FIXED POINT THEOREMS IN C^{*}-ALGEBRA VALUED ASYMMETRIC METRIC SPACES

Ouafaa Bouftouh and Samir Kabbaj
Communicated by Thabet Abdeljawad

MSC 2010 Classifications: 47 H 10 ; 54 H 25.
Keywords and phrases: C^{*}-algebra valued asymmetric metric spaces, forward and backward convergence, fixed point theorem.

Abstract

In this work, we introduce the concept of C^{*}-algebra valued asymmetric metric space, the concept of forward and the concept of backward C^{*}-valued asymmetric contractions. We discuss the existence and uniqueness of fixed points for a self-mapping defined on a C^{*} algebra valued asymmetric metric space, and we give an application.

1 Introduction

The scientific starting point of the fixed point theory was set up in the 20th century. The fundamental outcome of this theory is the Picard-Banach-Caccioppoli contraction principle which brought into crucial and relevant fields of research: the theory of functional equations, integral equations, physic, economy, ...

Many researchers have dealt with the theory of fixed point in two ways: the first affirms the conditions on the mapping whereas the second takes the set as a more general structure. Indeed the fixed point theorem is established in several cases such as asymmetric metric spaces which generalize metric spaces. These spaces are introduced by Wilson [1] and have been studied by J. Collins and J. Zimmer . Other interesting results in asymmetric metric spaces have also been demonstrated by Aminpour, Khorshidvandpour and Mousavi [10]. This research has contributed to interesting applications, for example in rate-independent plasticity models [8], shape memory alloys [9], material failure models [7]. In mathematics, we find other applications such as the study of asymmetric metric spaces to prove the existence and uniqueness of Hamilton-Jacobi equations [7].

Recently, in a more general context, Zhenhua Ma, Lining Jiang and Hongkai Sun introduced the notion of C^{*}-algebra valued metric spaces and analogous to the Banach contraction principle and established a fixed point theorem for C^{*}-valued contractive mappings [3]. These results were generalized by Samina Batul and Tayyab Kamran in [5] by introducing the concept of C^{*}-valued contractive type condition. M.Mlaiki et al. [4] define the C^{*}-algebra valued partial b-metric spaces. In [11], G. Kalpana and Z. S. Tasneem introduce the definition of a C^{*}-algebra valued rectangular b-metric spaces and interpret the notion of C^{*}-algebra valued triple controlled metric type spaces and derive certain fixed point theorems for Banach and Kannan type contraction mappings of the underlying spaces [12].

In this paper, we first introduce the notion of C^{*}-algebra valued asymmetric metric spaces and we establish a fixed point theorem analogous to the results presented in [5]. Some examples are provided to illustrate our results. Finally, existence and uniqueness results for a type of operator equation is given.

2 Preliminaries

In this section, we give some basic definitions. \mathbb{A} will denote a unitary C^{*}-algebra with a unit $I_{\mathbb{A}}$. An involution on \mathbb{A} is a conjugate linear map $a \mapsto a^{*}$ on \mathbb{A} such that $a^{* *}=a$ and $(a b)^{*}=b^{*} a^{*}$ for all a and b in \mathbb{A}.

A Banach *-algebra is a algebra provided with a involution and a complete multiplicative
norm such that $\left\|a^{*}\right\|=\|a\|$ for all a in \mathbb{A}.
A C^{*}-algebra is a Banach $*$-algebra such that $\left\|a^{*} a\right\|=\|a\|^{2} . \mathbb{A}_{h}$ will denote the set of all self-adjoint elements a (i.e., satisfying $a^{*}=a$), and \mathbb{A}^{+}will be the set of positive elements of \mathbb{A}, i.e., the elements $a \in \mathbb{A}_{h}$ having the spectrum $\sigma(a)$ contained in $[0,+\infty)$. Note that \mathbb{A}^{+}is a (closed) cone in the normed space \mathbb{A} [2], which infers a partial order \preceq on \mathbb{A}_{h} by $a \preceq b$ if and only if $b-a \in \mathbb{A}^{+}$. When \mathbb{A} is a unitary \mathbf{C}^{*}-algebra, then for any $x \in \mathbb{A}_{+}$we have $|x|=\left(x^{*} x\right)^{\frac{1}{2}}$. We will use the following results.

Lemma 2.1. [2] Suppose that \mathbb{A} is a unitary C^{*}-algebra with a unit $I_{\mathbb{A}}$
(i) $\mathbb{A}^{+}=\left\{a^{*} a: a \in \mathbb{A}\right\}$;
(ii) if $a, b \in \mathbb{A}_{h}, a \preceq b$, and $c \in \mathbb{A}$, then $c^{*} a c \preceq c^{*} b c$;
(iii) for all $a, b \in \mathbb{A}_{h}$, if $0_{\mathbb{A}} \preceq a \preceq b$ then $\|a\| \leq\|b\|$;
(iv) $0 \preceq a \preceq I_{\mathbb{A}} \Leftrightarrow\|a\| \leq 1$.

Lemma 2.2. [2] Suppose that \mathbb{A} is a unitary C^{*}-algebra with a unit $I_{\mathbb{A}}$.
(i) if $a \in \mathbb{A}_{+}$with $\|a\|<\frac{1}{2}$, then $I_{\mathbb{A}}-a$ is invertible and $\left\|a\left(I_{\mathbb{A}}-a\right)^{-1}\right\|<1$;
(ii) suppose that $a, b \in \mathbb{A}$ with $a, b \succeq 0_{\mathbb{A}}$ and $a b=b a$, then $a b \succeq 0_{\mathbb{A}}$;
(iii) by \mathbb{A}^{\prime} we denote the set $\{a \in \mathbb{A}: a b=b a, \forall b \in \mathbb{A}\}$. Let $a \in \mathbb{A}^{\prime}$, if $b, c \in \mathbb{A}$ with $b \succeq c \succeq 0_{\mathbb{A}}$ and $I_{\mathbb{A}}-a \in \mathbb{A}_{+}^{\prime}$ is a invertible operator, then $\left(I_{\mathbb{A}}-a\right)^{-1} b \succeq\left(I_{\mathbb{A}}-a\right)^{-1} c$.

3 Main results

To begin with, let us start from some basic definitions.
Definition 3.1. Let X be a nonempty set. Suppose the mapping $d: X \times X \rightarrow \mathbb{A}$ satisfies:
(i) $0_{\mathbb{A}} \preceq d(x, y)$ for all $x, y \in X$ and $d(x, y)=0_{\mathbb{A}} \Leftrightarrow x=y$;
(ii) $d(x, y) \preceq d(x, z)+d(z, y)$ for all $x, y, z \in X$.

Then d is called a C^{*}-algebra valued asymmetric metric on X and (X, \mathbb{A}, d) is called a C^{*} algebra valued asymmetric metric space.

It is obvious that C^{*}-algebra-valued asymmetric metric spaces generalize the concept of C^{*} algebra valued b-metric spaces [?].

Example 3.2. Let $\mathbb{A}=M_{2 \times 2}(\mathbb{R})$ and $X=\mathbb{R}$. Define $d: \mathbb{R} \times \mathbb{R} \rightarrow M_{2 \times 2}(\mathbb{R})$ by

$$
d(x, y)= \begin{cases}{\left[\begin{array}{ll}
x-y & 0 \\
0 & 0
\end{array}\right]} & \text { if } x \geqslant y \\
{\left[\begin{array}{ll}
0 & 0 \\
0 & y-x
\end{array}\right]} & \text { if } x<y\end{cases}
$$

with $\left\|\left[\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right]\right\|=\left(\sum_{i=1}^{4}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}$ where x_{i} are real numbers. Then (X, \mathbb{A}, d) is a C^{*}-algebra valued asymmetric metric space, where partial ordering on \mathbb{A}_{+}is given as

$$
\left[\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right] \succeq\left[\begin{array}{ll}
y_{1} & y_{2} \\
y_{3} & y_{4}
\end{array}\right] \Leftrightarrow x_{i} \geq y_{i} \geq 0 \text { for } i=1,2,3,4 .
$$

It is clear that $0_{\mathbb{A}} \preceq d(x, y)$ for all $x, y \in X$ and $d(x, y)=0_{\mathbb{A}} \Leftrightarrow x=y$.
We will verify triangular inequality. Let x, y and z in \mathbb{R} then we have six cases:
(i) let $x \leqslant y$ then $d(x, y)=\left[\begin{array}{ll}0 & 0 \\ 0 & y-x\end{array}\right]$
a. If $x \leqslant y \leqslant z$

$$
d(x, z)+d(z, y)=\left[\begin{array}{ll}
0 & 0 \\
0 & z-x
\end{array}\right]+\left[\begin{array}{ll}
z-y & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
z-y & 0 \\
0 & z-x
\end{array}\right] \succeq d(x, y)
$$

b. If $x \leqslant z \leqslant y$

$$
d(x, z)+d(z, y)=\left[\begin{array}{ll}
0 & 0 \\
0 & z-x
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & y-z
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & y-x
\end{array}\right] \succeq d(x, y)
$$

c. If $z \leqslant x \leqslant y$

$$
d(x, z)+d(z, y)=\left[\begin{array}{ll}
x-z & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & y-z
\end{array}\right]=\left[\begin{array}{ll}
x-z & 0 \\
0 & y-z
\end{array}\right] \succeq d(x, y)
$$

(ii) Let $x \geqslant y$ then $d(x, y)=\left[\begin{array}{ll}x-y & 0 \\ 0 & 0\end{array}\right]$
a. If $x \geqslant y \geqslant z$

$$
d(x, z)+d(z, y)=\left[\begin{array}{ll}
x-z & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & y-z
\end{array}\right]=\left[\begin{array}{ll}
x-z & 0 \\
0 & y-z
\end{array}\right] \succeq d(x, y)
$$

b. If $x \geqslant z \geqslant y$

$$
d(x, z)+d(z, y)=\left[\begin{array}{ll}
x-z & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
z-y & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
x-y & 0 \\
0 & 0
\end{array}\right] \succeq d(x, y)
$$

c. If $z \geqslant x \geqslant y$

$$
d(x, z)+d(z, y)=\left[\begin{array}{ll}
0 & 0 \\
0 & z-x
\end{array}\right]+\left[\begin{array}{ll}
z-y & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
z-y & 0 \\
0 & z-x
\end{array}\right] \succeq d(x, y)
$$

Note that $d(1,2) \neq d(2,1)$.
Example 3.3. Let $\mathbb{A}=L^{\infty}(\mathbb{R})$ and $X=\mathbb{R}$. Define $d: X \times X \rightarrow L^{\infty}(\mathbb{R})$ by $d(x, y)=f_{x, y}$

$$
f_{x, y}: \mathbb{R} \longrightarrow \mathbb{R}, f_{x, y}(t)=\left\{\begin{array}{l}
(x-y) t \quad \text { if } x \geqslant y \\
(y-x) \frac{T-t}{T} \quad \text { if } x<y
\end{array}\right.
$$

where $T \in \mathbb{R}^{+}$and $f_{x, y}$ is a T-periodic function, we have:
(i) $0_{\mathbb{A}} \preceq d(x, y)$ for all $x, y \in X$ and $d(x, y)=0_{\mathbb{A}} \Leftrightarrow x=y$;
(ii) We will verify triangular inequality. Let x, y and z in \mathbb{R}. For $t \in[0, T[$ we have six cases:
a. If $x \leqslant y \leqslant z$

$$
\left\{\begin{array}{l}
d(x, y)(t)=f_{x, y}(t)=(y-x) \frac{T-t}{T} \\
d(x, z)(t)+d(z, y)(t)=(z-x) \frac{T-t}{T}+(z-y) t \succeq(y-x) \frac{T-t}{T}=d(x, y)(t)
\end{array}\right.
$$

b. If $z \leqslant x \leqslant z \leqslant y$

$$
\left\{\begin{array}{l}
d(x, y)(t)=(y-x) \frac{T-t}{T} \\
d(x, z)(t)+d(z, y)(t)=(x-z) t+(y-z) \frac{T-t}{T} \succeq(y-x) \frac{T-t}{T}=d(x, y)(t)
\end{array}\right.
$$

c. If $x \leqslant z \leqslant y$

$$
\left\{\begin{array}{l}
d(x, y)(t)=(y-x) \frac{T-t}{T} \\
d(x, z)(t)+d(z, y)(t)=(z-x) \frac{T-t}{T}+(y-z) \frac{T-t}{T}=(y-x) \frac{T-t}{T} \succeq d(x, y)(t)
\end{array}\right.
$$

d. If $y \leqslant x \leqslant z$

$$
\left\{\begin{array}{l}
d(x, y)(t)=f_{x, y}(t)=(x-y) t \\
d(x, z)(t)+d(z, y)(t)=(z-x) \frac{T-t}{T}+(z-y) t \succeq(x-y) t=d(x, y)(t)
\end{array}\right.
$$

e. If $z \leqslant y \leqslant x$
$\left\{\begin{array}{l}d(x, y)(t)=(x-y) t \\ d(x, z)(t)+d(z, y)(t)=(x-z) t+(y-z) \frac{T-t}{T} \succeq(x-y) t=d(x, y)(t) .\end{array}\right.$
f. If $y \leqslant z \leqslant x$
$\left\{\begin{array}{l}d(x, y)(t)=(x-y) t \\ d(x, z)(t)+d(z, y)(t)=(x-z) t+(z-y) t=(x-y) t \succeq d(x, y)(t) .\end{array}\right.$
Note that $d\left(\frac{T}{2}, 0\right)(t)=\frac{T}{2} t$ and $d\left(0, \frac{T}{2}\right)(t)=\frac{T-t}{2}$ for all $t \in[0, T[$
In what follows, we define in the same way the forward convergence and the backward convergence in [1] but in a more general context.

Definition 3.4. Let (X, d, \mathbb{A}) be a C^{*}-algebra valued asymmetric metric space, $x \in X$ and $\left\{x_{n}\right\}$ a sequence in X.
(i) one say $\left\{x_{n}\right\}$ forward converges to x with respect to \mathbb{A} and we write $x_{k} \xrightarrow{f} x$, if and only if for given $\epsilon \succ 0_{\mathbb{A}}$, there exists $k \in \mathbb{N}$ such that for all $n \geqslant k$

$$
d\left(x, x_{n}\right) \preceq \epsilon .
$$

(ii) one say $\left\{x_{n}\right\}$ backward converges to x with respect to \mathbb{A} and we write $x_{n} \xrightarrow{b} x$, if and only if for given $\epsilon \succ 0_{\mathbb{A}}$, there exists $k \in \mathbb{N}$ such that for all $n \geqslant k$

$$
d\left(x_{n}, x\right) \preceq \epsilon .
$$

(iii) one say $\left\{x_{n}\right\}$ converges to x if $\left\{x_{n}\right\}$ forward converges and backward converges to x.

Example 3.5. $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
d(x, y)= \begin{cases}y-x & \text { if } y \geqslant x \\ 1 & \text { if } y<x\end{cases}
$$

Let $x \in \mathbb{R}^{+}$and let $x_{n}=x\left(1+\frac{1}{n}\right)$. Then $x_{n} \xrightarrow{f} x$ but $x_{n} \xrightarrow{b} x$. This example asserts that the existence of a forward limit does not imply the existence of a backward limit.

Lemma 3.6. Let (X, \mathbb{A}, d) a C^{*}-algebra valued asymmetric metric space. If $\left\{x_{n}\right\}_{n}$ forward converges to $x \in X$ and backward converges to $y \in X$, then $x=y$.

Proof. Fix $\varepsilon \succ 0_{\mathbb{A}}$. By assumption, $x_{n} \xrightarrow{f} x$ so there exists $N_{1} \in \mathbb{N}$ such that $d\left(x, x_{n}\right) \preceq \frac{\varepsilon}{2}$ for all $n \geqslant N_{1}$. Also, $x_{n} \xrightarrow{b} y$, so there exists $N_{2} \in \mathbb{N}$ such that $d\left(x_{n}, y\right) \preceq \frac{\varepsilon}{2}$ for all $n \geqslant N_{2}$. Then for all $n \geqslant N:=\max \left\{N_{1}, N_{2}\right\}, d(x, y) \preceq d\left(x, x_{n}\right)+d\left(x_{n}, y\right) \preceq \varepsilon$. As ε was arbitrary, we deduce that $d(x, y)=0$, which implies $x=y$

Definition 3.7. Let (X, \mathbb{A}, d) a C^{*}-algebra valued asymmetric metric space and $\left\{x_{n}\right\}_{n}$ a sequence in X.
(i) One say that $\left\{x_{n}\right\}$ forward Cauchy sequence (with respect to \mathbb{A}), if for given $\epsilon \succ 0_{\mathbb{A}}$, there exists k belonging to \mathbb{N} such that for all $n>p \geqslant k$

$$
d\left(x_{p}, x_{n}\right) \preceq \epsilon .
$$

(ii) One say that $\left\{x_{n}\right\}$ backward Cauchy sequence (with respect to \mathbb{A}), if for given $\epsilon \succ 0_{\mathbb{A}}$, for all $n>p \geqslant k$

$$
d\left(x_{n}, x_{p}\right) \preceq \epsilon .
$$

Definition 3.8. Let (X, d, \mathbb{A}) a C^{*}-algebra valued asymmetric metric space. X is said to be forward (backward) complete if every forward (backward) Cauchy sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in X, forward (backward) converges to $x \in X$.

Definition 3.9. Let (X, d, \mathbb{A}) a C^{*}-algebra valued asymmetric metric space. X is said to be complete if X is forward and backward complete.

Example 3.10. we take the example(3.2), $\left(\mathbb{R}, L^{\infty}(\mathbb{R}), d\right)$ is a complete C^{*}-algebra valued asymmetric metric space.

Indeed, it suffices to verify the completeness. Let $\left\{x_{n}\right\}$ in \mathbb{R} be a Cauchy sequence with respect to $L^{\infty}(\mathbb{R})$. Then for a given $\varepsilon>0$, there is a natural number N such that for all $n, p \geq N$

$$
\left\|d\left(x_{n}, x_{p}\right)\right\|_{\infty}=\left\|f_{x_{n}, x_{p}}\right\|_{\infty}<\varepsilon
$$

since

$$
\left\|f_{x_{n}, x_{p}}\right\|_{\infty}= \begin{cases}\left(x_{n}-x_{p}\right) T & \text { if } x_{n} \geqslant x_{p} \\ \left(x_{p}-x_{n}\right) & \text { if } x_{p}>x_{n}\end{cases}
$$

then $\left\{x_{n}\right\}$ is a Cauchy sequence in the space \mathbb{R}. Thus, there is x in \mathbb{R} such that $\left\{x_{n}\right\}$ converges to x. For $\epsilon>0$ there exists number k belonging to \mathbb{N} such that $\left|x_{n}-x\right| \leq \varepsilon$ if $n \geq k$. It follows that:

$$
\left\|d\left(x, x_{n}\right)\right\|_{\infty} \vee\left\|d\left(x_{n}, x\right)\right\|_{\infty} \leq \varepsilon \max \{1, T\}
$$

therefore, the sequence $\left\{x_{n}\right\}$ converges to x in \mathbb{R} with respect to $L^{\infty}(\mathbb{R})$, that is, $\left(\mathbb{R}, L^{\infty}(\mathbb{R}), d\right)$ is complete with respect to $L^{\infty}(\mathbb{R})$.

Definition 3.11. Let (X, d, \mathbb{A}) be C^{*}-algebra valued asymmetric metric space. A mapping T : $X \rightarrow X$ is said forward (respectively backward) C^{*}-algebra valued contractive mapping on X, if there exists a in \mathbb{A} with $\|a\|<1$ such that

$$
\begin{gathered}
d(T x, T y) \preceq a^{*} d(x, y) a \\
\left(\text { respectively } d(T x, T y) \preceq a^{*} d(y, x) a\right)
\end{gathered}
$$

for each $x, y \in X$.
Example 3.12. Let $\mathbb{A}=M_{2 \times 2}(\mathbb{R})$ and $X=\mathbb{R}$. Define $d: \mathbb{R} \times \mathbb{R} \rightarrow M_{2 \times 2}(\mathbb{R})$ by

$$
d(x, y)= \begin{cases}{\left[\begin{array}{ll}
x-y & 0 \\
0 & 0
\end{array}\right]} & \text { if } x \geqslant y \\
{\left[\begin{array}{ll}
0 & 0 \\
0 & \frac{1}{4}(y-x)
\end{array}\right]} & \text { if } x<y\end{cases}
$$

then (X, \mathbb{A}, d) is a C^{*}-algebra valued asymmetric metric space, where the norm and the partial ordering on \mathbb{A}^{+}are given as example 3.1.

Consider $T: X \rightarrow X$ by $T x=\frac{1}{4} x$. Then,

$$
d(T x, T y)=d\left(\frac{1}{4} x, \frac{1}{4} y\right) \begin{cases}{\left[\begin{array}{cc}
\frac{1}{4}(x-y) & 0 \\
0 & 0
\end{array}\right]} & \text { if } x \geqslant y \\
{\left[\begin{array}{ll}
0 & 0 \\
0 & \frac{1}{16}(y-x)
\end{array}\right]} & \text { if } x<y\end{cases}
$$

it follows that

$$
d(T x, T y) \preceq a^{*} d(x, y) a .
$$

Indeed

$$
d(T x, T y)=\left\{\begin{array}{l}
{\left[\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{lll}
x-y & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right] \preceq a^{*} d(x, y) a, \text { if } x \geqslant y} \\
{\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
0 & \frac{1}{4}(y-x)
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right] \preceq a^{*} d(x, y) a, \text { if } x<y}
\end{array}\right.
$$

where $a=\left[\begin{array}{ll}\frac{1}{\sqrt{3}} & 0 \\ 0 & \frac{1}{\sqrt{3}}\end{array}\right]$.
Next, we prove asymmetric version of C^{*}-algebra valued contractive mapping [3].
Theorem 3.13. If (X, \mathbb{A}, d) is a complete C^{*}-algebra-valued asymmetric metric space and T is a forward C^{*}-algebra valued contractive mapping, then there exists a unique fixed point in X.

Proof. One suppose that $\mathbb{A} \neq 0_{\mathbb{A}}$. Choose $x \in X$.
Notice that in a C^{*}-algebra, if $a, b \in \mathbb{A}_{+}$and $a \preceq b$, then for any $x \in \mathbb{A}$ both $x^{*} a x$ and $x^{*} b x$ are positive elements and $x^{*} a x \preceq x^{*} b x$. Thus

$$
\begin{aligned}
d\left(T^{n+1} x, T^{n} x\right) & =d\left(T\left(T^{n} x\right), T\left(T^{n-1} x\right)\right) \\
& \preceq a^{*} d\left(T^{n} x, T^{n-1} x\right) a \\
& \preceq\left(a^{*}\right)^{2} d\left(T^{n-1} x, T^{n-2} x\right) a^{2} \\
& \preceq \cdots \\
& \preceq\left(a^{*}\right)^{n} d(T x, x) a^{n} .
\end{aligned}
$$

Take $n+1>p$

$$
\begin{aligned}
d\left(T^{n+1} x, T^{p} x\right) & \preceq d\left(T^{n+1} x, T^{n} x\right)+d\left(T^{n} x, T^{n-1} x\right)+\cdots+d\left(T^{p+1} x, T^{p} x\right) \\
& \preceq \sum_{k=p}^{n}\left(a^{*}\right)^{k} d(T x, x) a^{k} \\
& \left.=\sum_{k=p}^{n}\left(a^{*}\right)^{k} d(T x, x)^{\frac{1}{2}} d(T x, x)\right)^{\frac{1}{2}} a^{k} \\
& =\sum_{k=p}^{n}\left(d(T x, x)^{\frac{1}{2}} a^{k}\right)^{*}\left(d(T x, x)^{\frac{1}{2}} a^{k}\right) \\
& =\sum_{k=p}^{n}\left|d(T x, x)^{\frac{1}{2}} a^{k}\right|^{2} \\
& \preceq\left\|\sum_{k=p}^{n}\left|d(T x, x)^{\frac{1}{2}} a^{k}\right|^{2}\right\| I_{\mathbb{A}} \\
& \preceq\left\|d(T x, x)^{\frac{1}{2}}\right\|^{2} \sum_{k=p}^{n}\|a\|^{2 k} I_{\mathbb{A}} \\
& \preceq\left\|d(T x, x)^{\frac{1}{2}}\right\|^{2} \frac{\|a\|^{2 p}}{1-\|a\|^{2}} I_{\mathbb{A}} \rightarrow 0_{\mathbb{A}} \quad(p \rightarrow \infty) .
\end{aligned}
$$

In the same way we prove

$$
d\left(T^{p} x, T^{n+1} x\right) \preceq\left\|d(x, T x)^{\frac{1}{2}}\right\|^{2} \frac{\|a\|^{2 p}}{1-\|a\|^{2}} I_{\mathbb{A}} \rightarrow 0_{\mathbb{A}} \quad(p \rightarrow \infty) .
$$

Therefore $\left\{x_{n}\right\}$ is a forward and backward Cauchy sequence. By the completeness of (X, \mathbb{A}, d), there exists an $x_{0} \in X$ such that $\left\{T^{n} x\right\}$ converges to x_{0} with respect to \mathbb{A}.

One has

$$
\begin{aligned}
\theta & \preceq d\left(T x_{0}, x_{0}\right) \preceq d\left(T x_{0}, T^{n+1} x\right)+d\left(T^{n+1} x, x_{0}\right) \\
& \preceq a^{*} d\left(x_{0}, T^{n} x\right) a+d\left(T^{n+1} x, x_{0}\right) \rightarrow 0_{\mathbb{A}} \quad(n \rightarrow \infty) .
\end{aligned}
$$

Hence, $T x_{0}=x_{0}$, therefore x_{0} is a fixed point of T.
Now suppose that $y\left(\neq x_{0}\right)$ is another fixed point of T, since

$$
0_{\mathbb{A}} \preceq d\left(x_{0}, y\right)=d\left(T x_{0}, T y\right) \preceq a^{*} d\left(x_{0}, y\right) a
$$

we have

$$
\begin{aligned}
0 & \leq\left\|d\left(x_{0}, y\right)\right\|=\left\|d\left(T x_{0}, T y\right)\right\| \\
& \leq\left\|a^{*} d\left(x_{0}, y\right) a\right\| \\
& \leq\left\|a^{*}\right\|\left\|d\left(x_{0}, y\right)\right\|\|a\| \\
& =\|a\|^{2}\left\|d\left(x_{0}, y\right)\right\| \\
& <\left\|d\left(x_{0}, y\right)\right\|
\end{aligned}
$$

which is impossible. So $d\left(x_{0}, y\right)=0_{\mathbb{A}}$ and $x_{0}=y$, which implies that the fixed point is unique.

Definition 3.14. (Forward T-orbitally lower semi-continuous) A function $G: X \rightarrow \mathbb{A}$ is said to be forward T-orbitally lower semi continuous at x_{0} with respect to \mathbb{A} if the sequence $\left\{x_{n}\right\}$ in $\mathcal{O}_{T}(x)$ is such that $x_{n} \xrightarrow{f} x$ with respect to \mathbb{A} implies

$$
\left\|G\left(x_{0}\right)\right\| \leqslant \liminf \left\|G\left(x_{n}\right)\right\|
$$

where $\mathcal{O}_{T}(x)=\left\{T^{n} x \mid n \in \mathbb{N}\right\}$.
Definition 3.15. (Forward Contractive Type Mapping) Let (X, \mathbb{A}, d) be a C^{*}-algebra valued asymmetric metric space. A mapping $T: X \rightarrow X$ is said to be a forward C^{*}-valued contractive type mapping if there exists an $x \in X$ and an $a \in \mathbb{A}$ such that

$$
d\left(T y, T^{2} y\right) \preceq a^{*} d(y, T y) a
$$

with $\|a\|<1$ for every $y \in \mathcal{O}_{T}(x)$.
Theorem 3.16. Let (X, \mathbb{A}, d) be a forward complete C^{*}-algebra valued asymmetric metric space and $T: X \rightarrow X$ be a forward C^{*}-algebra valued contractive type mapping.

Then
(i) $\exists x_{0} \in X$ such that the sequence $T^{n} x$ in $\mathcal{O}_{T}(x)$ forward converges to x_{0},
(ii) x_{0} is a fixed point of T if and only if the map $G(x)=d(x, T x)$ is forward T-orbitally lower semi continuous at x_{0} with respect to \mathbb{A}.

Proof. We assume that \mathbb{A} is a nontrivial C^{*}-algebra.
(i) Since the above forward contractive condition holds for each element of $\mathcal{O}_{T}(x)$ and $\|a\|<$ 1, it follows that:

$$
d\left(T^{n} x, T^{n+1} x\right) \preceq\left(a^{*}\right)^{n} d(x, T x) a^{n}
$$

Then for $p<n$, we have from the triangular inequality that

$$
\begin{aligned}
\left.d\left(T^{p} x, T^{n+1} x\right)\right) & \left.\preceq d\left(T^{p} x, T^{p+1} x\right)+d\left(T^{p+1} x, T^{p+2} x\right)+\ldots . d\left(T^{n} x, T^{n+1} x\right)\right) \\
& \preceq \sum_{k=p}^{n}\left(a^{*}\right)^{k} d(x, T x) a^{k} \\
& \preceq \sum_{k=p}^{n}\left\|d(x, T x)^{\frac{1}{2}}\right\|^{2}\left\|a^{k}\right\|^{2} \cdot 1_{\mathbb{A}} \\
& \preceq\left\|d(x, T x)^{\frac{1}{2}}\right\|^{2} \sum_{k=p}^{n}\|a\|^{2 k} \cdot 1_{\mathbb{A}} \\
& \preceq\left\|d(x, T x)^{\frac{1}{2}}\right\|^{2} \frac{\|a\|^{2 p}}{1-\|a\|^{2}} \cdot 1_{\mathbb{A}} \rightarrow 0_{\mathbb{A}} \quad(p \rightarrow \infty) .
\end{aligned}
$$

This shows that $\left\{T^{n} x\right\}$ is a forward Cauchy sequence in X with respect to \mathbb{A}. By forward completeness of (X, \mathbb{A}, d), there exists some $x_{0} \in X$ such that

$$
T^{n} x \xrightarrow{f} x_{0}
$$

with respect to \mathbb{A}.
(ii) one suppose that $T x_{0}=x_{0}$ and $\left\{T^{n} x\right\}$ is a sequence in $\mathcal{O}_{T}(x)$ with $T^{n} x \xrightarrow{f} x_{0}$ with respect to A , then

$$
\begin{aligned}
\left\|G\left(x_{0}\right)\right\| & =\left\|d\left(x_{0}, T x_{0}\right)\right\| \\
& =0 \\
& \leq \liminf \left\|G\left(T^{n} x\right)\right\| .
\end{aligned}
$$

Reciprocally, if G is forward T-orbitally lower semi continuous at x_{0} then

$$
\begin{aligned}
\left\|G\left(x_{0}\right)\right\| & =\left\|d\left(x_{0}, T x_{0}\right)\right\| \leq \liminf \left\|G\left(T^{n} x\right)\right\| \\
& =\liminf \left\|d\left(T^{n} x, T^{n+1} x\right)\right\| \\
& \leq \liminf \|a\|^{2 n}\|d(x, T x)\| \\
& =0
\end{aligned}
$$

as a result $d\left(x_{0}, T x_{0}\right)=0_{\mathrm{A}}$, proving T has a fixed point.

Example 3.17. $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
d(x, y)= \begin{cases}x-y & \text { if } x \geqslant y \\ 1 & \text { if } x<y\end{cases}
$$

We consider $T: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ such as $T x=\frac{x}{4}$

$$
d(T x, T y)=\left\{\begin{array}{cl}
\frac{1}{4}(x-y) & x \geqslant y \\
1 & x<y
\end{array}\right.
$$

T is not a forward C^{*}-valued contractive mapping.
If $x<y$, we know $d(T x, T y) \leqslant a^{*} d(x, y) a$, then

$$
\begin{aligned}
d(T x, T y) & \leqslant a^{*} d(x, y) a \\
1 & \leqslant a^{2} \\
1 & \leqslant\|a\|
\end{aligned}
$$

therefore contradiction.
We prove that T is forward C^{*}-valued contractive type mapping.
Let $x>0$. We have

$$
\left\{\begin{array}{l}
d\left(T y, T^{2} y\right)=d\left(\frac{y}{4}, \frac{y}{16}\right)=\frac{3 y}{16} \\
d(y, T y)=\frac{3 y}{4}
\end{array}\right.
$$

then, there exists a in \mathbb{A} such that $d\left(T y, T^{2} y\right) \preceq a^{*} d(y, T y) a$ for every $y \in \mathcal{O}_{T}(x)$
with $\|a\|=\left|\frac{1}{\sqrt{2}}\right|<1$.
Define $G: X \rightarrow A$ by

$$
G(x)=d(x, T x)
$$

so

$$
\liminf _{x \rightarrow 0} G(x)=G(0)=0
$$

then G is forward T-orbitally lower semi continuous at zero and 0 is a fixed point of T.
Example 3.18. Define $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{A}=\left\{\left.\left[\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right] \right\rvert\, x, y \in \mathbb{R}\right\}$ by

$$
d(x, y)= \begin{cases}{\left[\begin{array}{ll}
x-y & 0 \\
0 & 0
\end{array}\right]} & \text { if } x \geqslant y \\
{\left[\begin{array}{ll}
0 & 0 \\
0 & y-x
\end{array}\right]} & \text { if } x<y\end{cases}
$$

with partial ordering and norm on \mathbb{A} are given as example 3.1.
We consider $T: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
T x= \begin{cases}\frac{x}{4} & x \geqslant 0 \\ 1 & x<0\end{cases}
$$

Then for $y \in \mathcal{O}_{T}(x), x \geq 0$

$$
\begin{aligned}
d\left(T y, T^{2} y\right) & =\left[\begin{array}{cc}
\frac{y}{4}-\frac{y}{16} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\frac{3 y}{16} & 0 \\
0 & 0
\end{array}\right] \\
& \preceq\left[\begin{array}{cc}
\frac{1}{\sqrt{3}} & 0 \\
0 & \frac{1}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{cc}
\frac{3 y}{4} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{3}} & 0 \\
0 & \frac{1}{\sqrt{3}}
\end{array}\right] \\
& =a^{*} d(T y, y) a
\end{aligned}
$$

where

$$
a=\left[\begin{array}{ll}
\frac{1}{\sqrt{3}} & 0 \\
0 & \frac{1}{\sqrt{3}}
\end{array}\right] \text { and }\|a\|=\frac{\sqrt{2}}{\sqrt{3}}<1
$$

Theorem 3.19. Let (X, \mathbb{A}, d) be a forward complete C^{*}-algebra valued asymmetric metric space and $T: X \rightarrow X$ be a mapping which satisfies for all $y \in \mathcal{O}_{T}(x)$

$$
d\left(T y, T^{2} y\right) \preceq a d\left(y, T^{2} y\right)
$$

with $\|a\| \leq \frac{1}{2}$ and $a \in \mathbb{A}_{+}^{\prime}$, then
(i) $\exists x_{0} \in X$ such that the sequence $T^{n} x$ forward converges to x_{0},
(ii) x_{0} is a fixed point of T if and only if $G(x)=d(x, T x)$ is forward T-orbitally lower semi continuous at x_{0} with respect to \mathbb{A}.

Proof. Assume that $\mathbb{A} \neq\left\{0_{\mathrm{A}}\right\}$.

$$
\begin{aligned}
d\left(T^{n} x, T^{n+1} x\right) & =d\left(T\left(T^{n-1} x\right), T^{n+1} x\right) \\
& \preceq a d\left(T^{n-1} x, T^{n+1} x\right) \\
& \preceq a\left[d\left(T^{n-1} x, T^{n} x\right)+d\left(T^{n} x, T^{n+1} x\right)\right] \\
& \preceq a d\left(T^{n-1} x, T^{n} x\right)+a d\left(T^{n} x, T^{n+1} x\right) .
\end{aligned}
$$

Thus

$$
d\left(T^{n} x, T^{n+1} x\right)-a d\left(T^{n} x, T^{n+1} x\right) \preceq a d\left(T^{n-1} x, T^{n} x\right)
$$

which implies that

$$
\left(1_{\mathrm{A}}-a\right) d\left(T^{n} x, T^{n+1} x\right) \preceq a d\left(T^{n-1} x, T^{n} x\right) .
$$

Since $a \in \mathbb{A}_{+}^{\prime}$ with $\|a\|<\frac{1}{2}$, by Lemma(2.2) we have $\left(1_{\mathrm{A}}-a\right)^{-1} \in \mathbb{A}_{+}^{\prime}$ and also

$$
a\left(1_{\mathrm{A}}-a\right)^{-1} \in \mathbb{A}_{+}^{\prime} \text { with }\left\|a\left(1_{\mathbb{A}}-a\right)^{-1}\right\|<1
$$

Therefore

$$
d\left(T^{n} x, T^{n+1} x\right) \preceq a\left(1_{\mathbb{A}}-a\right)^{-1} d\left(T^{n-1} x, T^{n} x\right)
$$

Let's consider $h=a\left(1_{\mathbb{A}}-a\right)^{-1}$ then

$$
d\left(T^{n} x, T^{n+1} x\right) \preceq h d\left(T^{n-1} x, T^{n} x\right) .
$$

Let $\left\{T^{n} x\right\}$ be a sequence in $\mathcal{O}_{T}(x)$. Then from the triangular inequality, for $m<n$ we have

$$
\begin{aligned}
d\left(T^{m} x, T^{n+1} x\right) & \preceq \sum_{k=m}^{n}\left\|h^{k / 2}\right\|^{2}\left\|d(x, T x)^{1 / 2}\right\|^{2} 1_{\mathbb{A}} \\
& \preceq\left\|d(x, T x)^{1 / 2}\right\|^{2} \sum_{k=m}^{n}\left\|h^{k / 2}\right\|^{2} 1_{\mathbb{A}} \\
& \preceq\left\|d(x, T x)^{1 / 2}\right\|^{2} \frac{\|h\|^{m}}{1-\|h\|} 1_{\mathbb{A}} \\
& \longrightarrow 0_{\mathbb{A}} \text { as } m \longrightarrow \infty .
\end{aligned}
$$

This proves that $\left\{T^{n} x\right\}$ is a forward Cauchy sequence in X with respect to \mathbb{A}. Since (X, \mathbb{A}, d) is a forward complete C^{*}-algebra valued asymmetric metric space, there exists $x_{0} \in X$ such that $T^{n} x \xrightarrow{f} x_{0}$.

If $T x_{0}=x_{0}$ and $\left\{x_{n}\right\}$ is a sequence in $\mathcal{O}_{T}(x)$ such that $T^{n} x \xrightarrow{f} x_{0}$ with respect to A, then

$$
\begin{aligned}
\left\|G\left(x_{0}\right)\right\| & =\left\|d\left(x_{0}, T x_{0}\right)\right\| \\
& =0 \\
& \leq \liminf \left\|G\left(x_{n}\right)\right\| .
\end{aligned}
$$

Conversely, if G is T-orbitally lower semi continuous at x_{0} then

$$
\begin{aligned}
\left\|G\left(x_{0}\right)\right\| & =\left\|d\left(x_{0}, T x_{0}\right)\right\| \leq \liminf \left\|G\left(T^{n} x\right)\right\| \\
& =\liminf \left\|d\left(T^{n} x, T^{n+1} x\right)\right\| \\
& \leq \liminf \|h\|^{n}\|d(x, T x)\| \\
& =0
\end{aligned}
$$

this implies that

$$
d\left(x_{0}, T x_{0}\right)=0_{\mathbb{A}}
$$

thus T has a fixed point.

4 Application

In this section, we will apply our theorem to prove the existence of solution of integral equation. Let G be the multiplicative group $] 0 ; 1]$ with its left invariant Haar measure μ. Defined by:

$$
\begin{gathered}
H=L^{2}(G)=\left\{f:\left.G \rightarrow \mathbb{R} \quad\left|\int_{G}\right| f(t)\right|^{2} d \mu(t)<\infty\right\} \text { which's an Hilbert space } \\
X=L^{\infty}(G)=\left\{f: G \rightarrow \mathbb{R} \quad \mid \quad\|f\|_{\infty}<\infty\right\} \text { which's a Banach algebra. }
\end{gathered}
$$

Let $B(H)$ the set of all bounded linear operators on the Hilbert space H. Note that $B(H)$ is a unitary C^{*}-algebra. We define an asymmetric metric as:

$$
\begin{aligned}
d: X \times X & \rightarrow B(H) \\
(f, g) & \rightarrow d(f, g)
\end{aligned}
$$

with

$$
d(f, g)=\left\{\begin{array}{l}
\pi_{\frac{1}{2}(f-g) \chi_{\{f>g\}}}+\pi_{(g-f) \chi_{\{g>f\}}} \quad \text { if } \quad f \neq g \\
0 \quad \text { if } \quad f=g
\end{array}\right.
$$

where π_{f} is the multiplication operator given by :

$$
\begin{aligned}
\pi_{f}: X & \rightarrow X \\
\psi & \rightarrow f . \psi
\end{aligned}
$$

and

$$
\chi_{A}(t)=\left\{\begin{array}{ccc}
1 & \text { if } & x \in A \\
0 & \text { if } & x \in A^{c}
\end{array}\right.
$$

It is knwon that $\left\|\pi_{f}\right\|=\|f\|_{\infty}$.
Here $(X, B(H), d)$ is a complete C^{*}-valued asymmetric metric space with respect to $B(H)$.
Let

$$
\begin{aligned}
K: \quad G \times G \times \mathbb{R} & \rightarrow \mathbb{R} \\
(x, y, t) & \rightarrow \alpha \cdot x \frac{t}{y^{2}+k} \quad(\alpha>0, k>0)
\end{aligned}
$$

Let

$$
\begin{aligned}
& T: X \rightarrow X \\
& f \rightarrow T f \\
& T f(x)=\int_{G} K(x, y, f(y)) d \mu(y), x \in G
\end{aligned}
$$

Choose f_{0} defined as follows:

$$
\begin{aligned}
f_{0}: G & \rightarrow \mathbb{R} \\
x & \rightarrow x
\end{aligned}
$$

then

$$
\begin{aligned}
T f_{0}(x) & =\int_{G} K\left(x, y, f_{0}(y)\right) d \mu(y) \\
& =\int_{0}^{1} \alpha x \frac{y}{y^{2}+k} d \mu(y) \\
& =\alpha \cdot x \int_{0}^{1} \frac{y}{y^{2}+k} d \mu(y) \\
& =\frac{\alpha x}{2} \ln \left(\frac{1}{k}+1\right) \\
& >f_{0}(x) \quad(\forall x \in X)
\end{aligned}
$$

In addition, using simple calculation, we find that

$$
T^{n+1} f_{0}(x)>T^{n} f_{0}(x) \quad(\forall x \in X, \quad \forall n \in \mathbb{N}) .
$$

If we take $g=T f_{0}$, then

$$
\begin{aligned}
\left\|d\left(T f_{0}, T^{2} f_{0}\right)\right\| & =\left\|d\left(T f_{0}, T g\right)\right\| \\
& =\| \pi_{T g-T f_{0} \|} \\
& =\sup _{\|\psi\|_{2}=1}\left\langle\left(T g-T f_{0}\right) \psi, \psi\right\rangle, \quad \text { for any } \psi \in H \\
& =\sup _{\|\psi\|_{2}=1} \int_{G} \alpha \int_{G} x \frac{g(y)-f_{0}(y)}{y^{2}+k} d \mu(y) \psi(x)^{2} d \mu(x) \\
& \leq \alpha\left\|g-f_{0}\right\|_{\infty} \sup _{\| \psi]=1} \int_{G} x \psi(x)^{2} d \mu(x) \int_{G} \frac{1}{y^{2}+k} d \mu(y) \\
& \leq \alpha\left\|g-f_{0}\right\|_{\infty} \frac{\arctan \frac{1}{\sqrt{k}}}{\sqrt{k}} \\
& \leq \frac{\alpha}{k}\left\|g-f_{0}\right\|_{\infty} .
\end{aligned}
$$

For $\frac{\alpha}{k}<1$, we must take

$$
\alpha<\frac{1}{e^{\frac{\alpha}{2}}-1} \Leftrightarrow \alpha e^{\frac{\alpha}{2}}-\alpha-1<0
$$

which is possible because

$$
\lim _{x \rightarrow+\infty} \alpha e^{\frac{\alpha}{2}}-\alpha-1=+\infty
$$

and $\alpha \rightarrow \alpha e^{\frac{\alpha}{2}}-\alpha-1$ is a continuous function, which take -1 at $\alpha=0$.
We will have

$$
\left\|d\left(T f_{0}, T^{2} f_{0}\right)\right\| \leq \lambda\left\|d\left(f_{0}, T f_{0}\right)\right\|
$$

with $\lambda=\alpha \frac{\arctan \frac{1}{\sqrt{k}}}{\sqrt{k}}$ and $\lambda<1$.
Therefore the condition of the Theorem 3.2 is verified which ensures the forward convergence of $T^{n} f_{0}$ to \tilde{f} in X with respect \mathbb{A}. It remains to verify that \tilde{f} is a fixed point. It will suffice to verify that G is forward T-orbitally lower-semi-continuous at \tilde{f}.

$$
\begin{aligned}
\|G(\tilde{f})\| & =\|d(\tilde{f}, T \tilde{f}) \leq \liminf \| G\left(T^{n} f_{0}\right) \| \\
& =\liminf \left\|d\left(T^{n} f_{0}, T^{n+1} f_{0}\right)\right\| \\
& \leqslant \lim \inf \left(\frac{\alpha}{2} \ln \left(\frac{1}{k}+1\right)\right)^{n}\left(\frac{\alpha}{2} \ln \left(\frac{1}{k}+1\right)-1\right)(=+\infty) .
\end{aligned}
$$

Thus the integral equation $f(x)=\int_{G} K(x, y, f(y)) d \mu(y)$ admits a solution.

References

[1] J. Collins and J. Zimmer,An asymmetric Arzela-Ascoli theorem, Topology and Its Applications(2007).
[2] Murphy, Gerald J, C^{*}-algebras and operator theory, 2014, Academic press.
[3] Ma, Z., Jiang, L.and Sun, H. C^{*}-algebra-valued metric spaces and related fixed point theorems. Fixed Point Theory Appl 2014, 206 (2014).
[4] Mlaiki, Nabil, Mohammad Asim, and Mohammad Imdad. "C*-algebra valued partial b-metric spaces and fixed point results with an application." Mathematics 8.8 (2020): 1381.
[5] Batul, Samina, and Tayyab Kamran. " C^{*}-Valued contractive type mappings". Fixed Point Theory and Applications 2015.1 (2015): 1-9.
[6] Rieger, Marc Oliver, and Johannes Zimmer. "Young measure flow as a model for damage." SIAM J. Math. Anal (2005).
[7] Mennucci, Andrea CG. "On asymmetric distances." Analysis and Geometry in Metric Spaces 1.2013 (2013): 200-231.
[8] Mainik, Andreas, and Alexander Mielke. "Existence results for energetic models for rate-independent systems." Calculus of Variations and Partial Differential Equations 22.1 (2005): 73-100.
[9] Mielke, Alexander, and Tomás Roubícek. "A rate-independent model for inelastic behavior of shapememory alloys." Multiscale Modeling and Simulation 1.4 (2003): 571-597.
[10] Aminpour, A. M., S. Khorshidvandpour, and M. Mousavi. "Some results in asymmetric metric spaces." Mathematica Aeterna 2 (2012): 533-540.
[11] Kalpana, G., and Z. Sumaiya TASNEEM. " C^{*}-algebra-valued rectangular b-metric spaces and some fixed point theorems." Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68.2 (2019): 2198-2208.
[12] Kalpana, G., and Z. Sumaiya Tasneem. "On Fixed Points in the Setting of C^{*}-Algebra-Valued Controlled F_{c}-Metric Type Spaces." arXiv preprint arXiv:1910.00414 (2019).

Author information

Ouafaa Bouftouh and Samir Kabbaj, Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, BP 133 Kenitra, Morocco.
E-mail: ouafaa.bouftouh@uit.ac.ma, samkabbaj@yahoo.fr
Received: November 2nd, 2021
Accepted: November 3rd, 2021

