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Abstract Let R be a commutative ring with identity. The idempotent graph of a ring is
defined with vertex set a ring R and distinct vertices x and y in R are adjacent if and only if
x + y ∈ Id(R), the set of idempotents of R and it is denoted by GId(R). In this paper, we
determine the clique number of GId(R). We find the radius, the independence number and the
chromatic number of GId(Zn). We determine which idempotent graphs of Zn are planar and
Hamiltonian.

1 Introduction

Throughout this paper, let R denote a commutative ring with non zero identity element. In this
paper, we study the idempotent graph of a ring R, introduced by Razzaghi and Sahebi [7] in the
year 2020, which is defined as “the (undirected) graph with all the elements of R as vertices and
for distinct x, y ∈ R, the vertices x and y are adjacent if and only if x + y ∈ Id(R) and it is
denoted by GId(R)”. In [7], the author gave the necessary and sufficient condition for GId(R)
to be connected and also derived the chromatic index, the diameter and the girth of the graph.
In this paper, we find some more properties of the idempotent graph GId(R) and in particular
GId(Zn). If R is a direct product of copies of the field Z2, then the idempotent graph is a
complete graph. The study of idempotent graphs are useful in characterizing the class of rings in
which every element is sum of two idempotents. Such a ring R is isomorphic to R1 ×R2, where
R1

J(R1)
is Boolean with J(R1) = {0} or J(R1) = {0, 2} and R2 is zero or a subdirect products of

Z′3s. For basic definition we refer the reader to [2].
In section 2, we compute the clique number of GId(R) and show that the idempotent graph

of R is a complete graph or disjoint union of complete graphs. In section 3, we find the diameter,
the independence number of GId(Zn) and show that GId(Zn) contains a Hamiltonian cycle.
Further, we show that GId(Zn) is planar if and only if n has two distinct prime divisors.

2 Clique number of idempotent graph of R

In this section, we prove that the idempotent graph is either a complete graph or a disjoint union
of complete graphs when R is a ring of characteristic 2 and also we determine the clique number
of GId(R).

Lemma 2.1. Let e be an idempotent element of R. Then e and −e are idempotents if and only if
2e = 0.

Proof. Suppose−e is an idempotent, then (−e)2 = e = −e which implies that 2e = 0. Converse
is trivial. 2

Proposition 2.2. If Char(R) = 2, then GId(R) is K|R| or a disjoint union of K|Id(R)|.

Proof. If Char(R) = 2, then the set of idempotents forms a complete graph. For every
x ∈ R\Id(R), 2x = 0. Let x + Id(R), y + Id(R) be the distinct cosets. If x + e1, y + e2
are adjacent for some e1, e2 ∈ Id(R), then x+ y ∈ Id(R) and x− y= x+ y− 2y ∈ Id(R) which
implies that x+ Id(R) = y + Id(R). Therefore, GId(R) is a disjoint union of |R|

|Id(R)| numbers
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of K|Id(R)|. 2

In the following proposition we find the clique number of a ring R.

Proposition 2.3. If R ∼= R1 × R2 × ... × Rk, where R′is are local rings such that (Ri,+) =<
Id(Ri) > and Char(Ri) 6= 2 for all i, 1 ≤ i ≤ k, then the clique number is k + 1.

Proof. Let R ∼= R1×R2× ...×Rk, where R′is are local rings and x=(a1, a2, ..., ak) with ai ∈ Ri

for all i, 1 ≤ i ≤ k. The idempotent graph of Ri is a line graph and for any element a ∈ Ri, a
will be adjacent to at most two vertices. Let C = {(a1, a2, ..., ak)|ai ∈ Ri} be a clique.
Case 1: Suppose ak=0 in any element of C. Then any other vertex adjacent to this vertex in
C should have ak={0, 1}. If ak−1 /∈ {0, 1, al,k−1, al−1,k−1}, where al,k−1 and al−1,k−1 denotes
the last two vertices of the line graph GId(Rk−1), then the degree of ak−1 will be 2 in the line
graph GId(Rk−1). Thus, C contains at most two elements which is not a maximal clique. If
ak−1 = 1, then in all other vertices in C, ak−1 = 0. If ak−1 = al−1,k−1, then in all other vertices
in C, ak−1 = al,k−1. If ak−1 = 0 or al,k−1, then in C at most one vertex can have ak−1 = 1 or
al−1,k−1 and all other vertices should have ak−1 = 0 or al,k−1. This is true ∀ai ∈ Ri, i ≤ k − 1
and the graph GId(Ri) is a line graph in which except the end vertices all other vertices have
degree 2. In order to get a maximum clique, we need to take k vertices from either end of the
line graph and one vertex adjacent to the end vertex. Thus, all clique with the maximum number
of elements will have same cardinality irrespective of the choice of ai from either end of the
corresponding line graph. Without loss of generality, we consider the clique of maximum size
as C = {(0, 0, ..., 0), (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1)} having k + 1 vertices. Suppose we
attach a vertex (a1, a2, ..., ak) to C. Then ai are idempotents and hence, ai = 0 or 1 for all
i, 1 ≤ i ≤ k. If two entries ai and aj are non zero, then (a1, a2, ..., ai, ..., ak) is not adjacent to
(0, 0, ..., 1i, ..., 0). Hence, the clique number is k + 1.
Case 2: Suppose the clique contains an element with ak=al,k, then following the procedure as in
case 1, without loss of generality we consider the clique of maximum size asC = {(0, 0, ..., al−1,k),
(1, 0, ..., ak), (0, 1, ..., ak), ..., (0, 0, ..., 1, ak), (0, 0, ..., 0, ak)} having k+1 vertices, where al−1,k ∈
Rk. Suppose we add a new vertex (0, ..., ai, ..., al−1,k), where ai 6= 0 to the above clique, then
the resulting collection of k + 2 vertices does not form a complete graph.
Case 3: Suppose the clique contains an element whose kth component is any vertex of degree 2 in
the line graph. Let ai,k and aj,k be the two vertices adjacent to ak. Proceeding as in case 1, with-
out loss of generality we consider the clique of maximum size asC = {(0, 0, ..., ak), (1, 0, ..., ai,k),
(0, 1, ..., ai,k), ..., (0, 0, ..., 1, ai,k), (0, 0, ..., 0, ai,k)} on k+ 1 vertices. If a vertex is added to this
clique, then it should be a vertex with its kth coordinate aj,k but aj,k is not adjacent to ai,k. So,
@ a clique on k + 2 vertices. 2
In the following proposition, we prove that the idempotent graph of a ring is isomorphic to a
disjoint union of its subgraphs.

Proposition 2.4. Let R be a finite ring and (S,+) =< Idem(R) >. Then GId(R) = GId(S)
⊔

GId(S) if and only if ∀ y ∈ R\S, y = z + s for every z ∈ R\S and some s ∈ S.

Proof. Suppose GId(R) = GId(S)
⊔
GId(S). Then by theorem 3.1[7], GId(S) is a connected

induced subgraph ofR. SinceR\S is a connected component, ∃ a path between any two vertices.
Let y− y1− y2− ...− yn− z be a path between y and z in GId(R\S) for some y, z ∈ R\S. Then
y + y1, y1 + y2, ..., yn + z ∈ Id(R) which implies that y = −y1 + e1, y1 = −y2 + e2.... So, it
follows that y = z + s for some s ∈ S. Similarly, every element of R\S can be expressed in the
form y = z + s for every z ∈ R\S and for some s ∈ S.
Conversely, suppose ∀ y ∈ R\S, y = z + s for every z ∈ R\S and some s ∈ S. If ∃ z ∈ R\S
such that 2z = 0, then for y, z ∈ R\S, y = z + si for some si ∈ S and GId(R\S) ∼= GId(S).
Otherwise, expressing an element y ∈ R\S as y = z + s and the remaining elements yi of R\S,
as yi = −z + si for all i, 1 ≤ i < |R\S|, y will be adjacent to yi if and only if s is adjacent
to si. Similarly, expressing every element of R\S as y = z + s and other elements as −z + si,
we see that there is an edge in GId(R\S) if and only if there is an edges in GId(S). Hence,
GId(R\S) = GId(S). 2
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3 The idempotent graph of the ring of integer modulo n

In this section, we continue to investigate some basic graph theoretic properties of GId(Zn), for
n not a power of a prime. We find the diameter, the radius, the independence number and exhibit
a Hamiltonian cycle. We show that the idempotent graph is non planar if n has at least three
distinct prime divisors.

In the following two lemmas, we find the degree of a vertex inGId(Zn) and the girth ofGId(Zn).

Lemma 3.1. Let x be a vertex ofGId(Zn). Then the degree of x is either |Id(Zn)| or |Id(Zn)|−1.

Proof. Let a vertex x be adjacent to a vertex y of GId(Zn). Then x+y = a for some a ∈ Id(Zn)
and hence y = a − x . If 2x ∈ Id(Zn), then x is adjacent to a − x for any a ∈ Id(Zn) \ {2x}.
Hence, the degree of x is |Id(Zn)| − 1. Next, if 2x /∈ Id(Zn), then x is adjacent to a− x for any
a ∈ Id(Zn). Hence, the degree of x is |Id(Zn)|. 2

Proposition 3.2. Girth of GId(Zn) = 3.

Proof. Let e be a nontrivial idempotent. Then 1− e is also a non trivial idempotent. Therefore,
0− e− (1− e)− 0 is a cycle of length 3.2

Next, we find the diameter and the radius of GId(Zn).

Proposition 3.3. Diameter of GId(Zn)= max{pl1
1 , ..., p

lk
k }− 1, where p′is are distinct prime divi-

sors of n.

Proof. Each component of Z
p
li
i

forms the line graph. Let x, y ∈ Zn such that x = (a1, a2, ..., ak)

and y = (b1, b2, ..., bk), where ai, bi ∈ Zp
li
i

. Then x is adjacent to y if and only if each coordinate
ai+ bi is an idempotent. So d(x,y)=max1≤i≤k{d(ai, bi)} and d(ai, bi) is the distance between ai
and bi in the component graph GId(Zp

li
i

). Now, d(0, p
li
i +1

2 ) or d(0, p
li
i

2 ) = plii −1 is the length of

the longest path in the idempotent graph of Z
p
li
i

. Thus, diam GId(Zn)= max{pl1
1 , ..., p

lk
k } − 1. 2

Proposition 3.4. Radius of GId(Zn) =

{
2l−1, if max{pl1

1 , ..., p
lk
k } = 2l.

max{pl1
1 ,...,p

lk
k }−1

2 , otherwise.

Proof. If max {pl1
1 , ..., p

lk
k } = 2l, then the vertex with its ith coordinate 2l−2 or 2l − 2l−2 for

some i has the least eccentricity. In this case, the least eccentricity is 2l−1. If max {pl1
1 , ..., p

lk
k } is

a power of odd prime, say plii , then a vertex having one of its coordinate plii − (
p
li
i −1

4 ) will have

the least eccentricity among all other vertices. In this case, the least eccentricity is p
li
i −1

2 . 2

In the next four propositions, we find the independence number of GId(Zn) for n=2pk, n=pkql,
where pk < ql and p, q 6= 2, n=2kpl, k 6= 1 and n= Πk

i=1p
ni
i , i ≥ 3.

Proposition 3.5. If R ∼= Z2pk , then α(GId(Z2pk)) = pk − 1.

Proof. LetA={(0, 0), (0, pk−1), (0, pk−2), ..., (0, pk−pk−1
2 ), (1, pk−1), (1, pk−2), ..., (1, p

k+1
2 +

1)}. Then in A non-zero vertices are non idempotent, (pk − pk−1
2 ) + (p

k+1
2 + 1)=pk + 2 and

no pair of vertices within this set is adjacent. Hence, A is an independent set. Next, if we ad-
join any idempotent element to A, then it will be adjacent to (0, 0). Let x ∈ Z2 × Zpk \ {A}
be a non idempotent element. If x = (a, b) or (1, pk − pk−1

2 ), where 1 < b < pk − (p
k−1
2 ),

∃ y = (0, pk − b) or y = (1, pk − b) an element in A such that x+ y is an idempotent. Now, |A|=
pk+1

2 + (p
k+1
2 )− 2 = pk − 1.

Let B be any independent set of cardinality |A| + 1. Then for every y ∈ B, y = (a, b), where
a ∈ {0, 1} and b ∈ {0, 1, ..., pk − 1}. If b ∈ {1, 2, ..., p

k−1
2 }, then |B|= pk−1

2 × 2 = pk − 1, which
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is a contradiction. Otherwise if b ∈ {0, pk − 1, ..., p
k+1
2 }, then |B|= pk+1

2 ×2−2 = pk−1, which
is again a contradiction. Hence, the independence number α(GId(Z2pk)) = pk − 1. 2

Proposition 3.6. If R ∼= Zpkql , then α(GId(Zpkql)) =
(ql−1)pk+2

2 , where pk < ql and p, q 6= 2.

Proof. We consider the subsets A={(0, ql − 1), (0, ql − 2), ..., (0, q
l+1
2 + 1), (1, ql − 1), (1, ql −

2), ..., (1, q
l+1
2 + 1), ..., (pk − 1, ql− 1), (pk − 1, ql− 2), ..., (pk − 1, q

l+1
2 + 1)}, B={(0, 0), (pk −

1, 0), (pk−2, 0), ..., (p
k+1
2 , 0)} and C={(0, q

l+1
2 ), (pk−1, q

l+1
2 ), (pk−2, q

l+1
2 ), ..., (p

k+1
2 , q

l+1
2 )}

of V (GId(Zpkql)). Then, we claim that A ∪ B ∪ C is an independent set of V (GId(Zpkql)).
Suppose x = (a, b) ∈ A, where a ∈ Zpk , b ∈ Zql and ql+1

2 < b < ql. For any y = (a1, b1) ∈ A,
x is not adjacent to y, as b + b1 � 0 or 1 (mod ql). Also, no vertex of the set A is adjacent to
a vertex of B. Let x = (a, b) ∈ A and y = (a1, b1) ∈ C. Then b + b1 = ql+1

2 + ( q
l+1
2 + 1) ≥

ql + 1 + 1 ∼= 2 (mod ql) shows that no vertex of A is adjacent to any vertex of C. Next, the
set B is independent as for any x = (a, b) ∈ B, a belongs to the set of non adjacent vertices of
the idempotent graph of Zpk and b = 0. Similarly, x = (a, b) ∈ B is not adjacent to a vertex
y = (a1, b1) in C, as b+ b1 � 0 or 1 (mod ql). For any x = (a, b) ∈ C, a belongs to the set of
non adjacent vertices of the idempotent graph of Zpk and so C is an independent set.
Lastly, we prove that A∪B∪C is the maximum independent set. Suppose (x1, y1) ∈ V (Zpkql)\
{A ∪ B ∪ C}. If (x1, y1) is an idempotent element, then (x1, y1) ∼ (0, 0). Now, we as-
sume that (x1, y1) is a non idempotent element with at least one of x1 or y1 > 1. If y1 > 1,
then 1 < y1 ≤ ql+1

2 . When 1 < y1 < ql+1
2 , ∃ a vertex (1 − x1, q

l − y1) in A such that
(x1, y1) ∼ (1− x1, q

l − y1). If y1 = ql+1
2 , then (x1, y1) ∼ (1− x1, y1), where (1− x1, y1) ∈ C.

When x1 > 1 and y1 = 0, the vertex (1 − x1, 0) ∈ B is such that (x1, y1) ∼ (1 − x1, 0). If
x1 > 1 and y1 = 1, then the vertex (1− x1, q

l − 1) ∈ A is such that (x1, y1) ∼ (1− x1, q
l − 1).

So, |A ∪ B ∪ C| = ( q
l+1
2 − 2)pk + (p

k+1
2 )2= (ql−1)pk+2

2 . Let D be any independent set of car-
dinality |A ∪ B ∪ C| + 1. Then for every y ∈ D, y = (a, b), where a ∈ Zpk and b ∈ Zql . If

b ∈ {1, 2, ..., q
l−1
2 }, then |D|= ql−1

2 × pk < (ql−1)pk+2
2 , which is a contradiction. Otherwise, if

b ∈ {0, ql − 1, ..., q
l+1
2 }, then |D| = ( q

l+1
2 − 2)pk + (p

k+1
2 )2 = (ql−1)pk+2

2 , which is again a

contradiction. Hence, the independence number α(GId(Zpkql)) =
(ql−1)pk+2

2 . 2

Proposition 3.7. If R ∼= Z2kpl , k 6= 1, then

α(GId(Z2kpl)) =

{
2k−1(pl − 1), if 2k < pl.
pl(2k−1)+1

2 , if pl < 2k.

Proof. Case 1. If 2k < pl, we consider three subsets A,B and C of the set of vertices,
whereA={(0, pl−1), (0, pl−2), ..., (0, p

l+1
2 +1), (1, pl−1), (1, pl−2), ..., (1, p

l+1
2 +1), ..., (2k−

1, pl − 1), (2k − 1, pl − 2), ..., (2k − 1, p
l+1
2 + 1)},

B={(1, 0), (2, 0), (3, 0), ..., (2k−1, 0)}, C={(1, p
l+1
2 ), (2, p

l+1
2 ), (3, p

l+1
2 ), ...,

(2k−1, p
l+1
2 )}. Then we claim that A ∪ B ∪ C is an independent set of V (GId(Z2k × Zpl)).

Suppose x = (a, b) ∈ A, where a ∈ Z2k , b ∈ Zpl and pl+1
2 < b < pl. For any y = (a1, b1) ∈ A,

x is not adjacent to y as b + b1 � 0 or 1 (mod pl). Also, no vertex of the set A is adjacent to
any vertex of B. Let x = (a, b) ∈ A and y = (a1, b1) ∈ C. Then b+ b1 = pl+1

2 + (p
l+1
2 + 1) ≥

pl + 1 + 1 ∼= 2 (mod pl), showing that no vertex of A is adjacent to any vertex of C. Next, the
set B is independent as for any x = (a, b) ∈ B, a belongs to the set of non adjacent vertices of
the idempotent graph of Z2k and b = 0. Similarly, x = (a, b) ∈ B is not adjacent to a vertex
y = (a1, b1) in C as b + b1 � 0 or 1 (mod pl). For any x = (a, b) ∈ C, a belongs to the set of
non adjacent vertices of the idempotent graph of Z2k , which shows that the set C is independent.
Next, we prove that A∪B ∪C is the maximum independent set. Suppose (x1, y1) ∈ V (Z2kpl) \
{A ∪ B ∪ C}. If (x1, y1) is an idempotent element, then (x1, y1) = (0, 0) or (0, 1) or (1, 1). If
(x1, y1) = (0, 0) or (0, 1), then (x1, y1) ∼ (1, 0) in B. If (x1, y1) = (1, 1), then (1, 1) ∼ (0, pl−1)
in A. Now, suppose (x1, y1) is a non idempotent element with at least one of x1 or y1 > 1. If
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y1 > 1, then 1 < y1 ≤ pl+1
2 . When 1 < y1 <

pl+1
2 , ∃ a vertex (1 − x1, p

l − y1) in A such that
(x1, y1) ∼ (1− x1, p

l − y1). If y1 = pl+1
2 , then (x1, y1) ∼ (1− x1, y1), where (1− x1, y1) ∈ C.

When x1 > 1 and y1 = 0, then (1 − x1, 0) ∈ B is such that (x1, y1) ∼ (1 − x1, 0). If x1 > 1
and y1 = 1, then the vertex (1 − x1, p

l − 1) ∈ A is such that (x1, y1) ∼ (1 − x1, p
l − 1). We

have |A ∪ B ∪ C| = (p
l+1
2 − 2)2k + ( 2k

2 )2= 2k−1(pl − 1). Let D be any independent set of
cardinality |A ∪ B ∪ C| + 1. Then for every y ∈ D, y = (a, b), where a ∈ Z2k and b ∈ Zpl . If
b ∈ {1, 2, ..., p

l−1
2 }, then |D|= pl−1

2 × 2k = 2k−1(pl − 1), which is a contradiction. Otherwise,
if b ∈ {0, pl − 1, ..., p

l+1
2 }, then |D| = (p

l+1
2 − 2)2k + ( 2k

2 )2= 2k−1(pl − 1), which is again a
contradiction. Hence, the independence number α(GId(Z2kpl)) = 2k−1(pl − 1), when 2k < pl.
Case 2. If pl < 2k, we consider the set A={(0, 1), (1, 1), ..., (pl − 1, 1), (0, 2), (1, 2),
..., (pl−1, 2), ..., (0, 2k−1−1), (1, 2k−1−1), ..., (pl−1, 2k−1−1)} and the setB={(0, 2k−1), (pl−
1, 2k−1), (pl − 2, 2k−1), ..., (p

l+1
2 , 2k−1)}. We claim that A ∪ B is an independent subset of

V (GId(Zpl × Z2k)). Suppose x = (a, b) ∈ A, where a ∈ Zpl , b ∈ Z2k and 1 ≤ b < 2k−1. For
any y = (a1, b1) ∈ A, x is not adjacent to y as b + b1 � 0 or 1 (mod 2k). Also, no vertex of
the set A is adjacent to a vertex of B because for any x = (a, b) ∈ A and y = (a1, b1) ∈ B,
b + b1 < 2k. Next, the set B is independent as for any x = (a, b) ∈ B, a belongs to the set of
non adjacent vertices of the idempotent graph of Zpl and b = 2k−1 which shows that x is not
adjacent to any element of B. So, A ∪B is an independent set.
Now, we prove that A∪B is the maximum independent set. Suppose (x1, y1) ∈ V (Zpl2k)\{A∪
B}. If (x1, y1) is an idempotent element, then (x1, y1) = (0, 0) or (1, 0) and (x1, y1) ∼ (0, 1)
in A. Now, suppose (x1, y1) is a non idempotent element with at least one of x1 or y1 > 1.
If y1 > 1, then 1 < y1 ≤ 2k−1. When 1 < y1 < 2k−1, ∃ a vertex (1 − x1, 2k − y1) in
A such that (x1, y1) ∼ (1 − x1, 2k − y1). If y1 = 2k

2 , then (x1, y1) ∼ (1 − x1, y1), where
(1− x1, y1) ∈ B. When x1 > 1 and y1 = 0, ∃ (1− x1, 1) ∈ A is such that (x1, y1) ∼ (1− x1, 1).
Here, |A ∪ B| = (2l − 1)pl + (p

l+1
2 )=pl(2k−1)+1

2 . Let D be any independent set of cardinal-
ity |A ∪ B| + 1. Then for every y ∈ D, y = (a, b), where a ∈ Zpl and b ∈ Z2k . If b ∈
{1, 2, ..., 2k−1−1}, then |D|= pl(2k−1)+1

2 , which is a contradiction. If b ∈ {0, 2k−1, ..., 2k−1+1},
then |D| = (2l − 1)pl + (p

l+1
2 )=pl(2k−1)+1

2 , which is again a contradiction. Hence, the indepen-

dence number α(GId(Zpl2k)) = pl(2k−1)+1
2 . 2

Proposition 3.8. If R ∼= Zn, where n = Πk
i=1p

ni
i , i ≥ 3 and pn1

1 < pn2
2 < ... < pnk

k ,

then α(GId(Zn)) =
k+1∑
i=1
|Si|.

Proof. Let R ∼= Zn, where n = Πk
i=1p

ni
i , i ≥ 3 and pn1

1 < pn2
2 < ... < pnk

k and pk = 2.
Case 1. We consider the following independent sets consisting of the elements having entry

ai ∈ Zni
pi

and entry bk−i =
p
nk−i
k−i +1

2 or 0 for all i, 1 ≤ i ≤ k − 1:
S1 = {(a1, a2, ..., ak−1, 1), (a1, a2, ..., ak−1, 2), ..., (a1, a2, ..., ak−1, p

nk−1
k − 1)},

S2 = {(a1, a2, ..., p
nk−1
k−1 − 1, pnk−1

k ), (a1, a2, ..., p
nk−1
k−1 − 2, pnk−1

k ), ...,

(a1, a2, ...,
p
nk−1
k−1 +1

2 + 1, pnk−1
k )},

S3 = {(a1, a2, ..., p
nk−2
k−2 − 1, bk−1, p

nk−1
k ), (a1, a2, ..., p

nk−2
k−2 − 2, bk−1, p

nk−1
k ), ...,

(a1, a2, ...,
p
nk−2
k−2 +1

2 + 1, bk−1, p
nk−1
k )},

.
Sl = {(a1, a2, ..., p

nk−(l−1)

k−(l−1) − 1, ..., bk−2, bk−1, p
nk−1
k ), (a1, a2, ..., p

nk−(l−1)

k−(l−1) − 2, ...,

bk−2, bk−1, p
nk−1
k ),...,(a1, a2, ...,

p
nk−(l−1)
k−(l−1) +1

2 + 1, ..., bk−2, bk−1, p
nk−1
k )},

.
Sk = {(pn1

1 − 1, b2, ..., bk−3, bk−2, bk−1, p
nk−1
k ), (pn1

1 − 2, b2, ..., bk−3, bk−2, bk−1,

pnk−1
k ),..., (p

n1
1 +1

2 + 1, b2, ..., bk−3, bk−2, bk−1, p
nk−1
k )},

Sk+1 = {(b1, b2, ..., bk−3, bk−2, bk−1, p
nk−1
k )}.
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Now, we claim that
k+1⊔
i=1

Si is an independent subset of V (GId(Zn)). Suppose x = (x1, x2, ..., xk)

and y = (y1, y2, ..., yk) are any two distinct elements of
k+1⊔
i=1

Si. If xk or yk ∈ {1, 2, ..., pnk−1
k −1},

then x is not adjacent to y as these vertices are non adjacent in the idempotent graph GId(Zp
nk
k
).

Otherwise, if xk = yk = pnk−1
k , then we check the preceding component. If xk−1 or yk−1 ∈

{pnk−1
k−1 − 1, pnk−1

k−1 − 2, ...,
p
nk−1
k−1 +1

2 + 1}, then x is not adjacent to y as these vertices are not

adjacent in the idempotent graph GId(Zp
nk−1
k−1

). Otherwise, if xk−1 or yk−1 ∈ {
p
nk−1
k−1 +1

2 , 0} and
xk−1 6= yk−1, then x is not adjacent to y and if xk−1 = yk−1, then we consider xk−3. We repeat
the process when the components are equal to the end vertices of their corresponding line graphs.
Finally if x1 or y1 ∈ {pn1

1 −1, pn1
1 −2, ..., p

n1
1 +1

2 +1}, then x is not adjacent to y as these vertices are

non adjacent in the idempotent graphGId(Zp
n1
1
). Otherwise if x1 or y1 ∈ {

p
n1
1 +1

2 , 0} and x1 6= y1,
then x is not adjacent to y and if x1 = y1, then we get x = y, which is a contradiction. There-

fore,
k+1⊔
i=1

Si is an independent set and |
k+1⊔
i=1

Si| =
k+1∑
i=1
|Si|, where |S1| = ((

p
nk
k

2 ) − 1)Πk−1
i=1 p

nk−i

k−i ,

|Si| = ((
p
nk−(i−1)
k−(i−1) +1

2 ) − 2)Πk−i
j=1p

nk−j−(i−1)

k−j−(i−1) × 2i−2 for all i, 2 ≤ i ≤ k and |Sk+1| = 2k−1.

Let x = (x1, x2, ..., xk) ∈ Zn \ {
k+1⊔
i=1

Si}. If xk ∈ {0, pnk

k − 1, pnk

k − 2, ..., pnk−1
k + 2}, then the

vertex (1 − x1, 1 − x2, ..., 1 − xk) ∈ S1 is adjacent to x. If xk = pnk−1
k + 1, then the vertex

(1−x1, 1−x2, ..., p
nk

k −xk) ∈ S1 is adjacent to x. If xk = pnk−1
k , then the following cases arise;

Subcase 1: If xk−1 ∈ {1, 2, ...,
p
nk−1
k−1 +1

2 −2}, then x is adjacent to the vertex (1−x1, 1−x2, ..., 1−
xk−1, xk) ∈ S2.

Subcase 2: If xk−1 =
p
nk−1
k−1 +1

2 − 1, then x is adjacent to the vertex (1 − x1, 1 − x2, ..., p
nk−1
k−1 −

xk−1, xk) ∈ S2.

Subcase 3: If xk−1 =
p
nk−1
k−1 +1

2 or 0, then there exist (y1, y2, ..., yk−2, xk−1, xk) ∈ Sl for some l,
2 < l ≤ k+1, where yk−i can be obtained by carrying out the same procedure as in the subcases
1, 2 and 3 for xk−1, for all i, 1 ≤ i ≤ k − 2 such that (y1, y2, ..., yk−2, xk−1, xk) will be adjacent
to x.

Suppose A is another independent set of cardinality |
k+1⊔
i=1

Si| + 1. Let x = (x1, x2, ..., xk) be

a vertex in A. If xk ∈ {1, 2, ..., pnk−1
k − 1, pnk−1

k }, then A =
k+1⊔
i=1

Si. So, let xk ∈ {0, pnk

k −

1, pnk

k − 2, ..., pnk−1
k + 1}. By following the same process of construction of

k+1⊔
i=1

Si, we get that

|A| = |
k+1⊔
i=1

Si|, which shows that |A| 6= |
k+1⊔
i=1

Si| + 1. Therefore, |
k+1⊔
i=1

Si| is the independence

number of the idempotent graph of Zn, where n = Πk
i=1p

ni
i , i ≥ 3, pn1

1 < pn2
2 < ... < pnk

k and
pk = 2.
Case 2. In the case when all p′is are odd, by a similar construction as in case 1 we get |S1| =

((
p
nk
k +1

2 )−2)Πk−1
i=1 p

nk−i

k−i , |Si| = ((
p
nk−(i−1)
k−(i−1) +1

2 )−2)Πk−i
j=1p

nk−j−(i−1)

k−j−(i−1)×2i−1 for all i, 2 ≤ i ≤ k,
here in this expression the term 2i−1 appear for the end vertices of the line graph GId(Zp

nk−j
k−j

)

for all j, 0 ≤ j < i− 1 and |Sk+1| = 2k, since all p′is are odd we consider both the end vertices
of the line graph GId(Zp

ni
i
).

Case 3. In the case when pk−l = 2 for some l ≥ 1, by a similar construction as in case 1 we

get |Si| = ((
p
nk+1−i
k+1−i +1

2 ) − 2)Πk−i
j=1p

nk+1−j−i

k+1−j−i × 2i−1 for all i, 1 ≤ i ≤ l, here in this expression
the term 2i−1 appear for the end vertices of the line graph GId(Zp

nk−j
k−j

) for all j, 0 ≤ j < i,

|Sk−l| = ((
p
nk−l
k−l

2 ) − 1)Πk−l−1
j=1 p

nk−j−l

k−j−l × 2l, |Si| = ((
p
nk−(i−1)
k−(i−1) +1

2 ) − 2)Πk−i
j=1p

nk−j−(i−1)

k−j−(i−1) × 2i−2
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for all i, l + 2 ≤ i ≤ k and |Sk+1| = 2k−1 as we consider only one end vertex of the line graph
GId(Zp

nk−l
k−l

) and both the end vertices of the line graph GId(Zni
pi
) for odd p′is. 2

In the next three propositions, we exhibit the planar embedding and the Hamiltonian cycle of
GId(Zn).

Proposition 3.9. GId(Zn) is planar if and only if k ≤ 2, where k is the number of distinct prime
divisors of n.

Proof. Suppose GId(Zn) is planar. If possible, let k > 2. Then δ > 7 > 5, so there does not
exist any vertex of degree less than 5. This contradicts our assumption. Hence, k ≤ 2.
Conversely, let us assume that k 6 2.
Case 1. If n

2 is an idempotent element, then 0 − 1 − (n − 1) − 2 − (n − 2) − ... − n
2 − 0 is

a cycle. Therefore, 0 will be adjacent to n
2 and n

2 + 1 which are consecutive in the cycle and
other vertices are adjacent to alternating pairs. The figure 1 shows the planar embedding of the
idempotent graph of the ring Zn.

Figure 1. GId(Zn)

Case 2. If n
2 or n+1

2 is not an idempotent element, then we draw the line graph 0 − 1 − (n −
1)− 2− (n− 2)− ...− n

2 as directed by the arrow in the figure 2. The idempotents e and 1− e
are adjacent in the path and will be adjacent to 0. Next, the vertex 1 will be adjacent to a vertex
next to 1 − e and a vertex before e in the path. We repeat this process of adding edges to the
vertices in the middle row till a vertex degree reaches 3 (marked black in the figure). Now, all
the vertices of the middle row will attain its maximum degree and new edges will be added to
the outer vertices. If the end vertex is adjacent to x and y, then n

2 + x = e and n
2 + y = 1 − e

which implies that x+ y = 1. Hence, the end vertex of the above line graph is of degree 3 and
will be adjacent to the consecutive vertex in the path 0− 1− (n− 1)− 2− (n− 2)− ...− n

2 as
shown by the dotted edges in the figure 2. The second last vertex is adjacent to the vertex next to
y in the path. Repeating this process we get the planar embedding for GId(Zn) as shown in the
figure 2. Similarly, we can draw the planar embedding of GId(Zn) for odd n. 2

Figure 2. GId(Zn)

Remark 3.10. GId(Zn) have at least four vertices of odd degree and hence cannot have an
Eulerian trial.

Proposition 3.11. If n ∼= 2 (mod 4), then GId(Zn) is a Hamiltonian graph.
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Proof. Let n = 4t+ 2 for some t ∈ N. Then 2(2t+ 1) | (2t)(2t+ 1). Hence, n
2 is an idempotent

element. Therefore, 0−1−(n−1)−2−(n− 2)...− n
2 −0 is a Hamiltonian cycle inGId(Zn). 2

Proposition 3.12. If n ∼= 0 (mod 4), then GId(Zn) is a Hamiltonian graph.

Proof. Let n = 2km, where k ≥ 2. Then Zn
∼= Z2k × Zm since gcd(2k,m) = 1. We know

GId(Z2k) is a line graph and 0− 1− (m− 1)− 2− (m− 2)...− m+1
2 is a path in GId(Zm).

(m+1
2 ,0)−→ ↙(m+1

2 ,1) (m+1
2 ,2k−1)−→ ↙(m+1

2 ,2) ... (m+1
2 ,2k−1+1)↘ ←−(m+1

2 ,2k−1)

(m+1
2 −1,0)↘ ↖(m+1

2 −1,1) (m+1
2 −1,2k−1)↘ ↖(m+1

2 −1,2) ... (m+1
2 −1,2k−1+1)↗ ↙(m+1

2 −1,2k−1)

...
...

...
... ...

...
...

(m−1,0)↗ ↙(m−1,1) (m−1,2k−1)↘ ↖(m−1,2) ... (m−1,2k−1+1)↘ ↖(m−1,2k−1)

(1,0)↓ ↖(1,1) (1,2k−1)↗ (1,2)↘ ... (1,2k−1+1)↗ ↓(1,2k−1)

(0,0)−→ (0,1̄)↗ ↖(0,2k−1) ←−(0,2) ... ↖(0,2k−1+1) ←−(0,2k−1)

2

Example: We know that Z60 ∼= Z15 × Z22 , GId(Z22) is a line graph and 0− 1− 14− 2−
13− 3− 12− 4− 11− 5− 10− 6− 9− 7− 8 is a path in GId(Z15). So, the following diagram
depicts Hamiltonion cycle in GId(Z60).

(8,0)7−→ ↙(8,1) (8,3)↘ ←−(8,2)
(7,0)↘ ↖(7,1) (7,3)↗ ↙(7,2)
(9,0)↗ ↙(9,1) (9,3)↘ ↖(9,2)
(6,0)↘ ↖(6,1) (6,3)↗ ↙(6,2)
(10,0)↗ ↙(10,1) (10,3)↘ ↖(10,2)
(5,0)↘ ↖(5,1) (5,3)↗ ↙(5,2)
(11,0)↗ ↙(11,1) (11,3)↘ ↖(11,2)
(4,0)↘ ↖(4,1) (4,3)↗ ↙(4,2)
(12,0)↗ ↙(12,1) (12,3)↘ ↖(12,2)
(3,0)↘ ↖(3,1) (3,3)↗ ↙(3,2)
(13,0)↗ ↙(13,1) (13,3)↘ ↖(13,2)
(2,0)↘ ↖(2,1) (2,3)↗ ↙(2,2)
(14,0)↗ ↙(14,1) (14,3)↘ ↖(14,2)
(1,0)↓ ↖(1,1) (1,3)↗ ↓(1,2)

(0,0)−→ (0,1)↗ ↖(0,3) ←−(0,2)

We end this article by proving that the clique number is equal to the chromatic number of
GId(Zn).

Proposition 3.13. Let R ∼= Zn, where n = Πk
i=1p

ni
i . Then χ(GId(Zn)) = ω(GId(Zn)) = k+ 1.

Proof. Without loss of generality we can assume that pnk

k > p
nk−1
k−1 > ... > pn1

1 . We begin
by coloring the line graph of each component GId(Zp

li
i

) in decreasing order of pni
i . We assign

two colors to GId(Zp
lk
k

) and color the next component by using one color from the preceding
component and another new color. Repeating this process we can color all the components with
k + 1 distinct colors. Suppose x = (a1, a2, ..., ak) and y = (b1, b2, ..., bk) be any two adjacent
elements. If ak is adjacent to bk in the component GId(Zp

lk
k

) we color the vertices by two colors
used in the component GId(Zp

lk
k

). Otherwise, if ak = bk we check the preceding coordinate. If
ak−1 is adjacent to bk−1 in the component GId(Z

p
lk−1
k−1

) we color the vertices by two colors used

in the component GId(Z
p
lk−1
k−1

). Otherwise, if ak−1 = bk−1 we check the preceding coordinate

to assign the color and if the preceding coordinates are equal we repeat till the last component
GId(Zp

l1
1
). We see that this coloring is a proper k + 1 coloring of GId(Zn). 2
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