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Abstract In this paper, we have studied on weighted bi-URSM corresponding to a most
generalized form of a polynomial over a non-Archimedean field. The exhibition of our results
are devoid of any extra suppositions. Our paper is the latest form of in-continuation of a number
of existing results [14], [15].

1 Introduction and Motivation

We assume that readers are familiar with the basic Nevanlinna theory over the field of complex
numbers. We now shortly recall Nevanlinna theory over non-Archimedean field.

In what follows, throughout our paper we consider F to be an algebraically closed non-
Archimedean field with characteristic zero such that it is complete with respect to a non-trivial
non-Archimedean absolute value. We denote by log and ln as the real logarithm of base p > 1
and e respectively. Let A[r(F) be the set of all power series whose radius of convergence is
greater than or equal to r. We denote the collection of all entire functions on F by A(F)

(
=

A[∞(F)
)

and the collection of all meromorphic functions on F byM(F) and F̃ = F ∪ {∞}.
Let z be a solution of f(z) = a, the multiplicity of z is denoted by w(a, f ; z). For f ∈M(F)

and a ∈ F̃ we define

Ef (a) =
{
(z, w(a, f ; z)) : z is solution of f(z) = a

}
.

Now for f ∈M(F) and S ⊂ F̃, define

Ef (S) = ∪a∈S {(z, w(a, f ; z)) : z is solution of f(z) = a} .

In [20], Meng-Liu introduced the notion of weighted sharing of values over non-Archimedean
field.

Let k be a non-negative integer or ∞. The set of all a-points of f with multiplicity m is
counted m times if m ≤ k and counted k + 1 times if m > k, is denoted by Ekf (a). For two
function f, g ∈ M(F) if Ekf (a) = Ekg (a), then we say f , g share the value a with weight k. We
say that f and g share the value a CM (IM) if E∞f (a) = E∞g (a) (E0

f (a) = E0
g(a)).

Inspired from the definition of weighted sharing of sets as introduced in [18], we demonstrate
the analogous definition over non-Archimedean field as follows:

We say f , g share the set S with weight k if Ekf (S) = Ekg (S) for a set S ⊂ F̃. We write
f , g share (S, k) to mean that f , g share the set S with weight k. In particular if S = {a},
then we write f , g share (a, k). We say that f and g share the set S CM (IM) if E∞f (S) =

E∞g (S) (E0
f (S) = E0

g(S)).
It was Gross-Yang [11], who first used the terminology “unique range sets for entire func-

tions (URSE)". Later on, the analogous definition for meromorphic function (URSM) was also
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introduced in the literature (see p. 438, [19]). Next we recall some well known terminologies
and definitions.

Definition 1.1. [19] Let f , g be two meromorphic functions over C and S ⊂ C ∪ {∞}. If
E∞f (S) = E∞g (S) implies f ≡ g then S is called a unique range set for meromorphic functions
or in short URSM.

Definition 1.2. [5] Let f , g be two meromorphic functions over C and S ⊂ C∪{∞}. IfEkf (S) =
Ekg (S) implies f ≡ g then S is called a unique range set for meromorphic functions with weight
k or in brief URSMk.

Definition 1.3. [3] Let f , g be two meromorphic functions over C then a pair of sets S, T ⊂ C
such that S ∩ T = ∅ is called bi-URSM if E∞f (S) = E∞g (S), E∞f (T ) = E∞g (T ) implies f ≡ g.

Definition 1.4. [19] Let P (z) be a polynomial in C. If for any two non-constant meromorphic
functions f and g, the condition P (f) ≡ P (g) implies f ≡ g, then P is called a uniqueness
polynomial for meromorphic functions. We say P is UPM in short.

Khoai-Yang [17] introduced the notion of strong uniqueness polynomial for meromorphic
functions or in short SUPM.

Definition 1.5. [17] Let P (z) be a polynomial in C. If for any two non-constant meromorphic
functions f and g, the condition P (f) ≡ cP (g) implies f ≡ g, where c is a non-zero constant,
then P is called a strong uniqueness polynomial for meromorphic functions or SUPM in brief.

In Definitions 1.1-1.5 replacing C by F, the definitions of URSM, URSMk, bi-URSM, UPM
and SUPM over a non-Archimedean field can be given analogously.

The notion of weighted bi-URSM over C was introduced by Banerjee ([3], p. 122). Analo-
gously we define weighted bi-URSM over non-Archimedean field as follows:

Definition 1.6. A pair of finite, disjoint sets S and T in F is called bi-unique range sets for
meromorphic functions with weights p, k if for any two non-constant meromorphic functions f
and g, Epf (S) = Epg (S), Ekf (T ) = Ekg (T ) imply f ≡ g. We say S, T , are bi-URSMp, k in short.
As usual, if both p = k =∞, we say S, T , are bi-URSM.

Fujimoto [10] introduced the following definition and called it as “Property H" which was
latter characterized as “Critical Injection Property".

Definition 1.7. [5] Let P (z) be a polynomial such that P ′(z) has l distinct zero namely z1, z2, . . . , zl.
If P (zi) 6= P (zj) for i 6= j, i, j ∈ {1, 2, . . . , l}, then P (z) is said to satisfy the critical injection
property.

Over the non-Archimedean field the same definitions of critical injection property can be
given.

For basic terminologies of value distribution theory over non-Archimedean field, readers can
make a glance on [1], [2], [20]. Here we recall a few of them.

For a real constant ρ such that 0 < ρ ≤ r, the counting function N(r, a; f) of f ∈ M(F) is
defined as follows:

N(r, a; f) =
1

ln p

∫ r

ρ

n(t, a; f)
t

dt,

where n(t, a; f) is the number of solutions (CM) of f(z) = a in the disk Dt = {z ∈ F : |z| ≤ t}.
For l ∈ Z+, define

Nl(r, a; f) =
1

ln p

∫ r

ρ

nl(t, a; f)
t

dt,

where nl(t, a; f) =
∑
|z|≤r

min{l, w(a, f ; z)}. Thus N1(r, a; f) denotes the counting function of

a-points of f where multiplicity is counted only once, in short we call it “reduced counting
function”.
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Definition 1.8. For a ∈ F̃ we denote by N(r, a; f |= 1) the counting function of simple a-points
of f . For k ∈ Z+ we denote by N(r, a; f |≤ k)(N(r, a; f |≥ k)) the counting function of those
a-points of f whose multiplicities are not greater(less) than k where each a-point is counted
according to its multiplicity. N1(r, a; f |≤ k)(N1(r, a; f |≥ k)) are defined similarly, where in
counting the a-points of f we ignore the multiplicities.

2 Background and Main results

Several interesting results on URSM over F have been obtained (see [7], [12], [14], [21]). We
notice that, in [14] and [21], the authors considered a pair of sets S, T , where one of them con-
tains only one element and proved {S, T} is a bi-URSM. In this regard, we would like to mention
a very recent work of Khoai-An [15] where the authors introduced the following polynomial:

PKA(z) = (m+ n+ 1)
n∑
j=0

(
n

j

)
(−1)j

m+ n+ 1− j
zm+n+1−jaj + 1 = Q∗(z) + 1, (2.1)

where a ∈ F \ {0} and Q∗(a) 6= −1,−2. Khoai-An [15] obtained the following result:

Theorem A. [15] Let f , g be two non-constant meromorphic functions on F, PKA(z) be defined
by (2.1) with conditions Q∗(a) 6= −1,−2 and let min{m,n} ≥ 2. Let S = {z ∈ F | PKA(z) =
0}.

(i) If m+ n ≥ 9 and E∞f (S) = E∞g (S), then f ≡ g.

(ii) If E∞f (S) = E∞g (S), E∞f (∞) = E∞g (∞), then f ≡ g.

Thus we see that, (ii) of Theorem A gives the existence of bi-URSM, where one set is {∞}
and this case is rather easy to tackle. So the natural question arises about the existence of bi-
URSM S, T , where each set S and T contains at least two elements from F. In this perspective
Khoai-Hoa [16] obtained the next result. To state the next result, the following definition is
needed:

Definition 2.1. [16] A statement S(a1, . . . , an) is said to be held for a generic set {a1, . . . , an ∈
F} if there exists a proper algebraic subset

∑
⊂ Fn such that S(a1, . . . , an) holds for all

a1, . . . , an ∈ F whenever (a1, . . . , an) 6∈
∑

.

Theorem B. [16] For n ≥ 3 and a generic set {a1, a2; b1, b2, . . . , bn} of elements in F̃, the couple
S = {a1, a2}, T = {b1, . . . , bn} is a bi-URSM pair for meromorphic functions in F.

It can be noticed that the proof of Theorem B is based on algebraic and geometric approaches.
Moreover, from Theorem B it follows the existence of bi-URSM {S, T}, where S and T have at
least two elements. However, the authors of [16] can not give an explicit bi-URSM.

Question 2.1. Can it be possible to find an explicit bi-URSM, where both the sets contain at least
two elements?

Using the well known Nevanlinna’s value distribution theory over non-Archimedean field we
will try to find the answer of Question 2.1, which is the prime motivation to write this paper.

Very recently in [6], Banerjee-Maity introduced a new polynomial of degree m + n + 1 in
the following manner:

P (z) =
n∑
j=0

(
n

j

)
(−1)j

m+ n+ 1− j
zm+n+1−jaj (2.2)

+
m∑
i=1

n∑
j=0

(
m

i

)(
n

j

)
(−1)i+j

m+ n+ 1− i− j
zm+n+1−i−jajbi + c

= Q(z) + c,
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where a and b are distinct such that a ∈ F \ {0}, b ∈ F, c ∈ F \ {0,−Q(a),−Q(b)}. It is easy to
verify that

P ′(z) = (z − a)n(z − b)m.

Note 2.1. From Note B of [6], we get that P (z) is a generalization of famous Frank-Reinders
polynomial [9].

Note 2.2. The set of all zeros of P ′(z) is {a, b}. P (z) have only simple zeros since c ∈ F \
{−Q(a),−Q(b)}.

Note 2.3. From Remark 1.10 of [6], we see that, P (z) is a critically injective polynomial.

Our first result gives an affirmative answer to Question 2.1 under more relaxed sharing hy-
pothesis namely weighted sharing.

Theorem 2.1. Let f , g be two non-constant meromorphic functions on F and m, n be two posi-
tive integers such that min{m,n} ≥ 2. Consider the polynomial (2.2) such that P (a) 6= −1 and
S = {a, b}, T = {z | P (z) = 0}. Now

(i) when P (b) 6= 1, n ≥ m+ 2, or

(ii) when P (b) = 1,

then for both cases (i) and (ii) the couple of sets S, T is a bi-URSM0, 3.

Note that when P (b) = 1, then the minimum cardinality of the set T is 5.

Note 2.4. Take n = m = 2, a = 1, b = 0, c = 1 and set

P (z) =
z5

5
− z4

2
+
z3

3
+ 1.

Denote S = {1, 0}, T = {z | P (z) = 0}. Then by Theorem 2.1, {S, T} is a bi-URSM, where
T contains 5 elements.

Question 2.2. In Theorem 2.1, can it be possible to remove the condition “P (a) 6= −1”?

Question 2.3. In Theorem 2.1, can it be possible to reduce the weight of the set T ?

In order to answer the Questions 2.2 and 2.3, we obtain the following result:

Theorem 2.2. Let f , g be two non-constant meromorphic functions on F and m,n be two posi-
tive integers such that m ≥ 2, n ≥ m+2. Consider the polynomial P (z) as (2.2) and S = {a, b},
T = {z | P (z) = 0}, then the couple of sets S, T is a bi-URSM0, 2.

3 Lemmas

Lemma 3.1. [13] Let f(z) be a non-constant meromorphic function on F and a1, a2, . . . , an ∈ F̃
are distinct points. Then

(n− 2)T (r, f) ≤
n∑
i=1

N1 (r, ai; f)−N0 (r, 0; f ′)− log r +O(1),

whereN0 (r, 0; f ′) denotes the counting function of zeros of f ′ which are not ai (i = 1, 2, . . . , n)
points of f .

The next lemma follows from the equivalence of (i) and (iv) of Theorem 1 of Wang [21].

Lemma 3.2. [21] Let f , g be two non-constant meromorphic functions on F and P (z) be a
critically injective polynomial such that the derivative of P (z) is of the form (z − α)m(z − β)n
and let min{m,n} ≥ 2. If P (f) ≡ P (g) then f ≡ g.
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Lemma 3.3. [15] Let f , g be two non-constant meromorphic functions on F and P (z) be a
polynomial with no multiple zero and the derivative of P (z) is of the form (z − α)m(z − β)n,
also let min{m,n} ≥ 2. Assume that there exist constant c1 6= 0 and c2 such that

1
P (f)

=
c1

P (g)
+ c2,

then c2 = 0.

From now onward we denote two non-constant meromorphic functions F and G on F such
thatF = P (f)+c

c and G = P (g)+c
c , where P (z) is defined as in (2.2). Besides this we also consider

two functions H and Ψ as follows:

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G − 1

)
, (3.1)

Ψ =
F ′

F − 1
− G′

G − 1
. (3.2)

Lemma 3.4. Let H 6≡ 0 and F , G share (1, 1) then

N(r, 1;F |= 1) = N(r, 1;G |= 1) ≤ N(r,∞;H) +O(1).

Proof. As F and G share (1, 1) so each simple 1-point of F is also simple 1-point of G and
vice versa. Now each simple 1-point of F (i.e., simple 1-point of G) is a zero of H. Note that
m(r,H) = O(1). Hence

N(r, 1;F |= 1) = N(r, 1;G |= 1) ≤ N(r, 0;H) ≤ T (r,H) ≤ N(r,∞;H) +O(1).

Lemma 3.5. Let S = {a, b}, T = {z | P (z) = 0}, where P (z) is defined as in (2.2). Let H 6≡ 0
and f , g be any two non-constant meromorphic functions on F such that, Epf (S) = Epg (S) for
0 ≤ p ≤ ∞ and E0

f (T ) = E0
g(T ) , then

N(r,∞;H) ≤ N1(r, a; f) +N1(r, b; f) +N1(r,∞; f) +N1(r,∞; g) +N0
1 (r, 0; f ′)

+N0
1 (r, 0; g′) +N∗1 (r, 1;F ,G),

whereN0
1 (r, 0; f ′) denotes the reduced counting function of those zeros of f ′ which are not zeros

of (F − 1)(f − a)(f − b) and N0
1 (r, 0; g′) denotes the similar counting function. N∗1 (r, 1;F ,G)

denotes the reduced counting function of those 1-points of F whose multiplicities differ from
the multiplicities of the corresponding 1-points of G.

Proof. Note that, F ′ = P ′(f)
c = (f−a)n(f−b)mf ′

c . As Epf (S) = Epg (S) for 0 ≤ p ≤ ∞ and
E0
f (T ) = E0

g(T ), so the lemma directly follows by calculating all the possible poles of H.

Lemma 3.6. Let F , G shares (1, k), where 1 ≤ k <∞. Then

N1(r, 1;F) +N1(r, 1;G)−N(r, 1;F |= 1) +
(
k − 1

2

)
N∗1 (r, 1;F ,G)

≤ 1
2
[N(r, 1;F) +N(r, 1;G)] .

The Lemma 3.6 can be considered as the non-Archimedean version of the Lemma 2.10 of [4].
Proof of the lemma is omitted as it can be done proceeding similarly as Lemma 2.10 of [4].

Lemma 3.7. Let S, T be defined as in Lemma 3.5 and m, n be two positive integers such that
min{m,n} ≥ 2. Assume Ψ 6≡ 0 and Epf (S) = Epg (S), Ekf (T ) = Ekg (T ). Then

((p+ 1)n+ p) [N1(r, a; f |≥ p+ 1) +N1(r, b; f |≥ p+ 1)]

≤ N∗1 (r, 1;F ,G) +N1(r,∞; f) +N1(r,∞; g) +O(1).
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Proof. The condition Ekf (T ) = Ekg (T ) implies F , G share (1, k). Now from (3.2) we get

Ψ =
(f − a)n(f − b)mf ′

c(F − 1)
− (g − a)n(g − b)mg′

c(G − 1)
.

Let z0 be a(or b) point of f with multiplicity r. As Epf (S) = Epg (S) and min{m,n} ≥ 2, so when
r ≤ p then z0 is a zero of Ψ of multiplicity min{nr + r − 1,mr + r − 1} ≥ 3r − 1 and when
r > p then z0 is a zero of Ψ of multiplicity at least min{(p+ 1)n+ p, (p+ 1)m+ p} ≥ (3p+ 2).
Thus we can deduce

(3p+ 2) [N1(r, a; f |≥ p+ 1) +N1(r, b; f |≥ p+ 1)]

≤ N(r, 0; Ψ)

≤ T (r,Ψ) +O(1)

≤ N(r,∞; Ψ) +O(1)

≤ N∗1 (r, 1;F ,G) +N1(r,∞; f) +N1(r,∞; g) +O(1).

Remark 3.1. In particular, for p = 0 in Lemma 3.7 we have

N1(r, a; f) +N1(r, b; f) ≤
1
2
[N∗1 (r, 1;F ,G) +N1(r,∞; f) +N1(r,∞; g)] +O(1).

Lemma 3.8. Let F , G share (1, k), where 1 ≤ k ≤ ∞. Then

N∗1 (r, 1;F ,G) ≤ 1
k
[N1(r, a; f) +N1(r, b; f)] +O(1).

Proof. By using lemma of logarithmic derivative

m

(
r,

f ′

(f − a)(f − b)

)
(3.3)

= m

(
r,

{
f ′

(a− b)(f − a)
+

f ′

(b− a)(f − b)

})
≤ max

{
m

(
r,

f ′

(a− b)(f − a)

)
,m

(
r,

f ′

(b− a)(f − b)

)}
= O(1).

Note that all zeros of P (f) are simple, let us denote them by ωj(j = 1, 2, . . . ,m + n + 1).
Using the fact F , G share (1, k) and equation (3.3) we have

N∗1 (r, 1;F ,G) ≤ N1(r, 1;F |≥ k + 1)

≤ 1
k
[N(r, 1;F)−N1(r, 1;F)]

≤ 1
k

m+n+1∑
j=1

(N(r, ωj ; f)−N1(r, ωj ; f))


≤ 1

k
N(r, 0; f ′ | f 6= a, b)

≤ 1
k
N

(
r, 0;

f ′

(f − a)(f − b)

)
≤ 1

k
N

(
r,∞;

f ′

(f − a)(f − b)

)
+O(1)

≤ 1
k
[N1(r, a; f) +N1(r, b; f)] +O(1).
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Lemma 3.9. Let S, T be defined as in Lemma 3.5. Let Ψ 6≡ 0 and E0
f (S) = E0

g(S), Ekf (T ) =
Ekg (T ) (for 2 ≤ k ≤ ∞) and n ≥ 2. Then

N∗1 (r, 1;F ,G) ≤ 1
2k − 1

[N1(r,∞; f) +N1(r,∞; g)] +O(1).

Proof. Combining Lemma 3.8 and Remark 3.1 we get,

N∗1 (r, 1;F ,G) ≤ 1
k
[N1(r, a; f) +N1(r, b; f)] +O(1)

≤ 1
2k

[N∗1 (r, 1;F ,G) +N1(r,∞; f) +N1(r,∞; g)] +O(1).

Thus we have

N∗1 (r, 1;F ,G) ≤ 1
2k − 1

[N1(r,∞; f) +N1(r,∞; g)] +O(1).

Lemma 3.10. (Theorem 1.11, [6]) Let m, n be two positive integers such that min{m,n} ≥ 2.
Consider the polynomial (2.2) such that P (a) 6= −1. Now

(i) when P (b) 6= 1, n ≥ m+ 2, or

(ii) when P (b) = 1,

then for both the cases (i) and (ii), P (z) is a SUPM.

4 Proofs of the theorems

Proof of Theorem 2.1. Let f , g be two non-constant meromorphic functions on F such that
E0
f (S) = E0

g(S), E3
f (T ) = E3

g(T ). Thus F , G share (1, 3).
Case 1: First assume Ψ 6≡ 0.
Sub-case 1.1: Suppose H 6≡ 0. Applying Lemma 3.1, 3.4, 3.5 and Lemma 3.6 for k = 3 we get

(m+ n+ 2)[T (r, f) + T (r, g)] (4.1)

≤ N1(r, 1;F) +N1(r, a; f) +N1(r, b; f) +N1(r,∞; f)

+N1(r, 1;G) +N1(r, a; g) +N1(r, b; g) +N1(r,∞; g)

−N0(r, 0; f ′)−N0(r, 0; g′)− 2 log r +O(1)

≤ N(r, 1;F |= 1)− 5
2
N∗1 (r, 1;F ,G) + 1

2
[N(r, 1;F) +N(r, 1;G)]

+2[N1(r, a; f) +N1(r, b; f)] +N1(r,∞; f) +N1(r,∞; g)

−N0(r, 0; f ′)−N0(r, 0; g′)− 2 log r +O(1)

≤ N(r,∞;H)− 5
2
N∗1 (r, 1;F ,G) + 1

2
[N(r, 1;F) +N(r, 1;G)]

+2[N1(r, a; f) +N1(r, b; f)] +N1(r,∞; f) +N1(r,∞; g)

−N0(r, 0; f ′)−N0(r, 0; g′)− 2 log r +O(1)

≤ 3[N1(r, a; f) +N1(r, b; f)] + 2[N1(r,∞; f) +N1(r,∞; g)]

+
1
2
[N(r, 1;F) +N(r, 1;G)]−

3
2
N∗1 (r, 1;F ,G)− 2 log r +O(1).
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Using Remark 3.1, from (4.1) we deduce

(m+ n+ 2)[T (r, f) + T (r, g)] (4.2)

≤ 3
2
[N∗1 (r, 1;F ,G) +N1(r,∞; f) +N1(r,∞; g)] + 2[N1(r,∞; f) +N1(r,∞; g)]

+

(
m+ n+ 1

2

)
[T (r, f) + T (r, g)]−

3
2
N∗1 (r, 1;F ,G)− 2 log r +O(1)

≤
(

3
2
+ 2 +

m+ n+ 1
2

)
[T (r, f) + T (r, g)]− 2 log r +O(1).

Hence (4.2) implies(
m+ n

2
− 2
)
[T (r, f) + T (r, g)] + 2 log r ≤ O(1). (4.3)

From the condition min{m,n} ≥ 2 we have m + n ≥ 4. Thus (4.3) gives a contradiction
since m+ n ≥ 4.
Sub-case 1.2: Suppose H ≡ 0. Integrating (3.1) two times and as c 6= 0 we obtain

1
F − 1

≡ A

G − 1
+B (where A, B are constants such that A 6= 0).

=⇒ c

P (f)
≡ cA

P (g)
+B.

=⇒ 1
P (f)

≡ A

P (g)
+
B

c
. (4.4)

Now applying Lemma 3.3 for the equation (4.4) we get Bc = 0. Consider a constant A1 =
1
A .

Thus we have P (f) ≡ A1P (g). Next applying Lemma 3.10 we obtain f ≡ g.
Case 2: We assume Ψ ≡ 0. Integrating (3.2) we get

F − 1 ≡ A2(G − 1)

=⇒ P (f) ≡ A2P (g).

Next applying Lemma 3.10 we get f ≡ g. This completes the proof of the theorem.

Proof of Theorem 2.2. Let f , g be two non-constant meromorphic functions on F such that
E0
f (S) = E0

g(S), E2
f (T ) = E2

g(T ). Thus F , G share (1, 2).
Case 1: First assume Ψ 6≡ 0.
Sub-case 1.1: Suppose H 6≡ 0. Applying Lemma 3.1, 3.4, 3.5 and Lemma 3.6 for k = 2 we get

(m+ n+ 2)[T (r, f) + T (r, g)] (4.5)

≤ N1(r, 1;F) +N1(r, a; f) +N1(r, b; f) +N1(r,∞; f)

+N1(r, 1;G) +N1(r, a; g) +N1(r, b; g) +N1(r,∞; g)

−N0(r, 0; f ′)−N0(r, 0; g′)− 2 log r +O(1)

≤ N(r, 1;F |= 1)− 3
2
N∗1 (r, 1;F ,G) + 1

2
[N(r, 1;F) +N(r, 1;G)]

+2[N1(r, a; f) +N1(r, b; f)] +N1(r,∞; f) +N1(r,∞; g)

−N0(r, 0; f ′)−N0(r, 0; g′)− 2 log r +O(1)

≤ N(r,∞;H)− 3
2
N∗1 (r, 1;F ,G) + 1

2
[N(r, 1;F) +N(r, 1;G)]

+2[N1(r, a; f) +N1(r, b; f)] +N1(r,∞; f) +N1(r,∞; g)

−N0(r, 0; f ′)−N0(r, 0; g′)− 2 log r +O(1)

≤ 3[N1(r, a; f) +N1(r, b; f)] + 2[N1(r,∞; f) +N1(r,∞; g)]

+
1
2
[N(r, 1;F) +N(r, 1;G)]−

1
2
N∗1 (r, 1;F ,G)− 2 log r +O(1).



880 Abhijit Banerjee, Ha Huy Khoai and Sayantan Maity

Using Remark 3.1 and Lemma 3.9 in (4.5) we deduce

(m+ n+ 2)[T (r, f) + T (r, g)] (4.6)

≤ 3
2
[N∗1 (r, 1;F ,G) +N1(r,∞; f) +N1(r,∞; g)] + 2[N1(r,∞; f) +N1(r,∞; g)]

+

(
m+ n+ 1

2

)
[T (r, f) + T (r, g)]−

1
2
N∗1 (r, 1;F ,G)− 2 log r +O(1)

≤ N∗1 (r, 1;F ,G) +
(

3
2
+ 2 +

m+ n+ 1
2

)
[T (r, f) + T (r, g)]− 2 log r +O(1)

≤ 1
3
[N1(r,∞; f) +N1(r,∞; g)] +

(
m+ n+ 8

2

)
[T (r, f) + T (r, g)]− 2 log r +O(1)

≤
(

1
3
+
m+ n+ 8

2

)
[T (r, f) + T (r, g)]− 2 log r +O(1).

Hence (4.6) implies(
m+ n

2
− 7

3

)
[T (r, f) + T (r, g)] + 2 log r ≤ O(1). (4.7)

We have m ≥ 2 and n ≥ m+ 2, these two conditions imply m+ n ≥ 6. Thus (4.7) gives a
contradiction since m+ n ≥ 6.
Sub-case 1.2: Suppose H ≡ 0. Integrating (3.1) two times we obtain

1
F − 1

≡ A

G − 1
+B (where A, B are constants such that A 6= 0)

=⇒ 1
P (f)

≡ A

P (g)
+
B

c
(as c 6= 0). (4.8)

As m ≥ 2 and n ≥ m + 2 so obviously min{m,n} ≥ 2. Now applying Lemma 3.3 for the
equation (4.8). We get Bc = 0. Consider a constant A1 =

1
A .

Sub-case 1.2.1: Let us assume A1 6= 1. Now (4.8) implies

P (f) ≡ A1P (g)

=⇒ P (f)− c ≡ A1(P (g)− c) + c(A1 − 1)

=⇒ Q(f) ≡ A1Q(g) + c(A1 − 1)

=⇒ Q(f)−Q(b) ≡ A1Q(g)− (Q(b)− c(A1 − 1)) . (4.9)

Note that since P (f) ≡ A1P (g), therefore T (r, f) = T (r, g) + O(1) . Recall that the
only zeros of Q′(z) are a and b. So the only possible multiple zeros of φ(z) := A1Q(z) −
(Q(b)− c(A1 − 1)) are a and b. First assume b is the multiple zero of φ(z). Thus φ(b) = 0, i.e.,

A1Q(b) = Q(b)− c(A1 − 1)

=⇒ (A1 − 1)(Q(b) + c) = 0

=⇒ c = −Q(b),

a contradiction as we have c 6= −Q(b). Next assume a is the multiple zero of φ(z). It is easy to
see that φ(z) = (z − a)n+1W1(z), where W1(a) 6= 0 and all zeros of W1(z) are simple namely
αj (j = 1, 2, . . . ,m). Notice that, Q(z) − Q(b) = (z − b)m+1W2(z), where W2(b) 6= 0 and all
zeros of W2(z) are simple. Let us denote them by βj (j = 1, 2, . . . , n). Hence from (4.9)

N1(r, b; f) +
n∑
j=1

N1(r, βj ; f) = N1(r, a; g) +
m∑
j=1

N1(r, αj ; g). (4.10)
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Next using the Second Fundamental Theorem, (4.10) and the fact T (r, f) = T (r, g) + O(1)
we get

(n− 1)T (r, f) ≤ N1(r, b; f) +
n∑
j=1

N1(r, βj ; f)− log r +O(1)

= N1(r, a; g) +
m∑
j=1

N1(r, αj ; g)− log r +O(1)

≤ (m+ 1)T (r, f)− log r +O(1).

Thus we have (n − m − 2)T (r, g) + log r ≤ O(1), this contradicts the given condition
n ≥ m+ 2. Hence we see neither a nor b are multiple zeros of φ(z), and hence all the zeros of
φ(z) are simple say γj (j = 1, 2, . . . ,m+ n+ 1). From (4.9)

N1(r, b; f) +
n∑
j=1

N1(r, βj ; f) =
m+n+1∑
j=1

N1(r, γj ; g). (4.11)

Using the Second Fundamental Theorem and the equation (4.11) we deduce

(m+ n− 1)T (r, g) ≤
m+n+1∑
j=1

N1(r, γj ; g)− log r +O(1)

= N1(r, b; f) +
n∑
j=1

N1(r, βj ; f)− log r +O(1)

≤ (n+ 1)T (r, g)− log r +O(1).

Hence we obtain (m− 2)T (r, g) + log r ≤ O(1). Since m ≥ 2, we get a contradiction.
Sub-case 1.2.2: Next assume A1 = 1. Thus P (f) ≡ P (g), and by Lemma 3.2 we conclude
f ≡ g.
Case 2: Now assume Ψ ≡ 0. Integrating (3.2) we get

F − 1 ≡ A2(G − 1)

=⇒ P (f) ≡ A2P (g).

Proceeding similarly as done in Sub-case 1.2.1 we get a contradiction and next following the
steps of Sub-case 1.2.2 we deduce f ≡ g.

Therefore by Case 1 and 2 we get that the couple of sets S, T is a bi-URSM0, 2.

5 An open question

In [8] (p.136), the authors presented the following example. Let a, b, c, d ∈ F be arbitrary distinct
values. Set the function h(z) which is different from the identity function such that,

h(z) =
z(ab− cd)− ab(c+ d) + cd(a+ b)

z(a+ b− c− d)− ab+ cd
.

We have h(a) = b; h(b) = a; h(c) = d; h(d) = c. So, if we denote by S = {a, b}, T = {c, d}
then {S, T} is not a bi-URSM. On the other hand, according to Theorem B there exist bi-URSM
{S, T}, where S has 2 elements, and T has 3 elements.

Considering Theorem B and Note 2.4, the following question deserves further attention.

(I) Can it be possible to find an explicit bi-URSM {S, T}, where S has 2 elements, and T has
3 or 4 elements?

Unfortunately, the authors have no answer to the above question till now.
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