SOME FIXED POINT THEOREMS IN 2-INNER PRODUCT SPACES

Hassan Ranjbar and Asadollah Niknam
Communicated by Harikrishnan Panackal

MSC 2010 Classifications: Primary 46L08; Secondary 15A39, 26D15.
Keywords and phrases: 2-inner product space, Hilbert space, fixed point.

Abstract

This paper aims to establish some results on the structure of fixed point sets for mappings in the 2 -inner product spaces. To this end, we employ some well-known techniques of 2 -inner product spaces.

1 Introduction and Preliminaries

The concept of 2-metric spaces, linear 2-normed spaces, and 2-inner product spaces, introduced by Gähler [4]. After that, several authors like White [11], Lewandowska [8, 9], Freese [3], and Diminnie [2], worked on possible applications of Metric Geometry, Functional Analysis, and Topology in these settings. Some other related results are also discussed in [1, 5, 7, 10].

Let \mathscr{X} be a linear space of dimension greater than 1 over the field $K=\mathbb{R}$ of real numbers, or the field $K=\mathbb{C}$ of complex numbers. Suppose that $\langle\cdot, \cdot \mid \cdot\rangle$ is a K-valued function defined on $\mathscr{X} \times \mathscr{X} \times \mathscr{X}$ satisfying the following conditions:
(I1) $\langle x, x \mid z\rangle \geq 0$ and $\langle x, x \mid z\rangle=0$ if and only if x and z are linearly dependent;
(I2) $\langle x, x \mid z\rangle=\langle z, z \mid x\rangle$;
(I3) $\langle y, x \mid z\rangle=\overline{\langle x, y \mid z\rangle}$;
(I4) $\langle\alpha x, y \mid z\rangle=\alpha\langle x, y \mid z\rangle$ for any scalar $\alpha \in K$;
(I5) $\left\langle x+x^{\prime}, y \mid z\right\rangle=\langle x, y \mid z\rangle+\left\langle x^{\prime}, y \mid z\right\rangle$.
$\langle\cdot, \cdot \mid \cdot\rangle$ is called a 2-inner product on \mathscr{X} and $(\mathscr{X},\langle\cdot, \cdot \mid \cdot\rangle)$ is called a 2-inner product space (or 2-pre-Hilbert space). Some basic properties of 2-inner product $\langle\cdot, \cdot \mid \cdot\rangle$ can be immediately obtained as follows:
(P1) $\langle 0, y \mid z\rangle=\langle x, 0 \mid z\rangle=\langle x, y \mid 0\rangle=0$;
(P2) $\langle x, \alpha y \mid z\rangle=\bar{\alpha}\langle x, y \mid z\rangle$;
(P3) $\langle x, y \mid \alpha z\rangle=|\alpha|^{2}\langle x, y \mid z\rangle$, for all $x, y, z \in \mathscr{X}$ and $\alpha \in K$.
By the above properties, we can prove the Cauchy-Schwarz inequality

$$
|\langle x, y \mid z\rangle|^{2} \leq\langle x, x \mid z\rangle\langle y, y \mid z\rangle
$$

The most standard example for a linear 2-inner product $\langle\cdot, \cdot \mid \cdot\rangle$ is defined on \mathscr{X} by

$$
\langle x, y \mid z\rangle:=\operatorname{det}\left[\begin{array}{ll}
\langle x, y\rangle & \langle x, z\rangle \\
\langle z, y\rangle & \langle z, z\rangle
\end{array}\right]
$$

for all $x, y, z \in \mathscr{X}$. In [2], it is shown that, in any given 2 -inner product space $(\mathscr{X},\langle\cdot, \cdot \mid \cdot\rangle)$, we can define a function

$$
\begin{equation*}
\|x, z\|=\sqrt{\langle x, x \mid z\rangle} \tag{1.1}
\end{equation*}
$$

for all $x, z \in \mathscr{X}$. It is easy to see that this function satisfies the following conditions:
(N1) $\|x, y\|=0$ if and only if x and y are linearly dependent;
(N2) $\|x, y\|=\|y, x\|$;
(N3) $\|\alpha x, y\|=|\alpha|\|x, y\|$ for any real number α;
(N4) $\|x, y+z\| \leq\|x, y\|+\|x, z\|$.
Any function $\|\cdot, \cdot\|$ defined on $\mathscr{X} \times \mathscr{X}$ and satisfying the above conditions is called a 2-norm on \mathscr{X} and $(\mathscr{X},\|\cdot, \cdot\|)$ is called linear 2 -normed space. Some of the fundamental properties of 2-norms are that they are non-negative and $\|x, y+\alpha x\|=\|x, y\|$ for all $x, y \in \mathscr{X}$ and all $\alpha \in \mathbb{R}$. Whenever a 2-inner product space $(\mathscr{X},\langle\cdot, \cdot \mid \cdot\rangle)$ is given, we consider it as a linear 2-normed sapce ($\mathscr{X},\|\cdot, \cdot\|$) with the 2-norm defined by (1.1).

An operator $A \in \mathcal{B}(\mathscr{X})$ is said to be bounded, if there exists $M>0$ such that

$$
\|A x, y\| \leq M\|x, y\|,
$$

for every $x \in \mathscr{X}$.
The norm of the b-operator is defined by

$$
\begin{equation*}
\|A\|_{2}=\sup \{\|A x, b\|:\|x, b\|=1\} \tag{1.2}
\end{equation*}
$$

where b is fix element in \mathscr{X}. It is easy to check that (1.2) is equivalent with

$$
\sup \{|(A x, y \mid b)|:\|x, b\|=\|y, b\|=1\}
$$

Let $(\mathscr{X},\langle\cdot, \cdot \mid \cdot\rangle)$ be a 2 -inner product space, and $z \in \mathscr{X}$. A sequence $\left\{x_{n}, z\right\}$ in \mathscr{X} is a z-Cauchy sequence if

$$
\forall \varepsilon>0 \exists N>0 \text {, s.t } \forall m, n \geq N 0<\left\|x_{m}-x_{n}, z\right\|<\varepsilon .
$$

Meanwhile, \mathscr{X} is called z-Hilbert if every z-Cauchy sequence is converges in the semi normed $(\mathscr{X},\|\cdot, z\|)$.

2 Main Results

Let C be a non empty closed convex subset of a 2-inner product space. A mapping $A: C \rightarrow C$ is called non spreading if

$$
2\|A x-A y, z\|^{2} \leq\|A x-y, z\|^{2}+\|A y-x, z\|^{2}
$$

for all $x, y \in C$.
We say $A: C \rightarrow C$ is an asymptotic non-spreading mapping if there exists two functions $\alpha: C \rightarrow[0,2)$ and $\beta: C \rightarrow[0, k], k<2$, such that
(a) $2\|A x-A y, z\|^{2} \leq \alpha(x)\|A x-y, z\|^{2}+\beta(x)\|A y-x, z\|^{2}$, for all $x, y, z \in C$.
(b) $0<\alpha(x)+\beta(x) \leq 2$, for all $x \in C$.

It is necessary to remark that
(a) If $\alpha(x)=\beta(x)=1$, for all $x \in C$, then A is a non-spreading mapping.
(b) If $\alpha(x)=\frac{4}{3}$ and $\beta(x)=\frac{2}{3}$ for all $x \in C$, then A is a $A J-2$ mapping.

Let \mathscr{X} be a real 2-inner product space and let C be a non empty subset of \mathscr{X}. A mapping $A: C \rightarrow \mathscr{X}$ is called symmetric generalized hybrid if there exist $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ such that

$$
\begin{aligned}
& \alpha\|A x-A y, z\|^{2}+\beta\left(\|x-A y, z\|^{2}+\|A x-y, z\|^{2}\right)+\gamma\|x-y, z\|^{2} \\
& +\delta\left(\|x-A x, z\|^{2}+\|y-A y, z\|^{2}\right) \leq 0
\end{aligned}
$$

for all $x, y, z \in \mathscr{X}$. Such mapping A is also called $(\alpha, \beta, \gamma, \delta)$ - symmetric generalized hybrid.

Theorem 2.1. Let C be a non-empty closed convex subset of a 2 -inner product space $\mathscr{X} \times \mathscr{X}$. Let α, β be the same as in the above. Then $A: C \rightarrow C$ is an asymptotic non spreading mapping if

$$
\begin{aligned}
& \|A x-A y, z\|^{2} \\
& \leq \frac{\alpha(x)-\beta(x)}{2-\beta(x)}\|A x-x, z\|^{2} \\
& \quad+\frac{\alpha(x)\|x-y, z\|}{2-\beta(x)} \frac{2\langle A x-x, \alpha(x)(x-y)+\beta(x)(A y-x) \mid z\rangle}{2-\beta(x)}
\end{aligned}
$$

Proof. We have that for $x, y, z \in C$

$$
\begin{aligned}
2\|A x-A y, z\|^{2} \leq & \alpha(x)\|A x-y, z\|^{2}+\beta(x)\|A y-x, z\|^{2} \\
= & \alpha(x)\|A x-x, z\|^{2}+2 \alpha(x)\langle A x-x, x-y \mid z\rangle \\
& +\alpha(x)\|x-y, z\|^{2}+\beta(x)\|A y-A x, z\|^{2} \\
& +2 \beta(x)\langle A y-A x, A x-x \mid z\rangle+\beta(x)\|A x-x, z\|^{2} \\
= & (\alpha(x)+\beta(x))\|A x-x, z\|^{2}+\beta(x)\|A y-A x, z\|^{2} \\
& +\alpha(x)\|x-y, z\|^{2}+2 \alpha(x)\langle A x-x, x-y \mid z\rangle \\
& +2 \beta(x)\langle A y-x+x-A x, A x-x \mid z\rangle \\
= & (\alpha(x)-\beta(x))\|A x-x, z\|^{2}+\beta(x)\|A y-A x, z\|^{2} \\
& +\alpha(x)\|x-y, z\|^{2}+\langle A x-x, 2 \alpha(x)(x-y) \\
& +2 \beta(x) A y-x|z\rangle
\end{aligned}
$$

and this implies that desired result.
Theorem 2.2. Let $\mathscr{X} \times \mathscr{X}$ be a real 2-inner product space, let C be a nonempty closed convex subset of \mathscr{X} and let A be an $(\alpha, \beta, \gamma, \delta)$-symmetric generalized hybrid mapping from C into itself such that the conditions
(i) $\alpha+2 \beta+\gamma \geq 0$
(ii) $\alpha+\beta+\delta>0$
(iii) $\delta \geq 0$
holds. Then A has a fixed point if and only if there exists $y \in C$ such that $\left\{A^{n} y: n \in\{0,1, \ldots\}\right\}$ is bounded. In particular, a fixed point of A is unique in the case of $\alpha+2 \beta+\gamma>0$ on the condition.
Proof. Assume that A has a fixed point y. Then $\left\{A^{n} y: n \in\{0,1, \ldots\}\right\}=\{y\}$ and hence $\left\{A^{n} y: n \in\{0,1, \ldots\}\right\}$ is bounded. Conversely, suppose that there exists $y \in C$ such that $\left\{A^{n} y: n \in\{0,1, \ldots\}\right\}$ is bounded. Since A is an $(\alpha, \beta, \gamma, \delta)$-symmetric generalized hybrid mapping of C into itself, we have that

$$
\begin{aligned}
& \alpha\left\|A x-A^{n+1} y, z\right\|^{2}+\beta\left(\left\|x-A^{n+1} y, z\right\|^{2}+\left\|A x-A^{n} y, z\right\|^{2}\right) \\
& + \\
& \quad \gamma\left\|x-A^{n} y, z\right\|^{2}+\delta\left(\|x-A x, z\|^{2}\right. \\
& \left.\quad+\left\|A^{n} y-A^{n+1} y, z\right\|^{2}\right) \leq 0
\end{aligned}
$$

for all $n \in \mathbb{N} \cup\{0\}$ and $x \in C$. Since $\left\{A^{n} y\right\}$ is bounded, we can apply Banach limit μ to both sides of the inequality. Since $\mu_{n}\left\|A x-A^{n} y, z\right\|^{2}=\mu_{n}\left\|A x-A^{n+1} y, z\right\|^{2}$ and $\mu_{n}\left\|x-A^{n+1} y, z\right\|^{2}=$ $\mu_{n}\left\|x-A^{n} y, z\right\|^{2}$, we have that

$$
\begin{aligned}
& (\alpha+\beta) \mu_{n}\left\|A x-A^{n} y, z\right\|^{2}+(\beta+\gamma) \mu_{n}\left\|x-A^{n} y, z\right\|^{2} \\
& \quad+\delta\left(\|x-A x, z\|^{2}+\mu_{n}\left\|A^{n} y-A^{n+1} y, z\right\|^{2}\right) \leq 0
\end{aligned}
$$

Furthermore, since

$$
\begin{aligned}
& \mu_{n}\left\|A x-A^{n} y, z\right\|^{2}=\|A x-x, z\|^{2}+2 \mu_{n}\left(A x-x, x-A^{n}, z\right) \\
& \quad+\mu_{n}\left\|x-A^{n} x, z\right\|^{2}
\end{aligned}
$$

we have that

$$
\begin{aligned}
& (\alpha+\beta+\delta)\|A x-x, z\|^{2}+2(\alpha+\beta) \mu_{n}\left(A x-x, x-A^{n} \mid z\right) \\
& \quad+(\alpha+2 \beta+\gamma) \mu_{n}\left\|x-A^{n} y, z\right\|^{2}+\delta \mu_{n}\left\|A^{n} x-A^{n+1} x, z\right\|^{2} \leq 0
\end{aligned}
$$

From (i) and (iii) we have

$$
\begin{equation*}
(\alpha+\beta+\delta)\|A x-x, z\|^{2}+2(\alpha+\beta) \mu_{n}\left(A x-x, x-A^{n}, z\right) \leq 0 \tag{2.1}
\end{equation*}
$$

Since there exists $p \in \mathscr{X}$ such that

$$
\mu_{n}\left(w, A^{n} y, z\right)=(w, p, z)
$$

for all $w \in \mathscr{X}$. We have from (2.1) that

$$
\begin{equation*}
(\alpha+\beta+\delta)\|A x-x, z\|^{2}+2(\alpha+\beta) \mu_{n}(A x-x, x-p, z) \leq 0 \tag{2.2}
\end{equation*}
$$

Since C is closed and convex, we have that

$$
p \in \overline{c o}\left\{A^{n} x: n \in \mathbb{N}\right\} \subset C
$$

Putting $x=p$ we obtain from (2.2) that

$$
\begin{equation*}
(\alpha+\beta+\delta)\|A p-p, z\|^{2} \leq 0 \tag{2.3}
\end{equation*}
$$

We have from (ii) that $\|A p-p, b\|^{2} \leq 0$. This implies that p is a fixed point in A.
New suppose that $\alpha+2 \beta+\gamma>0$. Let p_{1} and p_{2} be fixed points of A. Then we have that

$$
\begin{aligned}
& \alpha\left\|A p_{1}-A p_{2}, z\right\|^{2}+\beta\left(\left\|p_{1}-A p_{2}, z\right\|^{2}+\left\|A p_{1}-p_{2}, z\right\|^{2}\right) \\
& \quad+\gamma\left\|p_{1}-p_{2}, z\right\|^{2}+\delta\left(\left\|p_{1}-A p_{1}, z\right\|^{2}\right. \\
& \left.\quad+\left\|p_{2}-A p_{2}, z\right\|^{2}\right) \leq 0
\end{aligned}
$$

and hence $(\alpha+2 \beta+\gamma)\left\|p_{1}-p_{2}, z\right\|^{2} \leq 0$. We have from $\alpha+2 \beta+\gamma>0$ that $p_{1}=p_{2}$. Therefore a fixed point of A is unique. This completes the proof.

Corollary 2.3. Let $\mathscr{X} \times \mathscr{X}$ be a real 2-inner product space, let C be a nonempty closed convex subset of \mathscr{X} and let A be an $(\alpha, \beta, \gamma, \delta)$-symmetric generalized hybrid mapping from C into itself such that the conditions
(i) $\alpha+2 \beta+\gamma \geq 0$
(ii) $\alpha+\beta+\delta>0$
(iii) $\delta \geq 0$
holds. Then A has a fixed. In particular, a fixed point of A is unique in the case of $\alpha+2 \beta+\gamma>0$ on the condition.

Following theorem is the generalization of the Banach contraction principle in the 2-inner product space, involving four rational square terms in the inequality.

Theorem 2.4. Let $A: \mathscr{X} \rightarrow \mathscr{X}$ be a self mapping satisfying the following condition

$$
\begin{aligned}
& \|A x-A y, z\|^{2} \leq a_{1} \frac{\|y-A y, z\|^{2}\left(1+\|x-A x, z\|^{2}\right)}{1+\|x-y, z\|^{2}} \\
& +a_{2} \frac{\|x-A x, z\|^{2}\left(1+\|y-A y, z\|^{2}\right)}{1+\|x-y, z\|^{2}} \\
& +a_{3} \frac{\|x-A y, z\|^{2}\left(1+\|y-A x, z\|^{2}\right)}{1+\|x-y, z\|^{2}} \\
& +a_{4} \frac{\|y-A x, z\|^{2}\left(1+\|x-A y, z\|^{2}\right)}{1+\|x-y, z\|^{2}} \\
& +a_{5}\|x-y, z\|^{2}
\end{aligned}
$$

for all $x, y, z \in \mathscr{X}$ and $x \neq y$, where $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ are non negative reals with $a_{1}+a_{2}+a_{3}+$ $4 a_{4}+a_{5}<1$. Therefore, A has a unique fixed point in \mathscr{X}.
Proof. For some $x_{0} \in \mathscr{X}$, we define a sequence $\left\{x_{n}\right\}$ of iterates of A as follows

$$
x_{1}=A x_{0}, z, x_{2}=A x_{1}, z, x_{3}=A x_{2}, z, \ldots, x_{n+1}=A x_{n}, z
$$

for $n \in\{0,1, \ldots\}$.
Now, we show that $\left\{x_{n}, z\right\}$ is a z-Cauchy sequence in $\mathscr{X} \times \mathscr{X}$. For this, consider

$$
\left\|x_{n+1}-x_{n}, z\right\|^{2}=\left\|A x_{n}-A x_{n-1}, z\right\|^{2}
$$

Then by using the hypothesis, we have

$$
\begin{aligned}
& \left\|x_{n+1}-x_{n}, z\right\|^{2} \leq a_{1} \frac{\left\|x_{n-1}-A x_{n-1}, z\right\|^{2}\left(1+\left\|x_{n}-A x_{n}, z\right\|^{2}\right)}{1+\left\|x_{n}-x_{n-1}, z\right\|^{2}} \\
& +a_{2} \frac{\left\|x_{n}-A x_{n}, z\right\|^{2}\left(1+\left\|x_{n-1}-A x_{n-1}, z\right\|^{2}\right)}{1+\left\|x_{n}-x_{n-1}, z\right\|^{2}} \\
& \quad+a_{3} \frac{\left\|x_{n}-A x_{n-1}, z\right\|^{2}\left(1+\left\|x_{n-1}-A x_{n}, z\right\|^{2}\right)}{1+\left\|x_{n}-x_{n-1}, z\right\|^{2}} \\
& \quad+a_{4} \frac{\left\|x_{n-1}-A x_{n}, z\right\|^{2}\left(1+\left\|x_{n}-A x_{n-1}, z\right\|^{2}\right)}{1+\left\|x_{n}-x_{n-1}, z\right\|^{2}} \\
& \quad+a_{5}\left\|x_{n}-x_{n-1}, z\right\|^{2} .
\end{aligned}
$$

Which implies that

$$
\begin{aligned}
& \left(1-a_{2}-2 a_{4}\right)\left\|x_{n+1}-x_{n}, z\right\|^{2} \\
& \quad+\left(1-a_{1}-a_{2}\right)\left\|x_{n+1}-x_{n}, z\right\|^{2}\left\|x_{n}-x_{n-1}, z\right\|^{2} \\
& \leq\left(\left(a_{1}+2 a_{4}+a_{5}\right)+a_{5}\left\|x_{n}-x_{n-1}, z\right\|^{2}\right)\left\|x_{n}-x_{n-1}, z\right\|^{2}
\end{aligned}
$$

Resulting in

$$
\left\|x_{n+1}-x_{n}, z\right\|^{2} \leq p(n)\left\|x_{n}-x_{n-1}, b\right\|^{2}
$$

where

$$
p(n)=\frac{\left(a_{1}+2 a_{4}+a_{5}\right)+a_{5}\left\|x_{n}-x_{n-1}, z\right\|^{2}}{\left(1-a_{2}-2 a_{4}\right)+\left(1-a_{1}-a_{2}\right)\left\|x_{n}-x_{n-1}, z\right\|^{2}}
$$

for $n \in\{0,1, \ldots\}$. Clearly $p(n)<1$, for all n as $a_{1}+a_{2}+a_{3}+4 a_{4}+a_{5}<1$. Repeating the same argument, we find some $S<1$, such that

$$
\left\|x_{n+1}-x_{n}, z\right\|^{2} \leq \lambda^{n}\left\|x_{1}-x_{0}, z\right\|^{2}
$$

where $\lambda=S^{2}$. Letting $n \rightarrow \infty$, we obtain $\left\|x_{n+1}-x_{n}, z\right\| \rightarrow 0$. It follows that $\left\{x_{n}, z\right\}$ is a z-Cauchy sequence in \mathscr{X}. So by the completeness of \mathscr{X} there exists a point $\mu \in \mathscr{X}$ such that $x_{n} \rightarrow \mu$ as $n \rightarrow \infty$. Also $\left\{x_{n+1}, z\right\}=\left\{A x_{n}, z\right\}$ is sub sequence of $\left\{x_{n}, z\right\}$ converges to the same limit μ. Since A is continuous, we obtain

$$
A(\mu)=A\left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} x_{n+1}=\mu
$$

Hence μ is a fixed point of \mathscr{X}. New, we show the uniqueness of μ. If A has another fixed point γ and $\mu \neq \gamma$, then

$$
\begin{aligned}
\left\|p-p^{\prime}, z\right\|^{2}= & \left\|A p-A p^{\prime}, z\right\|^{2} \\
\leq & a_{1} \frac{\left\|p^{\prime}-A p^{\prime}, z\right\|^{2}\left(1+\|p-A p, z\|^{2}\right)}{1+\left\|p-p^{\prime}, b\right\|^{2}} \\
& +a_{2} \frac{\|p-A p, z\|^{2}\left(1+\left\|p^{\prime}-A p^{\prime}, z\right\|^{2}\right)}{1+\left\|p-p^{\prime}, z\right\|^{2}} \\
& +a_{3} \frac{\left\|p-A p^{\prime}, z\right\|^{2}\left(1+\left\|p^{\prime}-A p, z\right\|^{2}\right)}{1+\left\|p-p^{\prime}, z\right\|^{2}} \\
& +a_{4} \frac{\left\|p^{\prime}-A p, z\right\|^{2}\left(1+\left\|p-A p^{\prime}, z\right\|^{2}\right)}{1+\left\|p-p^{\prime}, z\right\|^{2}} \\
& +a_{5}\left\|p-p^{\prime}, z\right\|^{2}
\end{aligned}
$$

which in turn, implies that

$$
\left\|p-p^{\prime}, z\right\|^{2} \leq\left(a_{3}+a_{4}+a_{5}\right)\left\|p-p^{\prime}, z\right\|^{2}
$$

This gives a contradiction, for $a_{3}+a_{4}+a_{5}<1$. Thus p is a unique fixed point of A in \mathscr{X}.

Acknowledgements

The authors would like to thank the referees for their valuable suggestions and comments.

References

[1] Y. J. Cho, P. C. S. Lin, S. S. Kim, and A. Misiak, Theory of 2-inner product spaces, Nova Science Publishers, Inc., New York, 2001.
[2] C. Diminnie, 2-inner product spaces. Demonstratio Math., 6 (1973): 525-536.
[3] R. W. Freese, S. S. Dragomir, Y. J. Cho, and S. S. Kim, Some companions of Gruss inequality in 2-inner product space and applications for determinantal integral inequalities, Commun. Korean Math. Soc., 20(3) (2005): 487-503.
[4] S. Gähler, Linear 2-normierte Räume, Math. Nachr., 28 (1965): 1-45.
[5] P. Harikrishnan, H. R. Moradi, and M. E. Omidvar, Numerical radius inequalities in 2-inner product spaces, Kragujevac J. Math., 44(3) (2020): 415-421.
[6] P. K. Harikrishnan, P. Riyas, and K. T. Ravindran, Riesz Theorems In 2-Inner Product Spaces, Novi Sad J. Math., 41(2) (2011): 57-61.
[7] P. K. Harikrishnan, B. L. Guillen, R. P. Agarwal, and H. R. Moradi, Strong and weak convergences in 2-probabilistic normed spaces, Adv. Theory Nonlinear Anal. Appl., 5 (2021): 454-466.
[8] Z. Lewandowska, Banach-Steinhaus Theorems for bounded linear operators with values in a generalized 2-normed space, Glasnik Mat., 38 (2003): 329-340.
[9] Z. Lewandowska, Bounded 2-linear operators on 2-normed sets, Glasnik Mat., 39(59) (2004): 303-314.
[10] M. E. Omidvar, H. R. Moradi, S. S. Dragomir, and Y. J. Cho, Some reverses of the Cauchy-Schwarz and triangle inequalities in 2-inner product spaces, Kragujevac J. Math., 41(1) (2017): 81-92.
[11] A. White, 2-Banach spaces, Math. Nachr., 42 (1969): 43-60.

Author information

Hassan Ranjbar and Asadollah Niknam, Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
E-mail: dassamankin@yahoo.co.uk
Received: November 27th, 2021
Accepted: January 14th, 2022

