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Abstract In this paper, we have studied on weighted bi-URSM corresponding to a most
generalized form of a polynomial over a non-Archimedean field. The exhibition of our results
are devoid of any extra suppositions. Our paper is the latest form of in-continuation of a number
of existing results [14], [15].

1 Introduction and Motivation

We assume that readers are familiar with the basic Nevanlinna theory over the field of complex
numbers. We now shortly recall Nevanlinna theory over non-Archimedean field.

In what follows, throughout our paper we consider [ to be an algebraically closed non-
Archimedean field with characteristic zero such that it is complete with respect to a non-trivial
non-Archimedean absolute value. We denote by log and In as the real logarithm of base p > 1
and e respectively. Let A, (IF) be the set of all power series whose radius of convergence is
greater than or equal to ». We denote the collection of all entire functions on [ by A(IF)( =
A[(F)) and the collection of all meromorphic functions on F by M(F) and F = F U {co}.

Let z be a solution of f(z) = a, the multiplicity of z is denoted by w(a, f; z). For f € M(F)
and a € F we define

Ej(a) = {(z,w(a, f;2)) : zis solution of f(z) = a}.
Now for f € M(F) and S C F, define
E¢(S) = Uges {(z,w(a, f;2)) : z is solution of f(z) = a}.

In [20], Meng-Liu introduced the notion of weighted sharing of values over non-Archimedean
field.

Let k& be a non-negative integer or co. The set of all a-points of f with multiplicity m is
counted m times if m < k and counted k£ + 1 times if m > k, is denoted by E’]E(a). For two
function f,g € M(F) if Ef(a) = Ef(a), then we say f, g share the value a with weight k. We
say that f and g share the value a CM (IM) if E7°(a) = Eg°(a) (E}(a) = EJ(a)).

Inspired from the definition of weighted sharing of sets as introduced in [18], we demonstrate
the analogous definition over non-Archimedean field as follows:

We say f, g share the set S with weight k if E}(S) = EJ(S) foraset S C F. We write
f, g share (S, k) to mean that f, g share the set S with weight k. In particular if S = {a},
then we write f, g share (a,k). We say that f and g share the set S CM (IM) if E°(S) =
EX(S) (EY(S) = EQ(S)).

It was Gross-Yang [11], who first used the terminology “unique range sets for entire func-
tions (URSE)". Later on, the analogous definition for meromorphic function (URSM) was also
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introduced in the literature (see p. 438, [19]). Next we recall some well known terminologies
and definitions.

Definition 1.1.[19] Let f, g be two meromorphic functions over C and S C C U {co}. If
E(S) = E5°(S) implies f = g then S is called a unique range set for meromorphic functions
or in short URSM.

Definition 1.2. [5] Let f, g be two meromorphic functions over C and S € CU{occ}. If Ejf (S) =

Ef (S) implies f = g then S is called a unique range set for meromorphic functions with weight
k or in brief URSMk.

Definition 1.3. [3] Let f, g be two meromorphic functions over C then a pair of sets S, T C C
such that SNT = @ is called bi-URSM if E(S) = E°(S), E(T) = E;°(T) implies f = g.

Definition 1.4. [19] Let P(z) be a polynomial in C. If for any two non-constant meromorphic
functions f and g, the condition P(f) = P(g) implies f = g, then P is called a uniqueness
polynomial for meromorphic functions. We say P is UPM in short.

Khoai-Yang [17] introduced the notion of strong uniqueness polynomial for meromorphic
functions or in short SUPM.

Definition 1.5. [17] Let P(z) be a polynomial in C. If for any two non-constant meromorphic
functions f and g, the condition P(f) = c¢P(g) implies f = g, where ¢ is a non-zero constant,
then P is called a strong uniqueness polynomial for meromorphic functions or SUPM in brief.

In Definitions 1.1-1.5 replacing C by F, the definitions of URSM, URSMK, bi-URSM, UPM
and SUPM over a non-Archimedean field can be given analogously.

The notion of weighted bi-URSM over C was introduced by Banerjee ([3], p. 122). Analo-
gously we define weighted bi-URSM over non-Archimedean field as follows:

Definition 1.6. A pair of finite, disjoint sets .S and 7" in F is called bi-unique range sets for
meromorphic functions with weights p, k if for any two non-constant meromorphic functions f
and g, EY(S) = E(S), E§(T) = E;(T) imply f = g. We say S, T, are bi-URSMp, k in short.
As usual, if both p = k = oo, we say S, T, are bi-URSM.

Fujimoto [10] introduced the following definition and called it as “Property H" which was
latter characterized as “Critical Injection Property".

Definition 1.7. [5] Let P(z) be a polynomial such that P’(z) has [ distinct zero namely zy, 23, . . ., 2.
If P(z;) # P(z;) fori # j,4,5 € {1,2,...,1}, then P(z) is said to satisfy the critical injection
property.

Over the non-Archimedean field the same definitions of critical injection property can be
given.

For basic terminologies of value distribution theory over non-Archimedean field, readers can
make a glance on [1], [2], [20]. Here we recall a few of them.

For a real constant p such that 0 < p < r, the counting function N(r,a; f) of f € M(F) is

defined as follows:
N(r,a; f) = L/ ntaif) g
Inp J, t

where n(t, a; f) is the number of solutions (CM) of f(z) = ainthe disk D; = {z € F : |2] < t}.
For! € Z™, define

1 "ny(t,a;
Nl(rva;f)zm/ %dh
p

where n,;(t,a; ) = Z min{l, w(a, f;z)}. Thus Ni(r,a; f) denotes the counting function of
|z|<r

a-points of f where multiplicity is counted only once, in short we call it “reduced counting

function”.
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Definition 1.8. For a € F we denote by N(r,a; f |= 1) the counting function of simple a-points
of f. For k € Z* we denote by N(r,a; f |< k)(N(r,a; f |> k)) the counting function of those
a-points of f whose multiplicities are not greater(less) than k where each a-point is counted
according to its multiplicity. Ni(r,a; f |< k)(Ni(r,a; f |> k)) are defined similarly, where in
counting the a-points of f we ignore the multiplicities.

2 Background and Main results

Several interesting results on URSM over [ have been obtained (see [7], [12], [14], [21]). We
notice that, in [14] and [21], the authors considered a pair of sets .S, T', where one of them con-
tains only one element and proved {5, T'} is a bi-URSM. In this regard, we would like to mention
a very recent work of Khoai-An [15] where the authors introduced the following polynomial:

_ - n (_l)j m+n+l1—j j N
PKA(z)_(m+n+1)j§(j>m+n+l_jz Ja? +1=Q*(2) + 1, (2.1)

where a € F \ {0} and Q*(a) # —1, —2. Khoai-An [15] obtained the following result:

Theorem A. [15] Let f, g be two non-constant meromorphic functions on F, Pk 4(2) be defined
by (2.1) with conditions Q*(a) # —1,—2 and let min{m,n} > 2. Let S = {z € F | Pxa(z) =
0}.

@A) If m+n>9and E;C(S) = Eg‘x’(S), then f = g.
(i) If B (S) = E5°(S), E¥(00) = Eg°(c0), then f = g.

Thus we see that, (ii) of Theorem A gives the existence of bi-URSM, where one set is {oo}
and this case is rather easy to tackle. So the natural question arises about the existence of bi-
URSM S, T, where each set S and 1" contains at least two elements from F. In this perspective
Khoai-Hoa [16] obtained the next result. To state the next result, the following definition is
needed:

Definition 2.1. [16] A statement S(ay, - .., a,) is said to be held for a generic set {ay,...,a, €
F} if there exists a proper algebraic subset Y. < F™ such that S(ay,...,a,) holds for all
ai,...,a, € Fwhenever (aj,...,a,) € >_.

Theorem B. [16] For n > 3 and a generic set {ay, az; by, by, . .., by, } of elements in ]AB;, the couple
S ={ay,a}, T ={by,...,b,} is a bi-URSM pair for meromorphic functions in F.

It can be noticed that the proof of Theorem B is based on algebraic and geometric approaches.
Moreover, from Theorem B it follows the existence of bi-URSM {5, T}, where S and T have at
least two elements. However, the authors of [16] can not give an explicit bi-URSM.

Question 2.1. Can it be possible to find an explicit bi-URSM, where both the sets contain at least
two elements?

Using the well known Nevanlinna’s value distribution theory over non-Archimedean field we
will try to find the answer of Question 2.1, which is the prime motivation to write this paper.

Very recently in [6], Banerjee-Maity introduced a new polynomial of degree m + n + 1 in
the following manner:

S l)j m4n+1—3 7
e = 3] )m+n+1_3 e @2

7=0

+§: . (_I)H—j Zm+n+1_i_jajbi+c
m+n+1—i—j

i=1 j=0

= Q2

~—

+c,
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where a and b are distinct such thata € F\ {0}, b € F,c € F\ {0, -Q(a),—Q(b)}. It is easy to
verify that

P(z) = (z—a)"(z—b)™.

Note 2.1. From Note B of [6], we get that P(z) is a generalization of famous Frank-Reinders
polynomial [9].

Note 2.2. The set of all zeros of P’(z) is {a,b}. P(z) have only simple zeros since ¢ € F \
{-Q(a), —Q(b)}.

Note 2.3. From Remark 1.10 of [6], we see that, P(z) is a critically injective polynomial.

Our first result gives an affirmative answer to Question 2.1 under more relaxed sharing hy-
pothesis namely weighted sharing.

Theorem 2.1. Let f, g be two non-constant meromorphic functions on F and m, n be two posi-
tive integers such that min{m,n} > 2. Consider the polynomial (2.2) such that P(a) # —1 and
S ={a,b}, T ={z| P(z) =0}. Now

(i) when P(b) #1,n>m+2,or
(ii) when P(b) =1,
then for both cases (i) and (ii) the couple of sets .S, T" is a bi-URSMO, 3.

Note that when P(b) = 1, then the minimum cardinality of the set 7" is 5.

Note2.4. Taken=m =2,a=1,b=0,c =1 and set

AR

Denote S = {1,0}, T = {z | P(z) = 0}. Then by Theorem 2.1, {S,T} is a bi-URSM, where
T contains 5 elements.

Question 2.2. In Theorem 2.1, can it be possible to remove the condition “P(a) # —17?
Question 2.3. In Theorem 2.1, can it be possible to reduce the weight of the set 7?

In order to answer the Questions 2.2 and 2.3, we obtain the following result:
Theorem 2.2. Let f, g be two non-constant meromorphic functions on I and m, n be two posi-
tive integers such that m > 2, n > m+2. Consider the polynomial P(z) as (2.2) and S = {a, b},
T = {z | P(z) = 0}, then the couple of sets S, T"is a bi-URSMO, 2.
3 Lemmas
Lemma 3.1. [13] Let f(2) be a non-constant meromorphic function on F and ay, ay, ... ,a, € F
are distinct points. Then

(n=2)T(r, f) <> _ Ni(r,ai; f) = N°(r,0; f') = logr + O(1),
i=1

where N (r,0; ') denotes the counting function of zeros of f’ which are nota; (i = 1,2,...,n)
points of f.

The next lemma follows from the equivalence of (i) and (iv) of Theorem 1 of Wang [21].

Lemma 3.2. [21] Let f, g be two non-constant meromorphic functions on F and P(z) be a
critically injective polynomial such that the derivative of P(z) is of the form (z — )™ (z — 8)"
and let min{m,n} > 2. If P(f) = P(g) then f = g.
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Lemma 3.3.[15] Let f, g be two non-constant meromorphic functions on F and P(z) be a
polynomial with no multiple zero and the derivative of P(z) is of the form (2 — a)™(z — 8)",
also let min{m, n} > 2. Assume that there exist constant ¢; # 0 and ¢, such that

1 C1

P(f)  Pg)

+627

then ¢, = 0.

From now onward we denote two non-constant meromorphic functions F and G on F such
that 7 = % and G = %, where P(z) is defined as in (2.2). Besides this we also consider
two functions H and ¥ as follows:

_ FI/ ZFI g// zg/
H‘(F_f—1>_<g/_g—1)’ (.1
_ ]:'/ g/
‘{’_]___l—g_l (3.2)

Lemma 3.4. Let % # 0 and F, G share (1, 1) then
N(r,1;F|=1)=N(r,15G |=1) < N(r,o0;H) + O(1).

Proof. As F and G share (1,1) so each simple 1-point of F is also simple 1-point of G and
vice versa. Now each simple 1-point of F (i.e., simple 1-point of G) is a zero of H. Note that
m(r,H) = O(1). Hence

N(r,1;F|=1) = N(r, 1;G |= 1) < N(r,0;H) < T(r,H) < N(r,00; H) + O(1).
O

Lemma 3.5.Let S = {a,b}, T = {z | P(z) = 0}, where P(z) is defined as in (2.2). Let H #£ 0
and f, g be any two non-constant meromorphic functions on F such that, E%(S) = EP(S) for
0 <p <ocand EY(T) = EJ(T) , then
N(r,o0i#H) < Ni(r.a: f) + Ni(r,b: f) + Ni(r, 001 f) + Ni(r, 001 9) + Ny (7,05 ')
+N (,0:9) + Ni (r, 1, F, ),
where N{ (r,0; f') denotes the reduced counting function of those zeros of f’ which are not zeros
of (F—1)(f —a)(f —b) and N} (r,0; g’) denotes the similar counting function. N} (r, 1; F,G)

denotes the reduced counting function of those 1-points of F whose multiplicities differ from
the multiplicities of the corresponding 1-points of G.

Proof. Note that, 7/ = ZU)L = Uzl - A 7(S) = E2(S) for 0 < p < oo and
E? (T) = EJ(T), so the lemma directly follows by calculating all the possible poles of 7. m]

Lemma 3.6. Let F, G shares (1, k), where 1 < k < co. Then
1
Ni(r, I, F)+ Ni(r,1,G) = N(r, , F|=1) + (kz — 2) Ni(r,1;F,G)

< %[N(r,l;]-")—i—N(r,l;g)].

The Lemma 3.6 can be considered as the non-Archimedean version of the Lemma 2.10 of [4].
Proof of the lemma is omitted as it can be done proceeding similarly as Lemma 2.10 of [4].

Lemma 3.7. Let S, T be defined as in Lemma 3.5 and m, n be two positive integers such that
min{m,n} > 2. Assume ¥ # 0 and E}(S) = E(S), Ef(T) = E;(T). Then

((p+Dn+p) [Ni(r,a; f [>p+ 1)+ Ni(r,b; f [> p+1)]
< N (r,1,F,G) 4+ Ni(r,00; f) + Ni(r,00;g) + O(1).
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Proof. The condition E%(T) = Ej(T) implies F, G share (1, k). Now from (3.2) we get

g U= T 0" (g=a)'(g—B)"y
C(]:— 1) c(g — 1) .

Let zo be a(or b) point of f with multiplicity r. As E%(S) = EP(S) and min{m, n} > 2, so when
r < pthen z is a zero of ¥ of multiplicity min{nr + r — I, mr +r — 1} > 3r — 1 and when
r > p then 2 is a zero of ¥ of multiplicity at least min{(p+ 1)n+p, (p+ 1)m+p} > 3p+2).
Thus we can deduce

(Bp+2) [Ni(r,a; f = p+ 1)+ Ni(r,0: f |> p+1)]
N(r,0;¥)

T(r,¥)+0(1)

N(r,o00; %)+ O(1)

N{(r,1;F,G) 4+ Ni(r,00; f) + Ni(r, 005 g) + O(1).

IN

ININ A

Remark 3.1. In particular, for p = 0 in Lemma 3.7 we have
1
Ni(rya; f) + Ni(r b f) < 5 [NT(r, 15F,G) + Ni(r, 003 f) + Ni(r, 003, 9)] + O(1).
Lemma 3.8. Let 7, G share (1, k), where 1 < k < co. Then

1
NE(r 13 F,0) < & [Ni(r.as f) + Ni(r: )] + O(1).
Proof. By using lemma of logarithmic derivative

" <T’ - a{;f - b)) (3.3)
- m<r’{(ab)f(fa) * (ba{(fb)})

< mx{on (n i) (- =i =m) )
= 0o(1).

Note that all zeros of P(f) are simple, let us denote them by w;(j = 1,2,...,m +n + 1).
Using the fact F, G share (1, k) and equation (3.3) we have

N{(r,13F,G) < Ni(r,;F[>k+1)
1

< E[N(r,l;]:)le(T,l;]:)]

< ;7§§%NMWﬁﬂ—MUMﬁﬂJ
< NGO | f#£aD)

< (0 o)

< i (e + 00
< L INiGna)+ M) +0(1),
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Lemma 3.9. Let S, T be defined as in Lemma 3.5. Let ¥ # 0 and EY(S) = E{(S), E}(T) =
E¥(T) (for 2 < k < o0) and n > 2. Then

N{(r,1;F,G) <

2k — 1 [N1 (7,003 f) + Ni(r, 005 9)] + O(1).

Proof. Combining Lemma 3.8 and Remark 3.1 we get,
1
Nl*(rv I;Fvg) < % [Nl(rva;f) +N1(T’,b;f)] + O(l)

< 217{; [N (r, 15 F,G) + Ni(r,00; f) + Ni(r, 005 9)] + O(1).

Thus we have

N7 15F,6) < 5 [Ny (003 ) i, 003)] + 01,

Lemma 3.10. (Theorem 1.11, [6]) Let m, n be two positive integers such that min{m,n} > 2.
Consider the polynomial (2.2) such that P(a) # —1. Now

(i) when P(b) # 1,n>m +2, or
(ii) when P(b) =1,

then for both the cases (i) and (ii), P(z) is a SUPM.

4 Proofs of the theorems

Proof of Theorem 2.1. Let f, g be two non-constant meromorphic functions on F such that
EY(S) = Eg(S), E}(T) = E}(T). Thus F, G share (1, 3).

Case 1: First assume ¥ Z 0.

Sub-case 1.1: Suppose H # 0. Applying Lemma 3.1, 3.4, 3.5 and Lemma 3.6 for k = 3 we get

(m+n+2)[T(r, f)+T(r,9)] (4.1)
Ni(r, 13 F) + Ni(r, a5 f) + Ni(r,b; f) + Ni(r, 005 f)

+Ni(r, 15G) + Ni(r, a3 g) + Ni(r, b5 9) + Ni(r, 003 g)

—N°(r,0; f') = N°r,0;¢') — 21logr + O(1)

NG 1 F [= 1) = IN{ (L F,G) + 5 [N(r, 1L F) + N(r, 1:0)]

+2[Ni(r; a; f) + Ni(r, b; f)] + Ni(r, 00; f) + Ni(r, 003 g)
—N%r,0; f') — N°(r,0; ') — 2logr + O(1)

IN

IN

IA

N(r, 003 H) — %Nl*(n LF.Q) + % IN(r, 1:F) + N(r, 1;)]
+2[N1(T7a;f) +N1(T‘,b;f)] +N1(T’00;f) +N1(T500;g>
—NO%r,0; f') — N°(r,0;g') — 21ogr + O(1)

3[Ni(r,as f) + Ni(r, b; f)] + 2[Ni(r, 005 f) + Ni(r, 005 g)]

IN

—l—% [N(r,1;F) + N(r,1;G)] — %Nl*(r,l;]:,g) —2logr + O(1).
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Using Remark 3.1, from (4.1) we deduce

(m+n+2)[T(r,f)+T(r,g)] 4.2)

< S IN{ (L 1F.G) + N0t ) + No(ro0)] 4 2[Ni (01 )+ i, 00:.)]

> [T(r, f) +T(r,9)] — §N]*(r, 1;F,G) —2logr + O(1)

2 2

+n+1
+(m”

Hence (4.2) implies

(m;” _2) [T(r. f) + T(r, )] + 2logr < O(1). (4.3)

From the condition min{m,n} > 2 we have m + n > 4. Thus (4.3) gives a contradiction
since m +n > 4.
Sub-case 1.2: Suppose ‘H = 0. Integrating (3.1) two times and as ¢ # 0 we obtain

1 A
F-1 - G-1 + B (where A, B are constants such that A # 0).
c cA
P(f) P(g)
1 A B
= —— = — 4+ —. “4.4)
P(f) Pg) ¢

Now applying Lemma 3.3 for the equation (4.4) we get % = 0. Consider a constant A; = %.
Thus we have P(f) = A, P(g). Next applying Lemma 3.10 we obtain f = g.
Case 2: We assume ¥ = 0. Integrating (3.2) we get

F—1 = AG-1)
= P(f) = AP(g).
Next applying Lemma 3.10 we get f = g. This completes the proof of the theorem. O

Proof of Theorem 2.2. Let f, g be two non-constant meromorphic functions on F such that
EY(S) = Eg(S), E}(T) = EZ(T). Thus F, G share (1,2).

Case 1: First assume ¥ Z 0.

Sub-case 1.1: Suppose ‘H # 0. Applying Lemma 3.1, 3.4, 3.5 and Lemma 3.6 for k = 2 we get

(m+n+2)[T(r,f)+T(r,9g)] 4.5)

< Ni(r,15F) 4+ Ni(r,a; f) + Ni(r, b; f) + Ni(r, 005 f)
+Ni(r, 1;G) + Ni(r, a5 9) + Ni(r, b; g) + Ni(r, 005 g)
—N°(r,0; f') = N°(r,0;¢') — 21logr + O(1)

< N LFI=1) = 3N LF.G) + 5 NG 1L F) + N(r. 150)]
+2[Ni(r,a; f) + Ni(r,b; f)] + Ni(r, 005 f) + Ni(r,00; g)
—NO(r,0; f') = N°(r,0;¢") — 21logr + O(1)

< N(r,oo;’H)—%Nl*(nl;}',g)—|—%[N(r,l;]—')+N(r,l;g)]
+2[N1(r, a5 f) + Ni(r, b5 f)] + Ni(r, 003 f) + Ni(r, 005 g)
—NO(r,0; f') = N°(r,0;¢') — 2logr + O(1)

< 3[Ni(rya; f) + Ni(r, 0 f)] + 2[Ni (r, 005 f) + Ni(r, 003 g)]

—l—% [N(r,1;F) + N(r,1;G)] — %Nl*(r,l;]:,g) —2logr + O(1).
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Using Remark 3.1 and Lemma 3.9 in (4.5) we deduce

(m+n+2)[T(r, f)+T(r,g)] (4.6)
< SINTOL 1 F,G) 4 Nalr, 005 )+ Na(r,003.0)] + 2[Na(r, 00 ) + N (r, 003 )]

+ (’”*;“) (TG )+ T(r.g)] ~ 5N (1 1:F.G) — 2logr + O(1)
< N{(r1:F,6)+ <§ Yoy ””;‘“) [T(r, f) + T(r,g)] = 2logr + O(1)
< 5INi(r 001 1) + Ni(r 005 9)] + (’”*;*8) T(r, f) + T(r, 9)] — 2logr + O(1)
< (5+755) 1) + T0.0)] - 210gr + O

Hence (4.6) implies
<m2+" - ;) [T(r, f) + T(r, )] + 2logr < O(1). 4.7)

We have m > 2 and n > m + 2, these two conditions imply m + n > 6. Thus (4.7) gives a
contradiction since m + n > 6.
Sub-case 1.2: Suppose ‘H = 0. Integrating (3.1) two times we obtain

% = % + B (where A, B are constants such that A # 0)
1 A B
= —— = —— + — (asc#0). (4.8)
By T P e e

Asm > 2 and n > m + 2 so obviously min{m,n} > 2. Now applying Lemma 3.3 for the

equation (4.8). We get % = 0. Consider a constant A; = +

Sub-case 1.2.1: Let us assume A; # 1. Now (4.8) implies

P(f) = AiP(g)

= P(f)—c = Ai(P(g9) —c)+c(A - 1)

= Q(f) = A4iQ(g) +c(A—1)

= Q(f) - Q) = AiQ(g) — (Q(b) — (A1 —1)). 4.9)
Note that since P(f) = A;P(g), therefore T(r,f) = T(r,g) + O(1) . Recall that the

only zeros of QQ'(z) are a and b. So the only possible multiple zeros of ¢(z) := A;Q(z) —
(Q(b) — ¢(Ay — 1)) are a and b. First assume b is the multiple zero of ¢(z). Thus ¢(b) = 0, i.e.,

A1Q(b) = Q(b) — e(As — 1)
= (A1 = 1)(Q(b) +¢) =
= c=—-Q(b),

a contradiction as we have ¢ # —Q(b). Next assume a is the multiple zero of ¢(z). It is easy to
see that ¢(z) = (z — a)""'W;(z), where W;(a) # 0 and all zeros of W;(z) are simple namely
aj (j = 1,2,...,m). Notice that, Q(z) — Q(b) = (2 — b)™ W (2), where W>(b) # 0 and all
zeros of W (z) are simple. Let us denote them by 3; (j = 1,2,...,n). Hence from (4.9)

Ni(r, b /) + Y Ni(r, 853 f) = Ni(r,a39) + > Ni(r, a3 9). (4.10)

J=l1 J=l1
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Next using the Second Fundamental Theorem, (4.10) and the fact T'(r, f) = T'(r,g) + O(1)
we get

(n=1T(r,f) < Ni(r,bif)+>_ Ni(r,B;:f) —logr+O(1)
j=1
= 1(r,asg) ZNlra], —logr + O(1)
< (m+1)T (T,f)—logr+0( ).

Thus we have (n — m — 2)T(r,g) + logr < O(1), this contradicts the given condition
n > m + 2. Hence we see neither a nor b are multiple zeros of ¢(z), and hence all the zeros of
¢(z) are simple say v; (j = 1,2,...,m +n+ 1). From (4.9)

m-+n+1

Ni(rb: )+ > Ni(r B f) = Y Ni(r,:9)- (4.11)
j=1

j=1
Using the Second Fundamental Theorem and the equation (4.11) we deduce

m+n+1
(m4n—DT(rg) < 3 Nilry:g)—logr+0(1)

= Nl(r>b;f)+ZNl(T7Bj;f)_IOgT+O(1)
j=1
< (n4+1)T(r,g) —logr+ O(1).

Hence we obtain (m — 2)T'(r, g) + logr < O(1). Since m > 2, we get a contradiction.
Sub-case 1.2.2: Next assume A; = 1. Thus P(f) = P(g), and by Lemma 3.2 we conclude

=g

Case 2: Now assume ¥ = 0. Integrating (3.2) we get
F—1 = AG-1)
= P(f) = A,P(9).

Proceeding similarly as done in Sub-case 1.2.1 we get a contradiction and next following the
steps of Sub-case 1.2.2 we deduce f = g.
Therefore by Case 1 and 2 we get that the couple of sets S, 1" is a bi-URSMO, 2.

5 An open question

In [8] (p.136), the authors presented the following example. Let a, b, ¢, d € [F be arbitrary distinct
values. Set the function h(z) which is different from the identity function such that,
z(ab — cd) — ab(c + d) 4 cd(a + b)

20a+b—c—d)—ab+cd

h(z) =

We have h(a) = b; h(b) = a; h(c) = d; h(d) = c. So, if we denote by S = {a,b}, T = {c,d}
then {S, T'} is not a bi-URSM. On the other hand, according to Theorem B there exist bi-URSM
{S, T}, where S has 2 elements, and 7" has 3 elements.

Considering Theorem B and Note 2.4, the following question deserves further attention.

(I) Can it be possible to find an explicit bi-URSM {S, T}, where S has 2 elements, and 7" has
3 or 4 elements?

Unfortunately, the authors have no answer to the above question till now.
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