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Abstract Let R be a multiplicative hyperring. The main purpose of this paper is to state
the 1-absorbing Prime Avoidance Theorem for multiplicative hyperrings. Some properties of
1-absorbing prime hyperideals in multiplicative hyperrings are studied. Also, 1-absorbing prime
hyperideals of valuation hyperdomains, Prüfer hyperdomains and idealization of hypermodules
are characterized.

1 Introduction

Throughout this paper R is a commutative multiplicative hyperring with scalar identity 1. Alge-
braic hyperstructures are a suitable generalization of classical algebraic structures. In a classical
algebraic structure, the composition of two elements is an element, while in an algebraic hyper-
structure, the composition of two elements is a set. Hyperstructures have many applications to
several sectors of both pure and applied mathematics (see [5, 7]). The hypergroup notion was
introduced in 1934 by a French mathematician F. Marty [12], at the 8th Congress of Scandina-
vian Mathematicians. Contrary to classical algebra, in hyperstructure theory, there are various
kinds of hyperrings and studied by many authors. The notion of hyperrings was introduced
by M. Krasner in 1983, where the addition is a hyperoperation, while the multiplication is an
operation [11]. One important class of hyperrings was introduced by Rota in 1982, where the
multiplication is a hyperoperation, while the addition is an operation, which is called multiplica-
tive hyperrings [14]. Also, hypermodules over a hyperring is a generalization of the classical
modules over a ring. In 2007, Badawi [3] introduced the concept of 2-absorbing ideals of com-
mutative rings with identity, which is a generalization of prime ideals, and investigated some
properties of them. After that in [1, 2, 4, 9, 10], the authors extened the notion of 2-absorbing
ideals. In this paper, we introduce and study the concept of 1-absorbing prime hyperideals in
a multiplicative hyperring which is also a generalization of prime hyperideals and obtain their
basic properties. For example, we show that if R is a 1-absorbing prime hyperideal that is not
a prime hyperideal, then R is a quasilocal hyperring. Second, we state the 1-Absorbing Prime
Avoidance Theorem for 1-absorbing prime hyperideals in multiplicative hyperrings and get some
results concerning it.

In the following, we give some definitions and results of hyperstructures which we need to
develop our paper. We refer to [6, 7, 8] for these basic properties and information on hyperstruc-
tures.

Definition 1.1. [7] Let H be a non-empty set. By P ∗(H), we mean the set of all non-empty
subsets of H . A hyperoperation on non-empty set H is a map ◦ : H × H → P ∗(H). (H, ◦) is
called a hypergroupoid. A hypergroup is a hypergroupoid (H, ◦) which satisfies the associative
and the reproductive law, i.e.,

(1) x ◦ (y ◦ z) = (x ◦ y) ◦ z, ∀x, y, z ∈ H (associative law),
(2) x ◦H = H ◦ x = H, ∀x ∈ H (reproductive law).

LetA ⊂ H . ThenA is called a subhypergroup ofH if 0 ∈ H and (A, ◦) is itself a hypergroup.

Definition 1.2. [7] A triple (R,+, ◦) is called a multiplicative hyperring if
(1) (R,+) is an abelian group;
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(2) (R, ◦) is semihypergroup;
(3) For all a, b, c ∈ R, we have a ◦ (b+ c) ⊆ a ◦ b+ a ◦ c and (b+ c) ◦ a ⊆ b ◦ a+ c ◦ a;
(4) For all a, b ∈ R, we have a ◦ (−b) = (−a) ◦ b = −(a ◦ b).

If in (2) the equality holds, then we say that the multiplicative hyperring is strongly distribu-
tive. We assume throughout this paper that all multiplicative hyperrings are strongly distributive.

For any two non-empty subsets A and B of R and x ∈ R, we define

A ◦B =
⋃

a∈A,b∈B

a ◦ b ; A ◦ x = A ◦ {x}

Also, xn = x ◦ x ◦ · · · ◦ x (n times).

Definition 1.3. (a) A non-zero element a of a multiplicative hyperring R is said to be unit, if
1 ∈ a ◦ x and 1 ∈ x ◦ a for some x ∈ R. The set of all unit elements of R is denoted by U(R).
(b) A subset S of a multiplicative hyperring R is said to be a subhyperring of R if (S,+, ◦) is
itself a multiplicative hyperring.
(c) A commutative hyperring R with identity 1 is called hyperdomain, if for every a, b ∈ R,
0 ∈ a ◦ b, then a = 0 or b = 0 [13].
(d) A commutative hyperring R with identity 1 is called hyperfield if every non-zero element of
R is unit.
(e) A non-empty subset I of a multiplicative hyperring R is a hyperideal of R if

(1) a, b ∈ I , then a− b ∈ I ,
(2) a ∈ I and r ∈ R, then r ◦ a ⊆ I .

(f) A hyperideal I of a commutative multiplicative hyperring R with identity 1 is finitely gener-
ated if I = 〈r1, . . . , rn〉 for some r1, . . . , rn ∈ R, i.e., for any x ∈ I , there exist x1, . . . , xn ∈ R
such that x ∈ r1 ◦ x1 + · · ·+ rn ◦ xn.
(g) A hyperideal I ofR is called principal if I = 〈x〉 for some x ∈ R. Also, R is called principal
hyperideal hyperdomain, if every hyperideal of R is principal [6].
(h) Let R and S be hyperrings. A mapping φ : R→ S is said to be a hyperring homomorphism,
if for all a, b ∈ R;

(1) φ(a+ b) = φ(a) + φ(b).
(2) φ(a ◦ b) = φ(a) ◦ φ(b) ([7]).

Let I be a hyperideal of a multiplicative hyperring R and let R/I = {r + I | r ∈ R}.
Define the operation + and the hyperoperation ◦ on R/I by (a + I) + (b + I) = a + b + I
and (a + I) ◦ (b + I) = ∪{c + I | c ∈ a ◦ b}. Then (R/I,+, ◦) is called a quotient hyperring
[7]. Let I, J be two hyperideals of R. We define (I :R J) = {a ∈ R | a ◦ J ⊆ I}. It is
clear that (I :R J) is a hyperideal of R. Let C be the class of all finite products of elements
of R i.e., C = {r1 ◦ r2 ◦ · · · ◦ rn | ri ∈ R,n ∈ N} ⊆ P ∗(R). A hyperideal I of R is said
to be a C-hyperideal of R, if whenever A ∩ I 6= ∅ for any A ∈ C, then A ⊆ I [6]. Prime
and primary hyperideals in multiplicative hyperrings has been introduced and studied by U.
Dasgupta in [6]. A proper hyperideal P of a multiplicative hyperring R is said to be prime
(primary), if a ◦ b ⊆ P , where a, b ∈ R, then a ∈ P or b ∈ P (a ∈ P or bn ⊆ P for some
n ∈ N). The intersection of all prime hyperideals of R containing I is called the radical of I
and denoted by rad(I). If the multiplicative hyperring R does not have any prime hyperideal
containing I, we define rad(I) = R. We refer to the prime hyperideal P = rad(Q) as the
associated prime hyperideal ofQ and on the other handQ is referred to as a P -primary hyperideal
of R. Let I be a hyperideal of a multiplicative hyperring R. Then D(I) ⊆ rad(I) where
D(I) = {r ∈ R | rn ⊆ I for some n ∈ N}. The equality holds when I is a C-hyperideal of R
[6, Proposition 3.2]. A proper hyperideal I of a hyperring R is said to be maximal, if I ⊆ J ⊆ R
for some hyperideal J of R, then I = J or J = R. A hyperring R is called quasilocal, if
it has a unique hyperideal M (see [6]). P. Ghiasvand in [10] has introduced and studied the
concept of 2-absorbing hyperideals of a multiplicative hyperring as a generalization of prime
hyperideals. Also, M. Anbarloei has studied 2-absorbing and 2-absorbing primary hyperideals
of a multiplicative hyperring in [1]. It is clear that every prime hyperideal is a 2-absorbing
hyperideal. But the converse is not true, in general. A proper hyperideal I of a multiplicative
hyperring R is said to be a 2-absorbing hyperideal of R if x ◦ y ◦ z ⊆ I for x, y, z ∈ R, then
x ◦ y ⊆ I or x ◦ z ⊆ I or y ◦ z ⊆ I .
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2 Characterizations of 1-absorbing Prime Hyperideals

In this section, basic properties of 1-absorbing prime hyperideals are studied. Moreover, 1-
absorbing prime hyperideals of valuation hyperdomains, Prüfer hyperdomains and idealization
of hypermodules are characterized.

Definition 2.1. Let R be a multiplicative hyperring. A proper hyperideal I of R is called 1-
absorbing prime if for all non-unit elements a, b, c ∈ R such that a ◦ b ◦ c ⊆ I , then either
a ◦ b ⊆ I or c ∈ I .

Remark 2.2. If a ◦ b ◦ c ⊆ I for some a, b, c ∈ R and a is unit, then we have 1 ∈ a ◦ x for some
x ∈ R. Thus b ◦ c ⊆ a ◦ b ◦ c ◦ x ⊆ I . Hence in the definition of 1-absorbing prime hyperideals
we can assume that a, b, c are non-unit elements.

Every prime hyperideal is a 1-absorbing prime hyperideal and every 1-absorbing prime hy-
perideal is a 2-absorbing hyperideal.

Example 2.3. Let (Z,+, ·) be the ring of integers. We define the hyperoperation a ◦ b =
{2ab, 4ab} for all a, b ∈ Z. Then R = (Z,+, ◦) is a multiplicative hyperring. Consider the
hyperideal I = 15Z. Then I is a 2-absorbing hyperideal of R that is not prime.

Example 2.4. Let (Z,+, ·) be the ring of integers and Z[x] be the ring of polynomials in in-
determinate x. Suppose that R = Z + 3xZ[x]. Define the hyperoperation a ◦ b = {2ab, 4ab}
for all a, b ∈ Z. It is easy to see that P = 3xZ[x] is a prime hyperideal of R, and so P 2 is a
2-absorbing hyperideal of R, by [1, ?]. But P 2 is not 1-absorbing prime, since 3 ◦ 3 ◦ x2 ⊆ P 2,
but 3 ◦ 3 = {18, 36} * P 2 and x2 6∈ P 2.

Theorem 2.5. Let I be a 1-absorbing prime hyperideal of a multiplicative hyperring R. Then
D(I) is a prime hyperideal of R. Moreover, (I : c) = {x ∈ R | c ◦ x ⊆ I} is a prime hyperideal
of R for every non-unit element c ∈ R \ I .

Proof. Let I be a 1-absorbing prime hyperideal of R and let x ◦ y ⊆ D(I) for some x, y ∈ R.
If x or y is unit, then there is nothing to prove, so assume that x, y are non-unit elements of R.
Then there exists a positive integer n such that (x ◦ y)n ⊆ I , and hence xm ◦ xn−m ◦ yn ⊆ I
for some positive integer m < n. Since I is a 1-absorbing prime hyperideal of R, we conclude
that xn = xm ◦ xn−m ⊆ I or yn ⊆ I and hence x ∈ D(I) or y ∈ D(I). Thus D(I) is a prime
hyperideal of R. Now suppose that a ◦ b ⊆ (I : c) for some elements a, b ∈ R and non-unit
element c ∈ R \ I such that a 6∈ (I : c). Assume that a, b are non-unit elements of R. Then
a ◦ c * I , so b ∈ I ⊆ (I : c) since I is a 1-absorbing prime hyperideal of R and a ◦ b ◦ c ⊆ I .
Thus (I : c) is a prime hyperideal of R. 2

Lemma 2.6. Let R be a multiplicative hyperring. Suppose that for every non-unit element x of
R and for every unit element u of R, we have x+u is a unit element of R. Then R is a quasilocal
hyperring.

Proof. Suppose that R has at least two maximal hyperideals, say M1,M2. We have M1 ⊂
M1 +M2 ⊆ R, hence M1 +M2 = R. Then m1 +m2 = 1 for some m1 ∈ M1 and m2 ∈ M2.
Thus 1 − m1 = m2 is a unit element of R by hypothesis, which is impossible. Thus R is a
quasilocal hyperring. 2

Theorem 2.7. Let R be a multiplicative hyperring and I be a hyperideal of R. If I is a 1-
absorbing prime hyperideal ofR that is not a prime hyperideal, thenR is a quasilocal hyperring.

Proof. If I is a 1-absorbing prime hyperideal that is not a prime hyperideal of R, then there are
non-unit elements a, b ∈ R such that a ◦ b ⊆ I and a, b 6∈ I . Suppose that x is a non-unit element
and y is a unit element of R. We show that x + y is a unit element of R, so the proof follows
from Lemma 2.6. Suppose that x+ y is a non-unit element of R. Since I is a 1-absorbing prime
hyperideal, x◦a◦b ⊆ I and b 6∈ I , then x◦a ⊆ I . But (x+y)◦a◦b ⊆ I , we have (x+y)◦a ⊆ I
and since x ◦ a ⊆ I we conclude y ◦ a ⊆ I , which follows that a ∈ I because y is unit, which is
a contradiction. Hence x+ y is a unit element and the proof is complete. 2
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Corollary 2.8. Let R = R1×R2 be a decomposable hyperring where R1 and R2 are multiplica-
tive hyperrings with identity 1 and J be a proper hyperideal of R. Then the following statements
are equivalent:

(i) J is a 1-absorbing prime hyperideal of R.
(ii) J is a prime hyperideal of R.
(iii) J = I × R2 or J = R1 × K, where I and K are prime hyperideals of R1 and R2,

respectively.

Next, it is proved that a proper hyperideal I of R is 1-absorbing prime if and only if the
inclusion I1I2I3 ⊆ I for some proper hyperideals I1, I2, I3 of R implies that I1I2 ⊆ I or I3 ⊆ I .
First, we need the following lemma.

Lemma 2.9. Let I be a 1-absorbing prime hyperideal of a multiplicative hyperring R. If a ◦ b ◦
J ⊆ I for proper hyperideal J of R and non-unit elements a, b ∈ R, then a ◦ b ⊆ I or J ⊆ I .

Proof. Suppose that a ◦ b ◦ J ⊆ I for some proper hyperideal J of R and non-unit elements
a, b ∈ R such that a ◦ b * I and J * I . Then there exists an element c ∈ J \ I . But a ◦ b ◦ c ⊆ I
and a ◦ b * I and c 6∈ I , which is a contradiction. 2

Theorem 2.10. Suppose that I is a proper hyperideal of a multiplicative hyperring R. Then the
following statements are equivalent:

(i) I is a 1-absorbing prime hyperideal of R.
(ii) If I1I2I3 ⊆ I for some proper hyperideals I1, I2, I3 of R, then I1I2 ⊆ I or I3 ⊆ I .

Proof. (i)⇒ (ii) Suppose that I is a 1-absorbing prime hyperideal ofR and I1I2I3 ⊆ I for some
proper hyperideals I1, I2, I3 of R such that I1I2 * I . Then there are non-unit elements a ∈ I1
and b ∈ I2 such that a ◦ b * I . Since a ◦ b ◦ I3 ⊆ I , a ◦ b * I , it follows from Lemma 2.9 that
I3 ⊆ I .

(ii) ⇒ (i) Suppose that a ◦ b ◦ c ⊆ I for some non-unit elements a, b, c ∈ R and a ◦ b * I .
Suppose also that I1 = aR, I2 = bR, and I3 = cR. Then I1I2I3 ⊆ I and I1I2 * I . Hence
I3 = cR ⊆ I , thus c ∈ I . 2

A hyperring R is said to be divided if for every prime hyperideal P of R, we have P ⊆ Rx
for every x ∈ R \ P . It is known that the prime hyperideals of a divided hyperring are linearly
ordered; i.e., if P1, P2 are prime hyperideals of R, then P1 ⊆ P2 or P2 ⊆ P1 [13].

Lemma 2.11. Let R be a divided hyperring and I be a C-hyperideal of R. If I is a 1-absorbing
prime hyperideal of R with rad(I) = P , then I is a primary hyperideal of R such that P 2 ⊆ I .

Proof. By Theorem 2.5, D(I) = rad(I) = P is a prime hyperideal of R. Suppose that I is a
1-absorbing prime hyperideal of R. First we show that P 2 ⊆ I . Let x, y ∈ P = rad(I). Then
xn−2◦x◦x ⊆ I for some positive integer n, so x2 ⊆ I , similarly, y2 ⊆ I . Thus x◦(x+y)◦y ⊆ I .
Since I is a 1-absorbing prime hyperideal of R, either x◦ (x+y) = x2 +xy ⊆ I or y ∈ I . Hence
x ◦ y ⊆ I and thus P 2 ⊆ I . Now we show that I is a primary hyperideal of R. Let x ◦ y ⊆ I
for some x, y ∈ R such that y 6∈ P . Then x ∈ P and since P is a divided hyperideal of R, we
conclude that x ∈ y◦w for some w ∈ R. Hence x◦y ⊆ y2◦w, so ∅ 6= x◦y = x◦y∩I ⊆ y2◦w∩I .
Therefore y2 ◦w ⊆ I because I is a C- hyperideal of R. But y2 * I and I is a 1-absorbing prime
hyperideal of R, so w ∈ I . Therefore x ∈ I and thus I is a primary hyperideal of R such that
P 2 ⊆ I . 2

A valuation hyperring is a hyperdomain R with the property that if I and J are hyperideals
of R then either I ⊆ J or J ⊆ I .

Theorem 2.12. Let P be a prime hyperideal of a valuation hyperring R. Then the following
hold:

(i) If Q is a P -primary C-hyperideal of R and x ∈ R \ P , then Q = Q 〈x〉.
(ii) The product of P -primary C-hyperideals of R is a P -primary hyperideal. If P 6= P 2,

then the only P -primary hyperideals are powers of P .
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Proof. (i) Since x 6∈ P , we have Q ⊂ 〈x〉 because R is a valuation hyperring. Let K be the
quotient hyperfield of R and let A = {y | y ∈ K and y ◦x ⊆ Q}. Since Q ⊂ 〈x〉, A is a subset of
R. Furthermore, it is easy to check that A is a hyperideal of R and Q = A 〈x〉. Moreover, since
Q is P-primary and 〈x〉 * P , we have A ⊆ Q. Thus Q = A and Q = Q 〈x〉, as claimed.

(ii) Let Q1, Q2 be P -primary hyperideals of R. Clearly, rad(Q1Q2) = P . Let x, y be ele-
ments of R with x ◦ y ⊆ Q1Q2 and x 6∈ P . By (i), Q1 = Q1 〈x〉. Hence x ◦ y ⊆ 〈x〉Q1Q2.
Since x ◦ y 6= ∅, then there exist z ∈ x ◦ y and so z ∈ 〈x〉Q1Q2. Hence z ∈ x ◦ q for some
q ∈ q1 ◦ q2 ⊆ Q1Q2 (q1 ∈ Q1 and q2 ∈ Q2). Therefore 0 = z − z ∈ x ◦ y − x ◦ q = x ◦ (y − q),
so y− q = 0 because R is a hyperdomain, this implies that y ∈ Q1Q2. Thus Q1Q2 is P -primary.
Now suppose that P 6= P 2 and let Q be a P -primary hyperideal of R. Hence Q contains a power
of P 2 and so contains a power of P . Thus there is a positive integer m such that Pm ⊆ Q but
Pm−1 * Q. Let x ∈ Pm−1 and x 6∈ Q, then Q ⊆ 〈x〉. If we define A as in the proof of (i), then
Q = A 〈x〉. Since Q is P -primary and x 6∈ Q, A ⊆ P . Therefore, Q = A 〈x〉 ⊆ P 〈x〉 ⊆ Pm, so
we conclude that Q = Pm. 2

Theorem 2.13. Let R be a valuation hyperdomain and I be a non-zero proper C-hyperideal of
R such that P = rad(I). If I is a 1-absorbing prime hyperideal of R, then I = P or I = P 2

where P = rad(I) is a prime hyperideal of R.

Proof. Let R be a valuation hyperdomain and I be a non-zero proper C-hyperideal of R such
that P = rad(I). Since every valuation hyperdomain is a divided hyperdomain, it follows from
Lemma 2.11 that I is a primary hyperideal of R such that P 2 ⊆ I . Since R is a valuation hyper-
domain, we conclude that either I = P or I = P 2 where P = rad(I) is a prime hyperideal of R
by Theorem 2.12. 2

Let R be a hyperdomain with quotient hyperfield K. A proper hyperideal I of R is called
invertible if II−1 = R, where I−1 = {r ∈ K : r ◦ I ⊆ R}. A hyperdomain R is called a
Prüfer hyperdomain if every non-zero finitely generated hyperideal of R is invertible. A hyper-
domain is called a Dedekind hyperdomain if every nonzero proper hyperideal of R is invertible.
In the following results, 1-absorbing prime hyperideals of Dedekind hyperdomains and Prüfer
hyperdomains are completely described.

Lemma 2.14. Let R be a Prüfer hyperdomain and Q be a P -primary C-hyperideal of R such
that P = rad(I). Then if P 6= P 2, then Q = Pm for some positive integer m.

Proof. The proof holds by Theorem 2.13. 2

Theorem 2.15. Let R be a Prüfer hyprdomain and I be a non-zero proper C-hyperideal of R
such that P = rad(I) where P is an invertible hyperideal. If I is a 1-absorbing prime hyperideal
of R, then I = P or I = P 2 where P = rad(I) is a prime hyperideal of R.

Proof. Suppose that R is a Prüfer hyperdomain and I is a non-zero proper hyperideal of R such
that P = rad(I). If R is quasilocal with maximal hyperideal M , then it is known that R is a
valuation hyperdomain since R is a Prüfer hyperdomain, thus the claim follows from Theorem
2.13. So suppose that R is not a quasilocal hyperring. Then it follows from Theorem 2.7 that I
is a prime hyperideal of R and hence I is a P -primary hyperideal of R such that P 2 ⊆ I . Thus
I = P or I = P 2 where P = rad(I) is a prime hyperideal of R by Lemma 2.14. 2

Theorem 2.16. LetR be a Noetherian hyperdomain that is not a hyperfield and I be a hyperideal
of R. Then (i)⇒ (ii)⇒ (iii).

(i) R is a Dedekind hyperdomain;
(ii) If I is a 1-absorbing prime hyperideal of R, then I = M or I = M2 where M is a

maximal hyperideal of R;
(iii) If I is a 1-absorbing prime hyperideal of R, then I = P or I = P 2 where P = rad(I) is

a prime hyperideal of R.
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Proof. (i)⇒ (ii) Suppose that R is a Noetherian hyperdomain that is not a hyperfield and I is a
1-absorbing prime hyperideal of R such that P = rad(I). Since R is a Dedekind hyperdomain,
we conclude that every non-zero prime hyperideal of R is a maximal hyperideal of R. Hence P
is a maximal hyperideal of R. This means that I is a primary hyperideal of R such that P 2 ⊆ I .
Therefore, by Theorem 2.15, I =M or I =M2 where M is a maximal hyperideal of R.

(ii)⇒ (iii) is obvious. 2

In view of Theorem 2.16, we have the following result.

Corollary 2.17. Let R be a principal hyperideal hyperdomain that is not a hyperfield and I be
a non-zero proper hyperideal of R. If I is a 1-absorbing prime hyperideal of R, then I = pR or
I = p2R for some non-zero prime element p of R.

Theorem 2.18. Let I be a P -primary hyperideal of a hyperring R. If (P 2 : x) ⊆ I for every
x ∈ P \ I , then I is a 1-absorbing prime hyperideal of R.

Proof. Let I be a P -primary hyperideal of a hyperring R. Suppose that (P 2 : x) ⊆ I for every
x ∈ P \ I and x ◦ y ◦ z ⊆ I for some non-unit elements x, y, z ∈ R. Assume that x ◦ y * I and
z 6∈ I . Since I is a P -primary hyperideal ofR, we conclude that z ∈ P \I , so x◦y ⊆ (P 2 : z) ⊆ I ,
which is a contradiction. Hence either x ◦ y ⊆ I or z ∈ I , so I is a 1-absorbing prime hyperideal
of R. 2

Theorem 2.19. Let R and S be multiplicative hyperrings and f : R → S be a hyperring homo-
morphism such that f(1) = 1 and f(a) is non-unit in S for every non-unit element a in R. Then
the following statements hold:

(i) If J is a 1-absorbing prime hyperideal of S, then f−1(J) is a 1-absorbing prime hyper-
ideal of S.

(ii) If f is onto and I is a 1-absorbing prime hyperideal of R with Ker(f) ⊆ I , then f(I) is
a 1-absorbing prime hyperideal of S.

Proof. (i) Suppose that J is a 1-absorbing prime hyperideal of S and a ◦ b ◦ c ⊆ f−1(J) for
some non-unit elements a, b, c ∈ R. Then f(a ◦ b ◦ c) = f(a) ◦ f(b) ◦ f(c) ⊆ J , which means
that f(a) ◦ f(b) ⊆ J or f(c) ∈ J . It follows a ◦ b ⊆ f−1(J) or c ∈ f−1(J). Hence f−1(J) is a
1-absorbing prime hyperideal of R.

(ii) Suppose that f is onto and I is a 1-absorbing prime hyperideal of R with Ker(f) ⊆ I
and x ◦ y ◦ z ⊆ f(I) for some non-unit elements x, y, z ∈ S. Since f is onto, there ex-
ist non-unit elements a, b, c ∈ R such that x = f(a), y = f(b) and z = f(c). Therefore
f(a ◦ b ◦ c) = f(a) ◦ f(b) ◦ f(c) = x ◦ y ◦ z ⊆ f(I). Since Ker(f) ⊆ I , we conclude that
a ◦ b ◦ c ⊆ I . Thus a ◦ b ⊆ I or c ∈ I , so x ◦ y ⊆ f(I) or z ∈ f(I). Hence f(I) is a 1-absorbing
prime hyperideal of S. 2

Corollary 2.20. Let I and J be proper hyperideals of a multiplicative hyperring R with I ⊆ J
and U(R/I) = {a+ I | a ∈ U(R)}. Then J is a 1-absorbing prime hyperideal of R if and only
if J/I is a 1-absorbing prime hyperideal of R/I .

Proof. Suppose that I and J are proper hyperideals of R with I ⊆ J and let f : R → R/I
such that f(a) = a+ I . Then f is a hyperring homomorphism from R onto R/I , f(1) = 1 and
f(a) ∈ R/I is non-unit for every non-unit a in R. But Ker(f) = I ⊆ J and f is onto, hence
f(J) = J/I is a 1-absorbing prime hyperideal of R/I by Theorem 2.19 (ii). Assume that J/I is
a 1-absorbing prime hyperideal of R/I . Then f−1(J/I) = J is a 1-absorbing prime hyperideal
of R by Theorem 2.19 (i). 2

Let (R,+, ◦) be a multiplicative hyperring with identity 1. An R-(left) hypermodule M is an
abelian group (M,+) together with a map · : R×M −→M defined by

(a,m) 7→ a ·m = am ∈M

such that for all r1, r2 ∈ R and m1,m2,m ∈M we have
(1) r1 · (m1 +m2) = r1 ·m1 + r2 ·m2;
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(2) (r1 + r2) ·m = (r1 ·m) + (r2 ·m);
(3) (r1 ◦ r2) ·m = r1 · (r2 ·m);
(4) 1m = m;
(5) r0M = 0Rm = 0M .
A non-empty subset N of an R-hypermodule M is called a subhypermodule if N is an R-

hypermodule with the operations of M [15].

LetR be a commutative multiplicative hyperring with identity 1 andM be anR-hypermodule.
Let R(+)M = {(r,m) : r ∈ R,m ∈M}. Consider addition and multiplication as follows:
For each a, b ∈ R and m,n ∈ M ; (a, n) + (b,m) = (a + b,m + n) and (a,m) ◦ (b, n) =
{(c, an + bm) | c ∈ a ◦ b}. It is easy to see that R(+)M is a commutative multiplicative hy-
perring with identity (1, 0) and we call it the idealization of M . Suppose that I is a hyperideal
of R and N is a subhypermodule of M . Then I(+)N is a hyperideal of R(+)M if and only if
IM ⊆ N . In this case, I(+)N is called a homogeneous hyperideal of R(+)M .

Theorem 2.21. Let M be an R-hypermodule and I(+)N be a homogeneous hyperideal of the
hyperring R(+)M . If I(+)N is a 1-absorbing prime hyperideal of R(+)M , then I is a 1-
absorbing prime hyperideal of R.

Proof. Let a ◦ b ◦ c ⊆ I for some non-unit elements a, b, c ∈ R. Then (a, 0) ◦ (b, 0) ◦ (c, 0) =
{(t, 0) | t ∈ a ◦ b ◦ c} ⊆ I(+)N , and so a ◦ b ◦ c ⊆ I . Since I(+)N is a 1-absorbing prime
hyperideal of R(+)M , either (a, 0) ◦ (b, 0) ⊆ I(+)N or (c, 0) ∈ I(+)N . Hence either a ◦ b ⊆ I
or c ∈ I and thus I is a 1-absorbing prime hyperideal of R. 2

3 1-Absorbing Prime Avoidance Theorem

In this section, we state the 1-Absorbing Prime Avoidance Theorem for 1-absorbing prime hy-
perideals of R.

Let I, I1, I2, . . . , In be hyperideals ofR. A covering I ⊆ I1∪I2∪· · ·∪In is said to be efficient
precisely when I is not contained in the union of any n− 1 of the hyperideals I1, I2, . . . , In. We
shall say that I ⊆ I1 ∪ I2 ∪ · · · ∪ In is an efficient union if none of the Ik, 1 ≤ k ≤ n, may be
excluded.

Lemma 3.1. Let I ⊆ I1 ∪ I2 ∪ · · · ∪ In (n ≥ 2) be an efficient covering. If Ii * (Ij :R x) for
every x ∈ R \ Ij and i 6= j, then no Ij is 1-absorbing prime for every j ∈ {1, . . . , n}.

Proof. Suppose to the contrary, Ij is a 1-absorbing prime hyperideal of R for some j ∈
{1, . . . , n}. It is easy to see that I = (I∩I1)∪(I∩I2)∪· · ·∪(I∩In) is an efficient union. So there
exists an element xj ∈ I \Ij for every j ∈ {1, . . . , n}. Since I = (I∩I1)∪(I∩I2)∪· · ·∪(I∩In)
is an efficient union, we conclude that (∩i 6=jIi) ∩ I ⊆ Ij ∩ I . By hypothesis, Ii * (Ij : xj) such
that xj ∈ I \ Ij and i 6= j. Hence there exists yi ∈ Ii \ (Ij : xj) for every i 6= j. Let
Y = y1 ◦ · · · yj−1 ◦ yj+1 ◦ · · · ◦ yn. Then Y ◦ xj ⊆ ∩i 6=j(Ii

⋂
I) but Y ◦ xj * Ij ∩ I . Since for

otherwise, assume that Y ◦ xj ⊆ Ij ∩ I . Since Ij is 1-absorbing prime and (Ij : xj) is a prime
hyperideal of R by Theorem 2.5, we have yi ∈ (Ij : xj) for some i 6= j, which is impossible.
Therefore, Y ◦ xj * I ∩ Ij and this contradicts the fact that (

⋂
i 6=j Ii) ∩ I ⊆ Ij ∩ I . The proof is

complete. 2

In following theorem we state 1-Absorbing Prime Avoidance Theorem in multiplicative hy-
perrings.

Theorem 3.2. Let I, I1, I2, . . . , In be hyperideals of R and at most two of I1, I2, . . . In are not
1-absorbing prime. Suppose that I is a hyperideal of R such that I ⊆ I1 ∪ I2 ∪ · · · ∪ In and
Ii * (Ij : x) for every x ∈ R \ Ij and i 6= j. Then I ⊆ Ij for some j ∈ {1, . . . , n}.

Proof. Let I ⊆ I1 ∪ I2 ∪ · · · ∪ In be a covering such that at least n − 2 of the hyperideals
I1, I2, . . . In are 1-absorbing prime. Without loss of generality, one may reduce the covering to
an efficient covering. If n = 2, then it is obvious. Suppose that n > 2. Since the covering is
efficient and Ii * (Ij : x) for every x ∈ R \ Ij and i 6= j, by Lemma 3.1, n < 2. Hence n = 1
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and I ⊆ Ij for some j ∈ {1, . . . , n}. 2

Corollary 3.3. Let I = 〈r1, . . . , rn〉 be a finitely generated hyperideal of R for some r1, . . . , rn ∈
R. Let I1, I2, . . . , In be 1-absorbing prime hyperideals of R, I * Ii for every i ∈ {1, . . . , n}
and Ii * (Ij : x) for every x ∈ R \ Ij and i 6= j. Then there exist b2, . . . , bs ∈ R such that
A = r1 + b2 ◦ r2 + · · ·+ bs ◦ rs *

⋃n
i=1 Ii.

Proof. We prove the corollary by induction on n. If n = 1, then the result is clear. So sup-
pose that n ≥ 1 and the result has been proved for smaller values than n. Then there exist
a2, . . . , as ∈ R such that B = r1 + a2 ◦ r2 + · · ·+ as ◦ rs *

⋃n−1
i=1 Ii. If B * In, so B *

⋃n
i=1 Ii,

because if B ⊆
⋃n

i=1 Ii, then B ⊆ (
⋃n−1

i=1 Ii)
⋃
In, hence B ⊆

⋃n−1
i=1 Ii or B ⊆ In, a contra-

diction and so there is nothing to prove. Hence suppose that B ⊆ In. If r2, . . . , rs ∈ In, then
r1 ∈ In, a contradiction, as I * In. Thus we assume ri 6∈ In for some i. Without loss of
generality, suppose that r2 6∈ In. By the hypothesis, Ii * (Ij : x) for every x ∈ R \ Ij and
i 6= j. Hence, there exists yi ∈ Ii \ (In : r2) for every i 6= n. Let Y = y1 ◦ y2 ◦ · · · yn−1. Then
Y ⊆ Ii for every i 6= n but Y * (In : r2). Therefore, Y ⊆ Ii \ (In : r2) for every i 6= n.
Let A = r1 + (a2 + Y ) ◦ r2 + · · · + as ◦ rs. We consider two cases. Case one: Suppose that
I ⊆ I1

⋃
I2 ∪ · · ·

⋃
In. By Theorem 3.2, I ⊆ Ij for some j ∈ {1, . . . , n}, which is a contradic-

tion. Case two: Suppose that I * I1
⋃
I2

⋃
· · ·

⋃
In. Then by a similar argument as above, we

assume r2 6∈ In. Hence A = B + Y ◦ r2 *
⋃n

i=1 Ii and so the proof is complete. 2

Corollary 3.4. Let I1, I2, . . . , In be 1-absorbing prime hyperideals of R, I be a hyperideal of R
and Ii * (Ij : x) for every x ∈ R \ Ij and i 6= j. If r ∈ R and Rr + I *

⋃n
i=1 Ii, then there

exists x ∈ I such that r + x 6∈
⋃n

i=1 Ii.

Proof. Suppose that r ∈
⋂k

i=1 Ii but r 6∈
⋃n

i=k+1 Ii. If k = 0, then r = r + 0 6∈
⋃n

i=1 Ii and so
we are done. Thus assume that 1 ≤ k. By the hypothesis, Ii * (Ij : x) for every x ∈ R \ Ij
and i 6= j, so Theorem 3.2 implies that I *

⋃k
i=1 Ii. Hence there exists a ∈ I \

⋃k
i=1 Ii. We

show that
⋂k

i=1 Ii *
⋃k

i=1(Ij : x) for every x ∈ R \ Ij . Suppose that
⋂k

i=1 Ii ⊆
⋃k

i=1(Ij : a) for
a ∈ I \ Ij . By Theorem 3.2, we get

⋂k
i=1 Ii * (Ij : a) for some j ∈ {1, . . . , k}. This implies

that
⋂k

i=1 Ii * (Ij : a) for some j ∈ {1, . . . , k} and a ∈ I \ Ij . Since (Ij : a) is prime, we
conclude that Ii ⊆ (Ij : a) where i ∈ {k + 1, . . . , n} and j ∈ {1, . . . , k}, which contradicts the
hypothesis. Thus there exists b ∈

⋂n
i=k+1 Ii \

⋃k
j=1(Ij : a). Let x ∈ a ◦ b. Then x ∈ I . We also

have x ∈
⋂n

i=k+1 Ii, but x 6∈
⋃k

i=1 Ii, because otherwise x ∈ a ◦ b ⊆ Ii for some i ∈ {1, . . . , k}
and hence b ∈ (Ii : a) for some i ∈ {1, . . . , k}, a contradiction. Thus x ∈

⋂n
i=k+1 Ii \

⋃k
i=1 Ii.

Now r ∈
⋂k

i=1 Ii \
⋃n

i=k+1 Ii shows that r + x 6∈
⋃n

i=1 Ii. 2
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