1-ABSORBING PRIME AVOIDANCE THEOREM IN MULTIPLICATIVE HYPERRINGS

Peyman Ghiasvand and Farkhondeh Farzalipour
Communicated by Ayman Badawi

MSC 2010 Classifications: 20N20.
Keywords and phrases: Multiplicative hyperring, 1-absorbing prime hyperideal, prime hyperideal, Prüfer hyperdomain.

Abstract

Let R be a multiplicative hyperring. The main purpose of this paper is to state the 1 -absorbing Prime Avoidance Theorem for multiplicative hyperrings. Some properties of 1 -absorbing prime hyperideals in multiplicative hyperrings are studied. Also, 1-absorbing prime hyperideals of valuation hyperdomains, Prüfer hyperdomains and idealization of hypermodules are characterized.

1 Introduction

Throughout this paper R is a commutative multiplicative hyperring with scalar identity 1 . Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. Hyperstructures have many applications to several sectors of both pure and applied mathematics (see [5, 7]). The hypergroup notion was introduced in 1934 by a French mathematician F. Marty [12], at the 8th Congress of Scandinavian Mathematicians. Contrary to classical algebra, in hyperstructure theory, there are various kinds of hyperrings and studied by many authors. The notion of hyperrings was introduced by M. Krasner in 1983, where the addition is a hyperoperation, while the multiplication is an operation [11]. One important class of hyperrings was introduced by Rota in 1982, where the multiplication is a hyperoperation, while the addition is an operation, which is called multiplicative hyperrings [14]. Also, hypermodules over a hyperring is a generalization of the classical modules over a ring. In 2007, Badawi [3] introduced the concept of 2-absorbing ideals of commutative rings with identity, which is a generalization of prime ideals, and investigated some properties of them. After that in [1, 2, 4, 9, 10], the authors extened the notion of 2-absorbing ideals. In this paper, we introduce and study the concept of 1 -absorbing prime hyperideals in a multiplicative hyperring which is also a generalization of prime hyperideals and obtain their basic properties. For example, we show that if R is a 1 -absorbing prime hyperideal that is not a prime hyperideal, then R is a quasilocal hyperring. Second, we state the 1 -Absorbing Prime Avoidance Theorem for 1-absorbing prime hyperideals in multiplicative hyperrings and get some results concerning it.

In the following, we give some definitions and results of hyperstructures which we need to develop our paper. We refer to $[6,7,8]$ for these basic properties and information on hyperstructures.

Definition 1.1. [7] Let H be a non-empty set. By $P^{*}(H)$, we mean the set of all non-empty subsets of H. A hyperoperation on non-empty set H is a map $\circ: H \times H \rightarrow P^{*}(H)$. (H, \circ) is called a hypergroupoid. A hypergroup is a hypergroupoid (H, \circ) which satisfies the associative and the reproductive law, i.e.,
(1) $x \circ(y \circ z)=(x \circ y) \circ z, \forall x, y, z \in H$ (associative law),
(2) $x \circ H=H \circ x=H, \forall x \in H$ (reproductive law).

Let $A \subset H$. Then A is called a subhypergroup of H if $0 \in H$ and (A, \circ) is itself a hypergroup.
Definition 1.2. [7] A triple $(R,+, \circ)$ is called a multiplicative hyperring if
(1) $(R,+)$ is an abelian group;
(2) (R, \circ) is semihypergroup;
(3) For all $a, b, c \in R$, we have $a \circ(b+c) \subseteq a \circ b+a \circ c$ and $(b+c) \circ a \subseteq b \circ a+c \circ a$;
(4) For all $a, b \in R$, we have $a \circ(-b)=(-a) \circ b=-(a \circ b)$.

If in (2) the equality holds, then we say that the multiplicative hyperring is strongly distributive. We assume throughout this paper that all multiplicative hyperrings are strongly distributive.

For any two non-empty subsets A and B of R and $x \in R$, we define

$$
A \circ B=\bigcup_{a \in A, b \in B} a \circ b ; \quad A \circ x=A \circ\{x\}
$$

Also, $x^{n}=x \circ x \circ \cdots \circ x$ (n times).
Definition 1.3. (a) A non-zero element a of a multiplicative hyperring R is said to be unit, if $1 \in a \circ x$ and $1 \in x \circ a$ for some $x \in R$. The set of all unit elements of R is denoted by $U(R)$.
(b) A subset S of a multiplicative hyperring R is said to be a subhyperring of R if $(S,+, \circ)$ is itself a multiplicative hyperring.
(c) A commutative hyperring R with identity 1 is called hyperdomain, if for every $a, b \in R$, $0 \in a \circ b$, then $a=0$ or $b=0$ [13].
(d) A commutative hyperring R with identity 1 is called hyperfield if every non-zero element of R is unit.
(e) A non-empty subset I of a multiplicative hyperring R is a hyperideal of R if
(1) $a, b \in I$, then $a-b \in I$,
(2) $a \in I$ and $r \in R$, then $r \circ a \subseteq I$.
(f) A hyperideal I of a commutative multiplicative hyperring R with identity 1 is finitely generated if $I=\left\langle r_{1}, \ldots, r_{n}\right\rangle$ for some $r_{1}, \ldots, r_{n} \in R$, i.e., for any $x \in I$, there exist $x_{1}, \ldots, x_{n} \in R$ such that $x \in r_{1} \circ x_{1}+\cdots+r_{n} \circ x_{n}$.
(g) A hyperideal I of R is called principal if $I=\langle x\rangle$ for some $x \in R$. Also, R is called principal hyperideal hyperdomain, if every hyperideal of R is principal [6].
(h) Let R and S be hyperrings. A mapping $\phi: R \rightarrow S$ is said to be a hyperring homomorphism, if for all $a, b \in R$;
(1) $\phi(a+b)=\phi(a)+\phi(b)$.
(2) $\phi(a \circ b)=\phi(a) \circ \phi(b)$ ([7]).

Let I be a hyperideal of a multiplicative hyperring R and let $R / I=\{r+I \mid r \in R\}$. Define the operation + and the hyperoperation \circ on R / I by $(a+I)+(b+I)=a+b+I$ and $(a+I) \circ(b+I)=\cup\{c+I \mid c \in a \circ b\}$. Then $(R / I,+, \circ)$ is called a quotient hyperring [7]. Let I, J be two hyperideals of R. We define $\left(I:_{R} J\right)=\{a \in R \mid a \circ J \subseteq I\}$. It is clear that $\left(I:_{R} J\right)$ is a hyperideal of R. Let C be the class of all finite products of elements of R i.e., $C=\left\{r_{1} \circ r_{2} \circ \cdots \circ r_{n} \mid r_{i} \in R, n \in \mathbb{N}\right\} \subseteq P^{*}(R)$. A hyperideal I of R is said to be a C-hyperideal of R, if whenever $A \cap I \neq \emptyset$ for any $A \in C$, then $A \subseteq I$ [6]. Prime and primary hyperideals in multiplicative hyperrings has been introduced and studied by U . Dasgupta in [6]. A proper hyperideal P of a multiplicative hyperring R is said to be prime (primary), if $a \circ b \subseteq P$, where $a, b \in R$, then $a \in P$ or $b \in P\left(a \in P\right.$ or $b^{n} \subseteq P$ for some $n \in \mathbb{N}$). The intersection of all prime hyperideals of R containing I is called the radical of I and denoted by $\operatorname{rad}(I)$. If the multiplicative hyperring R does not have any prime hyperideal containing I, we define $\operatorname{rad}(I)=R$. We refer to the prime hyperideal $P=\operatorname{rad}(Q)$ as the associated prime hyperideal of Q and on the other hand Q is referred to as a P-primary hyperideal of R. Let I be a hyperideal of a multiplicative hyperring R. Then $D(I) \subseteq \operatorname{rad}(I)$ where $D(I)=\left\{r \in R \mid r^{n} \subseteq I\right.$ for some $\left.n \in \mathbb{N}\right\}$. The equality holds when I is a C-hyperideal of R [6, Proposition 3.2]. A proper hyperideal I of a hyperring R is said to be maximal, if $I \subseteq J \subseteq R$ for some hyperideal J of R, then $I=J$ or $J=R$. A hyperring R is called quasilocal, if it has a unique hyperideal M (see [6]). P. Ghiasvand in [10] has introduced and studied the concept of 2-absorbing hyperideals of a multiplicative hyperring as a generalization of prime hyperideals. Also, M. Anbarloei has studied 2-absorbing and 2-absorbing primary hyperideals of a multiplicative hyperring in [1]. It is clear that every prime hyperideal is a 2 -absorbing hyperideal. But the converse is not true, in general. A proper hyperideal I of a multiplicative hyperring R is said to be a 2-absorbing hyperideal of R if $x \circ y \circ z \subseteq I$ for $x, y, z \in R$, then $x \circ y \subseteq I$ or $x \circ z \subseteq I$ or $y \circ z \subseteq I$.

2 Characterizations of 1-absorbing Prime Hyperideals

In this section, basic properties of 1-absorbing prime hyperideals are studied. Moreover, 1absorbing prime hyperideals of valuation hyperdomains, Prüfer hyperdomains and idealization of hypermodules are characterized.

Definition 2.1. Let R be a multiplicative hyperring. A proper hyperideal I of R is called 1absorbing prime if for all non-unit elements $a, b, c \in R$ such that $a \circ b \circ c \subseteq I$, then either $a \circ b \subseteq I$ or $c \in I$.

Remark 2.2. If $a \circ b \circ c \subseteq I$ for some $a, b, c \in R$ and a is unit, then we have $1 \in a \circ x$ for some $x \in R$. Thus $b \circ c \subseteq a \circ b \circ c \circ x \subseteq I$. Hence in the definition of 1 -absorbing prime hyperideals we can assume that a, b, c are non-unit elements.

Every prime hyperideal is a 1 -absorbing prime hyperideal and every 1 -absorbing prime hyperideal is a 2 -absorbing hyperideal.

Example 2.3. Let $(\mathbb{Z},+, \cdot)$ be the ring of integers. We define the hyperoperation $a \circ b=$ $\{2 a b, 4 a b\}$ for all $a, b \in \mathbb{Z}$. Then $R=(\mathbb{Z},+, \circ)$ is a multiplicative hyperring. Consider the hyperideal $I=15 \mathbb{Z}$. Then I is a 2 -absorbing hyperideal of R that is not prime.

Example 2.4. Let $(\mathbb{Z},+, \cdot)$ be the ring of integers and $\mathbb{Z}[x]$ be the ring of polynomials in indeterminate x. Suppose that $R=\mathbb{Z}+3 x \mathbb{Z}[x]$. Define the hyperoperation $a \circ b=\{2 a b, 4 a b\}$ for all $a, b \in \mathbb{Z}$. It is easy to see that $P=3 x \mathbb{Z}[x]$ is a prime hyperideal of R, and so P^{2} is a 2-absorbing hyperideal of R, by [1, ?]. But P^{2} is not 1 -absorbing prime, since $3 \circ 3 \circ x^{2} \subseteq P^{2}$, but $3 \circ 3=\{18,36\} \nsubseteq P^{2}$ and $x^{2} \notin P^{2}$.

Theorem 2.5. Let I be a 1-absorbing prime hyperideal of a multiplicative hyperring R. Then $D(I)$ is a prime hyperideal of R. Moreover, $(I: c)=\{x \in R \mid c \circ x \subseteq I\}$ is a prime hyperideal of R for every non-unit element $c \in R \backslash I$.
Proof. Let I be a 1-absorbing prime hyperideal of R and let $x \circ y \subseteq D(I)$ for some $x, y \in R$. If x or y is unit, then there is nothing to prove, so assume that x, y are non-unit elements of R. Then there exists a positive integer n such that $(x \circ y)^{n} \subseteq I$, and hence $x^{m} \circ x^{n-m} \circ y^{n} \subseteq I$ for some positive integer $m<n$. Since I is a 1 -absorbing prime hyperideal of R, we conclude that $x^{n}=x^{m} \circ x^{n-m} \subseteq I$ or $y^{n} \subseteq I$ and hence $x \in D(I)$ or $y \in D(I)$. Thus $D(I)$ is a prime hyperideal of R. Now suppose that $a \circ b \subseteq(I: c)$ for some elements $a, b \in R$ and non-unit element $c \in R \backslash I$ such that $a \notin(I: c)$. Assume that a, b are non-unit elements of R. Then $a \circ c \nsubseteq I$, so $b \in I \subseteq(I: c)$ since I is a 1-absorbing prime hyperideal of R and $a \circ b \circ c \subseteq I$. Thus ($I: c$) is a prime hyperideal of R.

Lemma 2.6. Let R be a multiplicative hyperring. Suppose that for every non-unit element x of R and for every unit element u of R, we have $x+u$ is a unit element of R. Then R is a quasilocal hyperring.
Proof. Suppose that R has at least two maximal hyperideals, say M_{1}, M_{2}. We have $M_{1} \subset$ $M_{1}+M_{2} \subseteq R$, hence $M_{1}+M_{2}=R$. Then $m_{1}+m_{2}=1$ for some $m_{1} \in M_{1}$ and $m_{2} \in M_{2}$. Thus $1-m_{1}=m_{2}$ is a unit element of R by hypothesis, which is impossible. Thus R is a quasilocal hyperring.

Theorem 2.7. Let R be a multiplicative hyperring and I be a hyperideal of R. If I is a 1absorbing prime hyperideal of R that is not a prime hyperideal, then R is a quasilocal hyperring.

Proof. If I is a 1-absorbing prime hyperideal that is not a prime hyperideal of R, then there are non-unit elements $a, b \in R$ such that $a \circ b \subseteq I$ and $a, b \notin I$. Suppose that x is a non-unit element and y is a unit element of R. We show that $x+y$ is a unit element of R, so the proof follows from Lemma 2.6. Suppose that $x+y$ is a non-unit element of R. Since I is a 1 -absorbing prime hyperideal, $x \circ a \circ b \subseteq I$ and $b \notin I$, then $x \circ a \subseteq I$. But $(x+y) \circ a \circ b \subseteq I$, we have $(x+y) \circ a \subseteq I$ and since $x \circ a \subseteq I$ we conclude $y \circ a \subseteq I$, which follows that $a \in I$ because y is unit, which is a contradiction. Hence $x+y$ is a unit element and the proof is complete.

Corollary 2.8. Let $R=R_{1} \times R_{2}$ be a decomposable hyperring where R_{1} and R_{2} are multiplicative hyperrings with identity 1 and J be a proper hyperideal of R. Then the following statements are equivalent:
(i) J is a 1-absorbing prime hyperideal of R.
(ii) J is a prime hyperideal of R.
(iii) $J=I \times R_{2}$ or $J=R_{1} \times K$, where I and K are prime hyperideals of R_{1} and R_{2}, respectively.

Next, it is proved that a proper hyperideal I of R is 1 -absorbing prime if and only if the inclusion $I_{1} I_{2} I_{3} \subseteq I$ for some proper hyperideals I_{1}, I_{2}, I_{3} of R implies that $I_{1} I_{2} \subseteq I$ or $I_{3} \subseteq I$. First, we need the following lemma.

Lemma 2.9. Let I be a 1-absorbing prime hyperideal of a multiplicative hyperring R. If $a \circ b \circ$ $J \subseteq I$ for proper hyperideal J of R and non-unit elements $a, b \in R$, then $a \circ b \subseteq I$ or $J \subseteq I$.

Proof. Suppose that $a \circ b \circ J \subseteq I$ for some proper hyperideal J of R and non-unit elements $a, b \in R$ such that $a \circ b \nsubseteq I$ and $J \nsubseteq I$. Then there exists an element $c \in J \backslash I$. But $a \circ b \circ c \subseteq I$ and $a \circ b \nsubseteq I$ and $c \notin I$, which is a contradiction.

Theorem 2.10. Suppose that I is a proper hyperideal of a multiplicative hyperring R. Then the following statements are equivalent:
(i) I is a 1-absorbing prime hyperideal of R.
(ii) If $I_{1} I_{2} I_{3} \subseteq$ I for some proper hyperideals I_{1}, I_{2}, I_{3} of R, then $I_{1} I_{2} \subseteq I$ or $I_{3} \subseteq I$.

Proof. $(i) \Rightarrow(i i)$ Suppose that I is a 1-absorbing prime hyperideal of R and $I_{1} I_{2} I_{3} \subseteq I$ for some proper hyperideals I_{1}, I_{2}, I_{3} of R such that $I_{1} I_{2} \nsubseteq I$. Then there are non-unit elements $a \in I_{1}$ and $b \in I_{2}$ such that $a \circ b \nsubseteq I$. Since $a \circ b \circ I_{3} \subseteq I, a \circ b \nsubseteq I$, it follows from Lemma 2.9 that $I_{3} \subseteq I$.
$(i i) \Rightarrow(i)$ Suppose that $a \circ b \circ c \subseteq I$ for some non-unit elements $a, b, c \in R$ and $a \circ b \nsubseteq I$. Suppose also that $I_{1}=a R, I_{2}=b R$, and $I_{3}=c R$. Then $I_{1} I_{2} I_{3} \subseteq I$ and $I_{1} I_{2} \nsubseteq I$. Hence $I_{3}=c R \subseteq I$, thus $c \in I$.

A hyperring R is said to be divided if for every prime hyperideal P of R, we have $P \subseteq R x$ for every $x \in R \backslash P$. It is known that the prime hyperideals of a divided hyperring are linearly ordered; i.e., if P_{1}, P_{2} are prime hyperideals of R, then $P_{1} \subseteq P_{2}$ or $P_{2} \subseteq P_{1}$ [13].

Lemma 2.11. Let R be a divided hyperring and I be a C-hyperideal of R. If I is a 1-absorbing prime hyperideal of R with $\operatorname{rad}(I)=P$, then I is a primary hyperideal of R such that $P^{2} \subseteq I$.

Proof. By Theorem $2.5, D(I)=\operatorname{rad}(I)=P$ is a prime hyperideal of R. Suppose that I is a 1 -absorbing prime hyperideal of R. First we show that $P^{2} \subseteq I$. Let $x, y \in P=\operatorname{rad}(I)$. Then $x^{n-2} \circ x \circ x \subseteq I$ for some positive integer n, so $x^{2} \subseteq I$, similarly, $y^{2} \subseteq I$. Thus $x \circ(x+y) \circ y \subseteq I$. Since I is a 1 -absorbing prime hyperideal of R, either $x \circ(x+y)=\overline{x^{2}}+x y \subseteq I$ or $y \in I$. Hence $x \circ y \subseteq I$ and thus $P^{2} \subseteq I$. Now we show that I is a primary hyperideal of R. Let $x \circ y \subseteq I$ for some $x, y \in R$ such that $y \notin P$. Then $x \in P$ and since P is a divided hyperideal of R, we conclude that $x \in y \circ w$ for some $w \in R$. Hence $x \circ y \subseteq y^{2} \circ w$, so $\emptyset \neq x \circ y=x \circ y \cap I \subseteq y^{2} \circ w \cap I$. Therefore $y^{2} \circ w \subseteq I$ because I is a C-hyperideal of R. But $y^{2} \nsubseteq I$ and I is a 1 -absorbing prime hyperideal of R, so $w \in I$. Therefore $x \in I$ and thus I is a primary hyperideal of R such that $P^{2} \subseteq I$.

A valuation hyperring is a hyperdomain R with the property that if I and J are hyperideals of R then either $I \subseteq J$ or $J \subseteq I$.

Theorem 2.12. Let P be a prime hyperideal of a valuation hyperring R. Then the following hold:
(i) If Q is a P-primary C-hyperideal of R and $x \in R \backslash P$, then $Q=Q\langle x\rangle$.
(ii) The product of P-primary C-hyperideals of R is a P-primary hyperideal. If $P \neq P^{2}$, then the only P-primary hyperideals are powers of P.

Proof. (i) Since $x \notin P$, we have $Q \subset\langle x\rangle$ because R is a valuation hyperring. Let K be the quotient hyperfield of R and let $A=\{y \mid y \in K$ and $y \circ x \subseteq Q\}$. Since $Q \subset\langle x\rangle, A$ is a subset of R. Furthermore, it is easy to check that A is a hyperideal of R and $Q=A\langle x\rangle$. Moreover, since Q is P-primary and $\langle x\rangle \nsubseteq P$, we have $A \subseteq Q$. Thus $Q=A$ and $Q=Q\langle x\rangle$, as claimed.
(ii) Let Q_{1}, Q_{2} be P-primary hyperideals of R. Clearly, $\operatorname{rad}\left(Q_{1} Q_{2}\right)=P$. Let x, y be elements of R with $x \circ y \subseteq Q_{1} Q_{2}$ and $x \notin P$. By $(i), Q_{1}=Q_{1}\langle x\rangle$. Hence $x \circ y \subseteq\langle x\rangle Q_{1} Q_{2}$. Since $x \circ y \neq \emptyset$, then there exist $z \in x \circ y$ and so $z \in\langle x\rangle Q_{1} Q_{2}$. Hence $z \in x \circ q$ for some $q \in q_{1} \circ q_{2} \subseteq Q_{1} Q_{2}\left(q_{1} \in Q_{1}\right.$ and $\left.q_{2} \in Q_{2}\right)$. Therefore $0=z-z \in x \circ y-x \circ q=x \circ(y-q)$, so $y-q=0$ because R is a hyperdomain, this implies that $y \in Q_{1} Q_{2}$. Thus $Q_{1} Q_{2}$ is P-primary. Now suppose that $P \neq P^{2}$ and let Q be a P-primary hyperideal of R. Hence Q contains a power of P^{2} and so contains a power of P. Thus there is a positive integer m such that $P^{m} \subseteq Q$ but $P^{m-1} \nsubseteq Q$. Let $x \in P^{m-1}$ and $x \notin Q$, then $Q \subseteq\langle x\rangle$. If we define A as in the proof of (i), then $Q=A\langle x\rangle$. Since Q is P-primary and $x \notin Q, A \subseteq P$. Therefore, $Q=A\langle x\rangle \subseteq P\langle x\rangle \subseteq P^{m}$, so we conclude that $Q=P^{m}$. \square

Theorem 2.13. Let R be a valuation hyperdomain and I be a non-zero proper C-hyperideal of R such that $P=\operatorname{rad}(I)$. If I is a 1-absorbing prime hyperideal of R, then $I=P$ or $I=P^{2}$ where $P=\operatorname{rad}(I)$ is a prime hyperideal of R.

Proof. Let R be a valuation hyperdomain and I be a non-zero proper C-hyperideal of R such that $P=\operatorname{rad}(I)$. Since every valuation hyperdomain is a divided hyperdomain, it follows from Lemma 2.11 that I is a primary hyperideal of R such that $P^{2} \subseteq I$. Since R is a valuation hyperdomain, we conclude that either $I=P$ or $I=P^{2}$ where $P=\operatorname{rad}(I)$ is a prime hyperideal of R by Theorem 2.12.

Let R be a hyperdomain with quotient hyperfield K. A proper hyperideal I of R is called invertible if $I I^{-1}=R$, where $I^{-1}=\{r \in K: r \circ I \subseteq R\}$. A hyperdomain R is called a Prüfer hyperdomain if every non-zero finitely generated hyperideal of R is invertible. A hyperdomain is called a Dedekind hyperdomain if every nonzero proper hyperideal of R is invertible. In the following results, 1-absorbing prime hyperideals of Dedekind hyperdomains and Prüfer hyperdomains are completely described.

Lemma 2.14. Let R be a Prüfer hyperdomain and Q be a P-primary C-hyperideal of R such that $P=\operatorname{rad}(I)$. Then if $P \neq P^{2}$, then $Q=P^{m}$ for some positive integer m.

Proof. The proof holds by Theorem 2.13.

Theorem 2.15. Let R be a Prüfer hyprdomain and I be a non-zero proper C-hyperideal of R such that $P=\operatorname{rad}(I)$ where P is an invertible hyperideal. If I is a 1 -absorbing prime hyperideal of R, then $I=P$ or $I=P^{2}$ where $P=\operatorname{rad}(I)$ is a prime hyperideal of R.

Proof. Suppose that R is a Prüfer hyperdomain and I is a non-zero proper hyperideal of R such that $P=\operatorname{rad}(I)$. If R is quasilocal with maximal hyperideal M, then it is known that R is a valuation hyperdomain since R is a Prüfer hyperdomain, thus the claim follows from Theorem 2.13. So suppose that R is not a quasilocal hyperring. Then it follows from Theorem 2.7 that I is a prime hyperideal of R and hence I is a P-primary hyperideal of R such that $P^{2} \subseteq I$. Thus $I=P$ or $I=P^{2}$ where $P=\operatorname{rad}(I)$ is a prime hyperideal of R by Lemma 2.14.

Theorem 2.16. Let R be a Noetherian hyperdomain that is not a hyperfield and I be a hyperideal of R. Then $(i) \Rightarrow(i i) \Rightarrow(i i i)$.
(i) R is a Dedekind hyperdomain;
(ii) If I is a 1-absorbing prime hyperideal of R, then $I=M$ or $I=M^{2}$ where M is a maximal hyperideal of R;
(iii) If I is a 1-absorbing prime hyperideal of R, then $I=P$ or $I=P^{2}$ where $P=\operatorname{rad}(I)$ is a prime hyperideal of R.

Proof. $(i) \Rightarrow($ (ii) Suppose that R is a Noetherian hyperdomain that is not a hyperfield and I is a 1 -absorbing prime hyperideal of R such that $P=\operatorname{rad}(I)$. Since R is a Dedekind hyperdomain, we conclude that every non-zero prime hyperideal of R is a maximal hyperideal of R. Hence P is a maximal hyperideal of R. This means that I is a primary hyperideal of R such that $P^{2} \subseteq I$. Therefore, by Theorem $2.15, I=M$ or $I=M^{2}$ where M is a maximal hyperideal of R.
$(i i) \Rightarrow(i i i)$ is obvious.
In view of Theorem 2.16, we have the following result.
Corollary 2.17. Let R be a principal hyperideal hyperdomain that is not a hyperfield and I be a non-zero proper hyperideal of R. If I is a 1-absorbing prime hyperideal of R, then $I=p R$ or $I=p^{2} R$ for some non-zero prime element p of R.
Theorem 2.18. Let I be a P-primary hyperideal of a hyperring R. If $\left(P^{2}: x\right) \subseteq I$ for every $x \in P \backslash I$, then I is a 1-absorbing prime hyperideal of R.

Proof. Let I be a P-primary hyperideal of a hyperring R. Suppose that $\left(P^{2}: x\right) \subseteq I$ for every $x \in P \backslash I$ and $x \circ y \circ z \subseteq I$ for some non-unit elements $x, y, z \in R$. Assume that $x \circ y \nsubseteq I$ and $z \notin I$. Since I is a P-primary hyperideal of R, we conclude that $z \in P \backslash I$, so $x \circ y \subseteq\left(P^{2}: z\right) \subseteq I$, which is a contradiction. Hence either $x \circ y \subseteq I$ or $z \in I$, so I is a 1-absorbing prime hyperideal of R.

Theorem 2.19. Let R and S be multiplicative hyperrings and $f: R \rightarrow S$ be a hyperring homomorphism such that $f(1)=1$ and $f(a)$ is non-unit in S for every non-unit element a in R. Then the following statements hold:
(i) If J is a 1-absorbing prime hyperideal of S, then $f^{-1}(J)$ is a 1-absorbing prime hyperideal of S.
(ii) If f is onto and I is a l-absorbing prime hyperideal of R with $\operatorname{Ker}(f) \subseteq I$, then $f(I)$ is a 1-absorbing prime hyperideal of S.

Proof. (i) Suppose that J is a 1-absorbing prime hyperideal of S and $a \circ b \circ c \subseteq f^{-1}(J)$ for some non-unit elements $a, b, c \in R$. Then $f(a \circ b \circ c)=f(a) \circ f(b) \circ f(c) \subseteq J$, which means that $f(a) \circ f(b) \subseteq J$ or $f(c) \in J$. It follows $a \circ b \subseteq f^{-1}(J)$ or $c \in f^{-1}(J)$. Hence $f^{-1}(J)$ is a 1 -absorbing prime hyperideal of R.
(ii) Suppose that f is onto and I is a 1-absorbing prime hyperideal of R with $\operatorname{Ker}(f) \subseteq I$ and $x \circ y \circ z \subseteq f(I)$ for some non-unit elements $x, y, z \in S$. Since f is onto, there exist non-unit elements $a, b, c \in R$ such that $x=f(a), y=f(b)$ and $z=f(c)$. Therefore $f(a \circ b \circ c)=f(a) \circ f(b) \circ f(c)=x \circ y \circ z \subseteq f(I)$. Since $\operatorname{Ker}(f) \subseteq I$, we conclude that $a \circ b \circ c \subseteq I$. Thus $a \circ b \subseteq I$ or $c \in I$, so $x \circ y \subseteq f(I)$ or $z \in f(I)$. Hence $f(I)$ is a 1-absorbing prime hyperideal of S.

Corollary 2.20. Let I and J be proper hyperideals of a multiplicative hyperring R with $I \subseteq J$ and $U(R / I)=\{a+I \mid a \in U(R)\}$. Then J is a 1-absorbing prime hyperideal of R if and only if J / I is a 1 -absorbing prime hyperideal of R / I.
Proof. Suppose that I and J are proper hyperideals of R with $I \subseteq J$ and let $f: R \rightarrow R / I$ such that $f(a)=a+I$. Then f is a hyperring homomorphism from R onto $R / I, f(1)=1$ and $f(a) \in R / I$ is non-unit for every non-unit a in R. But $\operatorname{Ker}(f)=I \subseteq J$ and f is onto, hence $f(J)=J / I$ is a 1 -absorbing prime hyperideal of R / I by Theorem $2.19(i i)$. Assume that J / I is a 1 -absorbing prime hyperideal of R / I. Then $f^{-1}(J / I)=J$ is a 1-absorbing prime hyperideal of R by Theorem $2.19(i)$.

Let $(R,+, \circ$) be a multiplicative hyperring with identity 1 . An R-(left) hypermodule M is an abelian group $(M,+)$ together with a map $: R \times M \longrightarrow M$ defined by

$$
(a, m) \mapsto a \cdot m=a m \in M
$$

such that for all $r_{1}, r_{2} \in R$ and $m_{1}, m_{2}, m \in M$ we have
(1) $r_{1} \cdot\left(m_{1}+m_{2}\right)=r_{1} \cdot m_{1}+r_{2} \cdot m_{2}$;
(2) $\left(r_{1}+r_{2}\right) \cdot m=\left(r_{1} \cdot m\right)+\left(r_{2} \cdot m\right)$;
(3) $\left(r_{1} \circ r_{2}\right) \cdot m=r_{1} \cdot\left(r_{2} \cdot m\right)$;
(4) $1 m=m$;
(5) $r 0_{M}=0_{R} m=0_{M}$.

A non-empty subset N of an R-hypermodule M is called a subhypermodule if N is an R hypermodule with the operations of M [15].

Let R be a commutative multiplicative hyperring with identity 1 and M be an R-hypermodule. Let $R(+) M=\{(r, m): r \in R, m \in M\}$. Consider addition and multiplication as follows: For each $a, b \in R$ and $m, n \in M ;(a, n)+(b, m)=(a+b, m+n)$ and $(a, m) \circ(b, n)=$ $\{(c, a n+b m) \mid c \in a \circ b\}$. It is easy to see that $R(+) M$ is a commutative multiplicative hyperring with identity $(1,0)$ and we call it the idealization of M. Suppose that I is a hyperideal of R and N is a subhypermodule of M. Then $I(+) N$ is a hyperideal of $R(+) M$ if and only if $I M \subseteq N$. In this case, $I(+) N$ is called a homogeneous hyperideal of $R(+) M$.

Theorem 2.21. Let M be an R-hypermodule and $I(+) N$ be a homogeneous hyperideal of the hyperring $R(+) M$. If $I(+) N$ is a 1 -absorbing prime hyperideal of $R(+) M$, then I is a 1 absorbing prime hyperideal of R.
Proof. Let $a \circ b \circ c \subseteq I$ for some non-unit elements $a, b, c \in R$. Then $(a, 0) \circ(b, 0) \circ(c, 0)=$ $\{(t, 0) \mid t \in a \circ b \circ c\} \subseteq I(+) N$, and so $a \circ b \circ c \subseteq I$. Since $I(+) N$ is a 1-absorbing prime hyperideal of $R(+) M$, either $(a, 0) \circ(b, 0) \subseteq I(+) N$ or $(c, 0) \in I(+) N$. Hence either $a \circ b \subseteq I$ or $c \in I$ and thus I is a 1 -absorbing prime hyperideal of R.

3 1-Absorbing Prime Avoidance Theorem

In this section, we state the 1 -Absorbing Prime Avoidance Theorem for 1 -absorbing prime hyperideals of R.

Let $I, I_{1}, I_{2}, \ldots, I_{n}$ be hyperideals of R. A covering $I \subseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}$ is said to be efficient precisely when I is not contained in the union of any $n-1$ of the hyperideals $I_{1}, I_{2}, \ldots, I_{n}$. We shall say that $I \subseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}$ is an efficient union if none of the $I_{k}, 1 \leq k \leq n$, may be excluded.

Lemma 3.1. Let $I \subseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}(n \geq 2)$ be an efficient covering. If $I_{i} \nsubseteq\left(I_{j}:_{R} x\right)$ for every $x \in R \backslash I_{j}$ and $i \neq j$, then no I_{j} is 1 -absorbing prime for every $j \in\{1, \ldots, n\}$.
Proof. Suppose to the contrary, I_{j} is a 1 -absorbing prime hyperideal of R for some $j \in$ $\{1, \ldots, n\}$. It is easy to see that $I=\left(I \cap I_{1}\right) \cup\left(I \cap I_{2}\right) \cup \cdots \cup\left(I \cap I_{n}\right)$ is an efficient union. So there exists an element $x_{j} \in I \backslash I_{j}$ for every $j \in\{1, \ldots, n\}$. Since $I=\left(I \cap I_{1}\right) \cup\left(I \cap I_{2}\right) \cup \cdots \cup\left(I \cap I_{n}\right)$ is an efficient union, we conclude that $\left(\cap_{i \neq j} I_{i}\right) \cap I \subseteq I_{j} \cap I$. By hypothesis, $I_{i} \nsubseteq\left(I_{j}: x_{j}\right)$ such that $x_{j} \in I \backslash I_{j}$ and $i \neq j$. Hence there exists $y_{i} \in I_{i} \backslash\left(I_{j}: x_{j}\right)$ for every $i \neq j$. Let $Y=y_{1} \circ \cdots y_{j-1} \circ y_{j+1} \circ \cdots \circ y_{n}$. Then $Y \circ x_{j} \subseteq \cap_{i \neq j}\left(I_{i} \cap I\right)$ but $Y \circ x_{j} \nsubseteq I_{j} \cap I$. Since for otherwise, assume that $Y \circ x_{j} \subseteq I_{j} \cap I$. Since I_{j} is 1 -absorbing prime and $\left(I_{j}: x_{j}\right)$ is a prime hyperideal of R by Theorem 2.5 , we have $y_{i} \in\left(I_{j}: x_{j}\right)$ for some $i \neq j$, which is impossible. Therefore, $Y \circ x_{j} \nsubseteq I \cap I_{j}$ and this contradicts the fact that $\left(\bigcap_{i \neq j} I_{i}\right) \cap I \subseteq I_{j} \cap I$. The proof is complete.

In following theorem we state 1-Absorbing Prime Avoidance Theorem in multiplicative hyperrings.

Theorem 3.2. Let $I, I_{1}, I_{2}, \ldots, I_{n}$ be hyperideals of R and at most two of $I_{1}, I_{2}, \ldots I_{n}$ are not 1-absorbing prime. Suppose that I is a hyperideal of R such that $I \subseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}$ and $I_{i} \not \nsubseteq\left(I_{j}: x\right)$ for every $x \in R \backslash I_{j}$ and $i \neq j$. Then $I \subseteq I_{j}$ for some $j \in\{1, \ldots, n\}$.
Proof. Let $I \subseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}$ be a covering such that at least $n-2$ of the hyperideals $I_{1}, I_{2}, \ldots I_{n}$ are 1 -absorbing prime. Without loss of generality, one may reduce the covering to an efficient covering. If $n=2$, then it is obvious. Suppose that $n>2$. Since the covering is efficient and $I_{i} \nsubseteq\left(I_{j}: x\right)$ for every $x \in R \backslash I_{j}$ and $i \neq j$, by Lemma 3.1, $n<2$. Hence $n=1$
and $I \subseteq I_{j}$ for some $j \in\{1, \ldots, n\}$.

Corollary 3.3. Let $I=\left\langle r_{1}, \ldots, r_{n}\right\rangle$ be a finitely generated hyperideal of R for some $r_{1}, \ldots, r_{n} \in$ R. Let $I_{1}, I_{2}, \ldots, I_{n}$ be 1 -absorbing prime hyperideals of $R, I \nsubseteq I_{i}$ for every $i \in\{1, \ldots, n\}$ and $I_{i} \nsubseteq\left(I_{j}: x\right)$ for every $x \in R \backslash I_{j}$ and $i \neq j$. Then there exist $b_{2}, \ldots, b_{s} \in R$ such that $A=r_{1}+b_{2} \circ r_{2}+\cdots+b_{s} \circ r_{s} \nsubseteq \bigcup_{i=1}^{n} I_{i}$.
Proof. We prove the corollary by induction on n. If $n=1$, then the result is clear. So suppose that $n \geq 1$ and the result has been proved for smaller values than n. Then there exist $a_{2}, \ldots, a_{s} \in R$ such that $B=r_{1}+a_{2} \circ r_{2}+\cdots+a_{s} \circ r_{s} \nsubseteq \bigcup_{i=1}^{n-1} I_{i}$. If $B \nsubseteq I_{n}$, so $B \nsubseteq \bigcup_{i=1}^{n} I_{i}$, because if $B \subseteq \bigcup_{i=1}^{n} I_{i}$, then $B \subseteq\left(\bigcup_{i=1}^{n-1} I_{i}\right) \bigcup I_{n}$, hence $B \subseteq \bigcup_{i=1}^{n-1} I_{i}$ or $B \subseteq I_{n}$, a contradiction and so there is nothing to prove. Hence suppose that $B \subseteq I_{n}$. If $r_{2}, \ldots, r_{s} \in I_{n}$, then $r_{1} \in I_{n}$, a contradiction, as $I \nsubseteq I_{n}$. Thus we assume $r_{i} \notin I_{n}$ for some i. Without loss of generality, suppose that $r_{2} \notin I_{n}$. By the hypothesis, $I_{i} \nsubseteq\left(I_{j}: x\right)$ for every $x \in R \backslash I_{j}$ and $i \neq j$. Hence, there exists $y_{i} \in I_{i} \backslash\left(I_{n}: r_{2}\right)$ for every $i \neq n$. Let $Y=y_{1} \circ y_{2} \circ \cdots y_{n-1}$. Then $Y \subseteq I_{i}$ for every $i \neq n$ but $Y \nsubseteq\left(I_{n}: r_{2}\right)$. Therefore, $Y \subseteq I_{i} \backslash\left(I_{n}: r_{2}\right)$ for every $i \neq n$. Let $A=r_{1}+\left(a_{2}+Y\right) \circ r_{2}+\cdots+a_{s} \circ r_{s}$. We consider two cases. Case one: Suppose that $I \subseteq I_{1} \cup I_{2} \cup \cdots \bigcup I_{n}$. By Theorem 3.2, $I \subseteq I_{j}$ for some $j \in\{1, \ldots, n\}$, which is a contradiction. Case two: Suppose that $I \nsubseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}$. Then by a similar argument as above, we assume $r_{2} \notin I_{n}$. Hence $A=B+Y \circ r_{2} \nsubseteq \bigcup_{i=1}^{n} I_{i}$ and so the proof is complete.

Corollary 3.4. Let $I_{1}, I_{2}, \ldots, I_{n}$ be 1-absorbing prime hyperideals of R, I be a hyperideal of R and $I_{i} \nsubseteq\left(I_{j}: x\right)$ for every $x \in R \backslash I_{j}$ and $i \neq j$. If $r \in R$ and $R r+I \nsubseteq \bigcup_{i=1}^{n} I_{i}$, then there exists $x \in I$ such that $r+x \notin \bigcup_{i=1}^{n} I_{i}$.

Proof. Suppose that $r \in \bigcap_{i=1}^{k} I_{i}$ but $r \notin \bigcup_{i=k+1}^{n} I_{i}$. If $k=0$, then $r=r+0 \notin \bigcup_{i=1}^{n} I_{i}$ and so we are done. Thus assume that $1 \leq k$. By the hypothesis, $I_{i} \nsubseteq\left(I_{j}: x\right)$ for every $x \in R \backslash I_{j}$ and $i \neq j$, so Theorem 3.2 implies that $I \nsubseteq \bigcup_{i=1}^{k} I_{i}$. Hence there exists $a \in I \backslash \bigcup_{i=1}^{k} I_{i}$. We show that $\bigcap_{i=1}^{k} I_{i} \nsubseteq \bigcup_{i=1}^{k}\left(I_{j}: x\right)$ for every $x \in R \backslash I_{j}$. Suppose that $\bigcap_{i=1}^{k} I_{i} \subseteq \bigcup_{i=1}^{k}\left(I_{j}: a\right)$ for $a \in I \backslash I_{j}$. By Theorem 3.2, we get $\bigcap_{i=1}^{k} I_{i} \nsubseteq\left(I_{j}: a\right)$ for some $j \in\{1, \ldots, k\}$. This implies that $\bigcap_{i=1}^{k} I_{i} \nsubseteq\left(I_{j}: a\right)$ for some $j \in\{1, \ldots, k\}$ and $a \in I \backslash I_{j}$. Since $\left(I_{j}: a\right)$ is prime, we conclude that $I_{i} \subseteq\left(I_{j}: a\right)$ where $i \in\{k+1, \ldots, n\}$ and $j \in\{1, \ldots, k\}$, which contradicts the hypothesis. Thus there exists $b \in \bigcap_{i=k+1}^{n} I_{i} \backslash \bigcup_{j=1}^{k}\left(I_{j}: a\right)$. Let $x \in a \circ b$. Then $x \in I$. We also have $x \in \bigcap_{i=k+1}^{n} I_{i}$, but $x \notin \bigcup_{i=1}^{k} I_{i}$, because otherwise $x \in a \circ b \subseteq I_{i}$ for some $i \in\{1, \ldots, k\}$ and hence $b \in\left(I_{i}: a\right)$ for some $i \in\{1, \ldots, k\}$, a contradiction. Thus $x \in \bigcap_{i=k+1}^{n} I_{i} \backslash \bigcup_{i=1}^{k} I_{i}$. Now $r \in \bigcap_{i=1}^{k} I_{i} \backslash \bigcup_{i=k+1}^{n} I_{i}$ shows that $r+x \notin \bigcup_{i=1}^{n} I_{i}$. .

References

[1] M. Anbarloei, On 2-absorbing and 2-absorbing primary hyperideals of a multiplicative hyperring, Cogent Mathematics 4(1), 1-8 (2017).
[2] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39(5), 1646-1672 (2011).
[3] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75, 417-429 (2007).
[4] A. Badawi, Ü. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51(4), 1163-1173 (2014).
[5] P. Corsini and V. Leoreanu, Applications of Hyperstructures Theory, Adv. Math., Kluwer Academic Publishers (2013).
[6] U. Dasgupta, On prime and primary hyperideals of a multiplicative hyperrings, An. Stint. Univ. Al. I. Cuza Iasi 58, 19-36 (2012).
[7] B. Davvaz and V. Leoreanu-Fotea, Hyperring theory and applications, Internationl Academic Press, USA (2007).
[8] B. Davvaz and A. Salasi, A realization of hyperrings, Comm. Algebra 34(12), 4389-4400 (2006).
[9] K. Hila, K. Naka and B. Davvaz, On (k, n)-absorbing hyperideals in Krasner (m, n)-hyperrings, Quarterly J.Math. 69, 1035-1046 (2018).
[10] P. Ghiasvand, On 2-absorbing hyperideals of multiplicative hyperrings, Second Seminar on Algebra and Its Applications 2, 58-59 (2014).
[11] M. Krasner, A class of hyperrings and hyperfield, Intern. J. Math. Math. Sci. 6(2), 307-312 (1983).
[12] F. Marty, Sur une generalization de la notion de groupe, in: 8iem Congres Math. Scandinaves, Stockholm 8, 45-49 (1934).
[13] R. Procesi and R. Rota, On some classes of hyperstructures, Discrete Mathematics 208/209, 485-497 (1999).
[14] R. Rota, Sugli iperanelli moltiplicativi, Rend. Di Math. Series VII(4), 711-724 (1982).
[15] T. Vougiouklis, Hyperstructures and their Representations, Hadronic Press, Palm Harber, FL (1994).

Author information

Peyman Ghiasvand and Farkhondeh Farzalipour, Department of Mathematics, Payame Noor University, P.O.BOX 19395-3697 Tehran, Iran.

E-mail: p_ghiasvand@pnu.ac.ir and f_farzalipour@pnu.ac.ir
Received: November 26th, 2021
Accepted: August 13th, 2022

