3.1. Let X be a nonempty set. Suppose the mapping d : X ×X → A satisfies:

(i) 0A � d(x, y) for all x, y ∈ X and d(x, y) = 0A ⇔ x = y;

(ii) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a C∗-algebra valued asymmetric metric on X and (X,A, d) is called a C∗-
algebra valued asymmetric metric space.

It is obvious that C∗-algebra-valued asymmetric metric spaces generalize the concept of C∗-
algebra valued b-metric spaces [?].

Example 3.2. Let A =M2×2(R) and X = R . Define d : R×R→M2×2(R) by

d(x, y) =



[
x− y 0
0 0

]
if x > y

[
0 0
0 y − x

]
if x < y

with ‖

[
x1 x2

x3 x4

]
‖ =

(
4∑
i=1
|xi|2

) 1
2

where xi are real numbers. Then (X,A, d) is a C∗-algebra

valued asymmetric metric space, where partial ordering on A+ is given as[
x1 x2

x3 x4

]
�

[
y1 y2

y3 y4

]
⇔ xi ≥ yi ≥ 0 for i = 1, 2, 3, 4.

It is clear that 0A � d(x, y) for all x, y ∈ X and d(x, y) = 0A ⇔ x = y.
We will verify triangular inequality. Let x, y and z in R then we have six cases:

(i) let x 6 y then d(x, y) =

[
0 0
0 y − x

]
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a. If x 6 y 6 z

d(x, z) + d(z, y) =

[
0 0
0 z − x

]
+

[
z − y 0
0 0

]
=

[
z − y 0
0 z − x

]
� d(x, y).

b. If x 6 z 6 y

d(x, z) + d(z, y) =

[
0 0
0 z − x

]
+

[
0 0
0 y − z

]
=

[
0 0
0 y − x

]
� d(x, y).

c. If z 6 x 6 y

d(x, z) + d(z, y) =

[
x− z 0
0 0

]
+

[
0 0
0 y − z

]
=

[
x− z 0
0 y − z

]
� d(x, y).

(ii) Let x > y then d(x, y) =

[
x− y 0
0 0

]

a. If x > y > z

d(x, z) + d(z, y) =

[
x− z 0
0 0

]
+

[
0 0
0 y − z

]
=

[
x− z 0
0 y − z

]
� d(x, y).

b. If x > z > y

d(x, z) + d(z, y) =

[
x− z 0
0 0

]
+

[
z − y 0
0 0

]
=

[
x− y 0
0 0

]
� d(x, y).

c. If z > x > y

d(x, z) + d(z, y) =

[
0 0
0 z − x

]
+

[
z − y 0
0 0

]
=

[
z − y 0
0 z − x

]
� d(x, y).

Note that d(1, 2) 6= d(2, 1).

Example 3.3. Let A = L∞(R) and X = R. Define d : X ×X → L∞(R) by d(x, y) = fx,y

fx,y : R −→ R , fx,y(t) =

 (x− y) t ifx > y

(y − x)
T − t
T

ifx < y

where T ∈ R+ and fx,y is a T-periodic function, we have:

(i) 0A � d(x, y) for all x, y ∈ X and d(x, y) = 0A ⇔ x = y;

(ii) We will verify triangular inequality. Let x, y and z in R. For t ∈ [0, T [ we have six cases:

a. If x 6 y 6 z
d(x, y)(t) = fx,y(t) = (y − x)

T − t
T

d(x, z)(t) + d(z, y)(t) = (z − x)
T − t
T

+ (z − y) t � (y − x)
T − t
T

= d(x, y)(t).

b. If z 6 x 6 z 6 y
d(x, y)(t) = (y − x)

T − t
T

d(x, z)(t) + d(z, y)(t) = (x− z) t+ (y − z)
T − t
T
� (y − x)

T − t
T

= d(x, y)(t).

c. If x 6 z 6 y
d(x, y)(t) = (y − x)

T − t
T

d(x, z)(t) + d(z, y)(t) = (z − x)
T − t
T

+ (y − z)
T − t
T

= (y − x)
T − t
T
� d(x, y)(t).

d. If y 6 x 6 z d(x, y)(t) = fx,y(t) = (x− y) t

d(x, z)(t) + d(z, y)(t) = (z − x)
T − t
T

+ (z − y) t � (x− y) t = d(x, y)(t).
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e. If z 6 y 6 x d(x, y)(t) = (x− y) t

d(x, z)(t) + d(z, y)(t) = (x− z) t+ (y − z)
T − t
T
� (x− y) t = d(x, y)(t).

f. If y 6 z 6 x{
d(x, y)(t) = (x− y) t
d(x, z)(t) + d(z, y)(t) = (x− z) t+ (z − y) t = (x− y) t � d(x, y)(t).

Note that d(
T

2
, 0)(t) =

T

2
t and d(0,

T

2
)(t) =

T − t
2

for all t ∈ [0, T [

In what follows, we define in the same way the forward convergence and the backward conver-
gence in [1] but in a more general context.

Definition 3.4. Let (X, d,A) be a C∗-algebra valued asymmetric metric space, x ∈ X and {xn}
a sequence in X.

(i) one say {xn} forward converges to x with respect to A and we write xk
f→ x, if and only if

for given ε � 0A, there exists k ∈ N such that for all n > k

d (x, xn) � ε.

(ii) one say {xn} backward converges to x with respect to A and we write xn
b→ x, if and only

if for given ε � 0A, there exists k ∈ N such that for all n > k

d (xn, x) � ε.

(iii) one say {xn} converges to x if {xn} forward converges and backward converges to x.

Example 3.5. d : R×R→ R defined by

d(x, y) =

{
y − x if y > x

1 if y < x
.

Let x ∈ R+ and let xn = x
(
1 + 1

n

)
. Then xn

f→ x but xn
b9 x. This example asserts that

the existence of a forward limit does not imply the existence of a backward limit.

Lemma 3.6. Let (X,A, d) a C∗-algebra valued asymmetric metric space. If {xn}n forward
converges to x ∈ X and backward converges to y ∈ X, then x = y.

Proof. Fix ε � 0A. By assumption, xn
f→ x so there exists N1 ∈ N such that d (x, xn) �

ε

2
for

all n > N1. Also, xn
b→ y, so there exists N2 ∈ N such that d (xn, y) �

ε

2
for all n > N2. Then

for all n > N := max {N1, N2} , d (x, y) � d (x, xn) + d (xn, y) � ε. As ε was arbitrary, we
deduce that d (x, y) = 0, which implies x = y

Definition 3.7. Let (X,A, d) a C∗-algebra valued asymmetric metric space and {xn}n a se-
quence in X .

(i) One say that {xn} forward Cauchy sequence (with respect to A ), if for given ε � 0A, there
exists k belonging to N such that for all n > p > k

d (xp, xn) � ε.

(ii) One say that {xn} backward Cauchy sequence (with respect to A ), if for given ε � 0A, for
all n > p > k

d (xn, xp) � ε.
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Definition 3.8. Let (X, d,A) a C∗-algebra valued asymmetric metric space. X is said to be
forward (backward) complete if every forward (backward) Cauchy sequence {xn}n∈N in X,
forward (backward) converges to x ∈ X .

Definition 3.9. Let (X, d,A) a C∗-algebra valued asymmetric metric space. X is said to be
complete if X is forward and backward complete.

Example 3.10. we take the example(3.2), (R, L∞(R), d) is a complete C∗-algebra valued asym-
metric metric space.

Indeed, it suffices to verify the completeness. Let {xn} in R be a Cauchy sequence with
respect to L∞(R). Then for a given ε > 0, there is a natural number N such that for all n, p ≥ N

‖d (xn, xp)‖∞ = ‖fxn,xp‖∞ < ε,

since

‖fxn,xp‖∞ =

{
(xn − xp)T if xn > xp

(xp − xn) if xp > xn

then {xn} is a Cauchy sequence in the space R. Thus, there is x in R such that {xn} converges
to x. For ε > 0 there exists number k belonging to N such that |xn − x| ≤ ε if n ≥ k. It follows
that :

‖d (x, xn)‖∞ ∨ ‖d (xn, x)‖∞ ≤ εmax {1, T} ,

therefore, the sequence {xn} converges to x in R with respect to L∞(R), that is, (R, L∞(R), d)
is complete with respect to L∞(R).

Definition 3.11. Let (X, d,A) be C∗-algebra valued asymmetric metric space. A mapping T :
X → X is said forward (respectively backward) C∗-algebra valued contractive mapping on X,
if there exists a in A with ‖a‖ < 1 such that

d(Tx, Ty) � a∗d(x, y)a,

(respectively d(Tx, Ty) � a∗d(y, x)a)

for each x, y ∈ X.

Example 3.12. Let A =M2×2(R) and X = R. Define d : R×R→M2×2(R) by

d(x, y) =



[
x− y 0
0 0

]
if x > y

 0 0

0
1
4
(y − x)

 if x < y,

then (X,A, d) is a C∗-algebra valued asymmetric metric space, where the norm and the
partial ordering on A+ are given as example 3.1.

Consider T : X → X by Tx = 1
4x. Then,

d(Tx, Ty) = d(
1
4
x,

1
4
y)



 1
4
(x− y) 0

0 0

 if x > y

 0 0

0
1
16

(y − x)

 if x < y

it follows that
d(Tx, Ty) � a∗d(x, y)a.
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Indeed

d(Tx, Ty) =



 1
2

0

0
1
2

[ x− y 0
0 0

] 1
2

0

0
1
2

 � a∗d(x, y)a, if x > y

 1
2

0

0
1
2


 0 0

0
1
4
(y − x)


 1

2
0

0
1
2

 � a∗d(x, y)a, if x < y

where a =

[
1√
3

0
0 1√

3

]
.

Next, we prove asymmetric version of C∗-algebra valued contractive mapping [3].

Theorem 3.13. If (X,A, d) is a complete C∗-algebra-valued asymmetric metric space and T is
a forward C∗-algebra valued contractive mapping, then there exists a unique fixed point in X .

Proof. One suppose that A 6= 0A. Choose x ∈ X .
Notice that in a C∗-algebra, if a, b ∈ A+ and a � b, then for any x ∈ A both x∗ax and x∗bx

are positive elements and x∗ax � x∗bx. Thus

d
(
Tn+1x, Tnx

)
= d

(
T (Tnx), T (Tn−1x)

)
� a∗d

(
Tnx, Tn−1x

)
a

� (a∗)
2
d
(
Tn−1x, Tn−2x

)
a2

� · · ·
� (a∗)

n
d (Tx, x) an.

Take n+ 1 > p

d
(
Tn+1x, T px

)
� d

(
Tn+1x, Tnx

)
+ d

(
Tnx, Tn−1x

)
+ · · ·+ d

(
T p+1x, T px

)
�

n∑
k=p

(a∗)
k
d (Tx, x) ak

=
n∑
k=p

(a∗)
k
d (Tx, x)

1
2 d (Tx, x))

1
2 ak

=
n∑
k=p

(
d (Tx, x)

1
2 ak

)∗ (
d (Tx, x)

1
2 ak

)

=
n∑
k=p

∣∣∣d (Tx, x) 1
2 ak

∣∣∣2

�

∥∥∥∥∥∥
n∑
k=p

∣∣∣d (Tx, x) 1
2 ak

∣∣∣2
∥∥∥∥∥∥ IA

�
∥∥∥d (Tx, x) 1

2

∥∥∥2 n∑
k=p

‖a‖2kIA

�
∥∥∥d (Tx, x) 1

2

∥∥∥2 ‖a‖2p

1− ‖a‖2 IA → 0A (p→∞).

In the same way we prove

d
(
T px, Tn+1x

)
�
∥∥∥d (x, Tx) 1

2

∥∥∥2 ‖a‖2p

1− ‖a‖2 IA → 0A (p→∞).
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Therefore {xn} is a forward and backward Cauchy sequence. By the completeness of (X,A, d),
there exists an x0 ∈ X such that {Tnx} converges to x0 with respect to A.

One has
θ � d(Tx0, x0) � d

(
Tx0, T

n+1x
)
+ d

(
Tn+1x, x0

)
� a∗d (x0, T

nx) a+ d
(
Tn+1x, x0

)
→ 0A (n→∞).

Hence, Tx0 = x0, therefore x0 is a fixed point of T .
Now suppose that y(6= x0) is another fixed point of T , since

0A � d(x0, y) = d(Tx0, T y) � a∗d(x0, y)a

we have
0 ≤ ‖d(x0, y)‖ = ‖d(Tx0, T y)‖
≤ ‖a∗d(x0, y)a‖
≤ ‖a∗‖ ‖d(x0, y)‖‖a‖

= ‖a‖2‖d(x0, y)‖
< ‖d(x0, y)‖,

which is impossible. So d(x0, y) = 0A and x0 = y, which implies that the fixed point is unique.

Definition 3.14. (Forward T -orbitally lower semi-continuous) A function G : X → A is said to
be forward T -orbitally lower semi continuous at x0 with respect to A if the sequence {xn} in
OT (x) is such that xn

f→ x with respect to A implies

‖G (x0)‖ 6 lim inf ‖G (xn)‖

where OT (x) = {Tnx | n ∈ N}.

Definition 3.15. (Forward Contractive Type Mapping) Let (X,A, d) be a C∗-algebra valued
asymmetric metric space. A mapping T : X → X is said to be a forward C∗-valued contractive
type mapping if there exists an x ∈ X and an a ∈ A such that

d
(
Ty, T 2y

)
� a∗d(y, Ty)a

with ‖a‖ < 1 for every y ∈ OT (x).

Theorem 3.16. Let (X,A, d) be a forward complete C∗-algebra valued asymmetric metric space
and T : X → X be a forward C∗-algebra valued contractive type mapping.

Then

(i) ∃x0 ∈ X such that the sequence Tnx in OT (x) forward converges to x0,

(ii) x0 is a fixed point of T if and only if the map G(x) = d(x, Tx) is forward T -orbitally lower
semi continuous at x0 with respect to A.

Proof. We assume that A is a nontrivial C∗-algebra.

(i) Since the above forward contractive condition holds for each element of OT (x) and ‖a‖ <
1, it follows that:

d
(
Tnx, Tn+1x

)
� (a∗)

n
d(x, Tx)an.
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Then for p < n, we have from the triangular inequality that

d
(
T px, Tn+1x

)
) � d

(
T px, T p+1x

)
+ d

(
T p+1x, T p+2x

)
+ ....d

(
Tnx, Tn+1x

)
)

�
n∑
k=p

(a∗)
k
d(x, Tx)ak

�
n∑
k=p

∥∥∥d (x, Tx) 1
2

∥∥∥2 ∥∥ak∥∥2
.1A

�
∥∥∥d (x, Tx) 1

2

∥∥∥2 n∑
k=p

‖a‖2k.1A

�
∥∥∥d (x, Tx) 1

2

∥∥∥2 ‖a‖2p

1− ‖a‖2 .1A → 0A (p→∞).

This shows that {Tnx} is a forward Cauchy sequence in X with respect to A. By forward
completeness of (X,A, d), there exists some x0 ∈ X such that

Tnx
f→ x0

with respect to A.

(ii) one suppose that Tx0 = x0 and {Tnx} is a sequence inOT (x) with Tnx f→ x0 with respect
to A, then

‖G (x0)‖ = ‖d (x0, Tx0)‖
= 0

≤ lim inf ‖G (Tnx) ‖.

Reciprocally, if G is forward T -orbitally lower semi continuous at x0 then

‖G (x0)‖ = ‖d (x0, Tx0) ‖ ≤ lim inf‖G (Tnx) ‖

= lim inf
∥∥d (Tnx, Tn+1x

)∥∥
≤ lim inf ‖a‖2n‖d(x, Tx)‖
= 0

as a result d (x0, Tx0) = 0A, proving T has a fixed point.

Example 3.17. d : R×R→ R defined by

d(x, y) =

{
x− y if x > y

1 if x < y

We consider T : R×R→ R such as Tx =
x

4

d(Tx, Ty) =

{
1
4(x− y) x > y

1 x < y

T is not a forward C∗-valued contractive mapping.
If x < y, we know d(Tx, Ty) 6 a∗d(x, y)a, then

d(Tx, Ty) 6 a∗d(x, y)a

1 6 a2

1 6 ‖a‖
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therefore contradiction.
We prove that T is forward C∗-valued contractive type mapping.

Let x > 0. We have {
d
(
Ty, T 2y

)
= d

(
y
4 ,

y
16

)
= 3y

16
d(y, Ty) = 3y

4

then, there exists a in A such that d
(
Ty, T 2y

)
� a∗d(y, Ty)a for every y ∈ OT (x)

with ‖a‖ = | 1√
2
| < 1.

Define G : X → A by
G(x) = d(x, Tx)

so
lim inf
x→0

G(x) = G(0) = 0,

then G is forward T -orbitally lower semi continuous at zero and 0 is a fixed point of T .

Example 3.18. Define d : R×R→ A =

{[
x 0
0 y

]
| x, y ∈ R

}
by

d(x, y) =



[
x− y 0
0 0

]
if x > y

[
0 0
0 y − x

]
if x < y

with partial ordering and norm on A are given as example 3.1.
We consider T : R→ R such that

Tx =

{
x
4 x > 0
1 x < 0

Then for y ∈ OT (x), x ≥ 0

d
(
Ty, T 2y

)
=

[
y
4 −

y
16 0

0 0

]
=

[
3y
16 0
0 0

]

�

[
1√
3

0
0 1√

3

][
3y
4 0
0 0

][
1√
3

0
0 1√

3

]
= a∗d(Ty, y)a,

where

a =

[
1√
3

0
0 1√

3

]
and ‖a‖ =

√
2√
3
< 1.

Theorem 3.19. Let (X,A, d) be a forward complete C∗-algebra valued asymmetric metric space
and T : X → X be a mapping which satisfies for all y ∈ OT (x)

d
(
Ty, T 2y

)
� a d

(
y, T 2y

)
with ‖a‖ ≤ 1

2 and a ∈ A′+, then

(i) ∃x0 ∈ X such that the sequence Tnx forward converges to x0,

(ii) x0 is a fixed point of T if and only if G(x) = d(x, Tx) is forward T -orbitally lower semi
continuous at x0 with respect to A.
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Proof. Assume that A 6= {0A}.

d
(
Tnx, Tn+1x

)
= d

(
T (Tn−1x), Tn+1x

)
� ad

(
Tn−1x, Tn+1x

)
� a

[
d
(
Tn−1x, Tnx

)
+ d

(
Tnx, Tn+1x

)]
� ad

(
Tn−1x, Tnx

)
+ ad

(
Tnx, Tn+1x

)
.

Thus
d
(
Tnx, Tn+1x

)
− ad

(
Tnx, Tn+1x

)
� ad

(
Tn−1x, Tnx

)
which implies that

(1A − a) d
(
Tnx, Tn+1x

)
� ad

(
Tn−1x, Tnx

)
.

Since a ∈ A′+ with ‖a‖ < 1
2 , by Lemma(2.2) we have (1A − a)−1 ∈ A′+ and also

a (1A − a)−1 ∈ A′+ with
∥∥∥a (1A − a)−1

∥∥∥ < 1.

Therefore
d
(
Tnx, Tn+1x

)
� a (1A − a)−1

d
(
Tn−1x, Tnx

)
.

Let’s consider h = a (1A − a)−1 then

d
(
Tnx, Tn+1x

)
� hd

(
Tn−1x, Tnx

)
.

Let {Tnx} be a sequence in OT (x). Then from the triangular inequality, for m < n we have

d
(
Tmx, Tn+1x

)
�

n∑
k=m

∥∥∥hk/2
∥∥∥2 ∥∥∥d(x, Tx)1/2

∥∥∥2
1A

�
∥∥∥d(x, Tx)1/2

∥∥∥2 n∑
k=m

∥∥∥hk/2
∥∥∥2

1A

�
∥∥∥d(x, Tx)1/2

∥∥∥2 ‖h‖m

1− ‖h‖
1A

−→ 0A as m −→∞.

This proves that {Tnx} is a forward Cauchy sequence in X with respect to A. Since (X,A, d) is
a forward complete C∗-algebra valued asymmetric metric space, there exists x0 ∈ X such that
Tnx

f→ x0.
If Tx0 = x0 and {xn} is a sequence in OT (x) such that Tnx f→ x0 with respect to A, then

‖G (x0) ‖ = ‖d (x0, Tx0)‖
= 0

≤ lim inf ‖G (xn)‖ .

Conversely, if G is T -orbitally lower semi continuous at x0 then

‖G (x0)‖ = ‖d (x0, Tx0) ‖ ≤ lim inf‖G (Tnx) ‖

= lim inf
∥∥d (Tnx, Tn+1x

)∥∥
≤ lim inf ‖h‖n‖d(x, Tx)‖
= 0

this implies that
d (x0, Tx0) = 0A

thus T has a fixed point.
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4 Application

In this section, we will apply our theorem to prove the existence of solution of integral equation.
Let G be the multiplicative group ]0; 1] with its left invariant Haar measure µ. Defined by:

H = L2(G) =

{
f : G→ R |

∫
G

|f(t)|2 dµ(t) <∞
}

which’s an Hilbert space

X = L∞(G) = {f : G→ R | ‖f‖∞ <∞} which’s a Banach algebra.

Let B(H) the set of all bounded linear operators on the Hilbert space H . Note that B(H) is a
unitary C∗-algebra. We define an asymmetric metric as:

d : X ×X → B(H)

(f, g)→ d(f, g)

with

d(f, g) =


π 1

2 (f−g)χ{f>g}
+ π(g−f)χ{g>f} if f 6= g

0 if f = g

where πf is the multiplication operator given by :

πf : X → X

ψ → f.ψ

and

χA(t) =


1 if x ∈ A

0 if x ∈ Ac

It is knwon that ‖πf‖ = ‖f‖∞.
Here (X,B(H), d) is a complete C∗-valued asymmetric metric space with respect to B(H).
Let

K : G×G×R→ R

(x, y, t)→ α.x
t

y2 + k
(α > 0, k > 0).

Let
T : X → X

f → Tf

Tf(x) =

∫
G

K(x, y, f(y))dµ(y), x ∈ G.

Choose f0 defined as follows:

f0 : G→ R
x→ x

then

Tf0(x) =

∫
G

K (x, y, f0(y)) dµ(y)

=

∫ 1

0
αx

y

y2 + k
dµ(y)

= α · x
∫ 1

0

y

y2 + k
dµ(y)

=
αx

2
ln
(

1
k
+ 1
)

> f0(x) (∀x ∈ X) .
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In addition, using simple calculation, we find that

Tn+1f0(x) > Tnf0(x) (∀x ∈ X, ∀n ∈ N) .

If we take g = Tf0, then∥∥d (Tf0, T
2f0
)∥∥ = ‖d(Tf0, T g)‖

= ‖πTg−Tf0‖
= sup
‖ψ‖2=1

〈(Tg − Tf0)ψ,ψ〉 , for any ψ ∈ H

= sup
‖ψ‖2=1

∫
G

α

∫
G

x
g(y)− f0(y)

y2 + k
dµ(y)ψ(x)2dµ(x)

≤ α‖g − f0‖∞ sup
‖ψ]=1

∫
G

xψ(x)2dµ(x)

∫
G

1
y2 + k

dµ(y)

≤ α‖g − f0‖∞
arctan 1√

k√
k

≤ α

k
‖g − f0‖∞.

For
α

k
< 1, we must take

α <
1

e
α
2 − 1

⇔ αe
α
2 − α− 1 < 0

which is possible because

lim
x→+∞

αe
α
2 − α− 1 = +∞

and α→ αe
α
2 − α− 1 is a continuous function, which take −1 at α = 0.

We will have ∥∥d (Tf0, T
2f0
)∥∥ ≤ λ‖d(f0, T f0)‖

with λ = α
arctan 1√

k√
k

and λ < 1.
Therefore the condition of the Theorem 3.2 is verified which ensures the forward convergence

of Tnf0 to f̃ in X with respect A. It remains to verify that f̃ is a fixed point. It will suffice to
verify that G is forward T -orbitally lower-semi-continuous at f̃ .∥∥G (f̃)∥∥ = ∥∥d (f̃ , T f̃) ≤ lim inf

∥∥G (Tnf0) ‖

= lim inf
∥∥d (Tnf0, T

n+1f0
)∥∥

6 lim inf
(
α

2
ln
(

1
k
+ 1
))n(

α

2
ln
(

1
k
+ 1
)
− 1
)
(= +∞) .

Thus the integral equation f(x) =
∫
G
K (x, y, f(y)) dµ(y) admits a solution.
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