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Abstract M. Somos discovered around 6200 theta function identities of various levels by
using PARI/GP script. He has not offered any proof for these identities. In this paper, we prove
Somos’s theta-function identities of level 6 by using modular equation of degree 3.

1 Introduction

Ramanujan documented many theta functions which involve quotients of the function f(−q) at
different arguments. For example, if [7, p. 204]

P :=
f2(−q)

q1/6f2(−q3)
and Q :=

f2(−q2)

q1/3f2(−q6)

then

PQ+
9
PQ

=

(
Q

P

)3

+

(
P

Q

)3

.

B. C. Berndt [6] proved similar type of identities and used it to evaluate various continued frac-
tions, weber class invariants, theta functions and many more. After the publication of [6, 7],
many mathematicians discovered similar identities in the spirit of Ramanujan. For the wonder-
ful work, one can see [1, 2, 4, 5, 15, 16]. Motivated by the above work, M. Somos [9] used
a computer to discover around 6277 new elegant Dedekind eta-function identities of various
levels without offering the proof. He runs PARI/GP scripts and it works as a sophisticated pro-
grammable calculator. Many authors [3, 10, 11, 12, 13, 14, 17, 18] have given the proof of
Somos’s identities of various levels and found the applications of these in colored partitions.
Ramanujan’s theta function f(x, y) is defined as

f(x, y) :=
∞∑

n=−∞
xn(n+1)/2yn(n−1)/2 |xy| < 1.

The function f(x, y) enjoys the well-known Jacobi’s triple-product identity [6, p. 35] given by

f(x, y) = (−x;xy)∞(−y;xy)∞(xy;xy)∞

where here and throughout the paper, we assume |q| < 1 and employ the standard notation

(x; q)∞ :=
∞∏
n=0

(1− xqn).

The important special cases of f(x, y) [6, p. 36] are as follows:

ψ(q) := f(q, q3) =
∞∑
n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

,

ϕ(q) := f(q, q) =
∞∑

n=−∞
qn

2
= (−q; q2)2

∞(q
2; q2)∞,

f(−q) := f(−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q; q)∞.
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After Ramanujan, we define
χ(q) := (−q; q2)∞.

A theta function identity which relates f(−q), f(−q2), f(−qn) and f(−q2n) is called a theta
function identity of level 2n. After expressing theta-function identities which we are proving
in terms of f(−qn), we obtain the arguments in f(−q), f(−q2), f(−q3) and f(−q6), namely
−q,−q2,−q3 and −q6 all have exponents dividing 6, which is thus equal to the ‘level’ of the
identity 6. For convenience in future we write f(−qn) = fn. Motivated by this, in the present
work we prove some Somos’s theta-function identities of level 6 by using modular equation of
degree 3 in Section 2 and these identities are also proved by [11].
Before that we define a modular equation as given in the literature. A modular equation of degree
n is an equation relating α and β that is induced by

n
2F1

( 1
2 ,

1
2 ; 1; 1− α

)
2F1

( 1
2 ,

1
2 ; 1;α

) =
2F1

( 1
2 ,

1
2 ; 1; 1− β

)
2F1

( 1
2 ,

1
2 ; 1;β

) ,

where

2F1(p, q; r;x) :=
∞∑
n=0

(p)n(q)n
(r)nn!

xn |x| < 1,

denotes an ordinary hypergeometric function with

(p)n := p(p+ 1)(p+ 2)...(p+ n− 1).

Then, we say that β is of degree n over α and call the ratio

m :=
z1

zn
,

the multiplier, where z1 = 2F1
( 1

2 ,
1
2 ; 1;α

)
and zn = 2F1

( 1
2 ,

1
2 ; 1;β

)
.

2 Main results

Theorem 2.1. We have

ψ3(q)

ψ(q3)
− ϕ3(−q3)

ϕ(−q)
= q

ψ3(q3)

ψ(q)
.

Proof. If y = π 2F1(1 − x)/2F1(x) and z =2 F1(x), then from Entry 10(i) and 12(v) [6, pp.
122-124] for q = e−y, we have

ϕ(q) =
√
z (2.1)

and

χ(q) = 2
1
6 {x(1− x)q}−1/24

. (2.2)

Ramanujan in his notebook[8, p.230] and from Entry 5 [6, pp. 230-238] recorded the following
modular equations of degree 3. If

P : = {16αβ(1− α)(1− β)}1/8 and Q :=
{
β(1− β)
α(1− α)

}1/4

then

Q+
1
Q

+ 2
√

2
(
P − 1

P

)
= 0, (2.3)

m =
1− 2

(
β3(1−β)3

α(1−α)

)1/8

1− 2 (αβ)1/4 (2.4)
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and

3
m

=
2
(
α3(1−α)3

β(1−β)

)
− 1

1− 2 (αβ)1/4 , (2.5)

where β has degree 3 over α and m = z1
z3

the multiplier. From (2.4) and (2.5), we have

m2

3
=

1− 2
(
β3(1−β)3

α(1−α)

)1/8

2
(
α3(1−α)3

β(1−β)

)1/8
− 1

. (2.6)

Now, On transforming (2.3) and (2.6) using (2.1) and (2.2), we obtain(
x

y

)6

+
(y
x

)6
= (xy)3 − 8

(xy)3 (2.7)

and

ϕ4(q)

3ϕ4(q3)
=

1− 4x
3

y9

4 y
3

x9 − 1
(2.8)

respectively, where x := x(q) = q−1/24χ(q) and y := y(q) = q−1/8χ(q3). On Multiplying (2.7)
by (xy)−9, we obtain

x3

y9 +
8

x6y6 − 1 +
y3

x9 = 0.

which is equivalent to

3
y3

x9

(
1− 4

x3

y9

)
+

(
x3

y9 − 1
)(

4
y3

x9 − 1
)
= 0. (2.9)

On employing (2.8) and (2.9), we obtain

y3

x9
ϕ4(q)

ϕ4(q3)
− 1 +

x3

y9 = 0. (2.10)

By using q-identities, one can easily deduce the following.

ϕ(q) =
f5

2

f2
1 f

2
4
, ϕ(−q) =

f2
1
f2
, ψ(q) =

f2
2
f1

and χ(−q) = f1

f2
. (2.11)

From (2.11) we observe that

ϕ(q)

ϕ(q3)
=
x2

y2
f2

f6
. (2.12)

Using (2.12) in (2.10), we obtain

q−2/3

xy5

(
f2

f6

)4

− 1 +
x3

y9 = 0.

On replacing q → −q in the above, rewriting x(−q) and y(−q) in terms of fn by using (2.11)
and then multiplying throughout by f1f

3
2 f

9
3 , we obtain

f8
2 f

4
3 f6 − f1f

3
2 f

9
3 − qf4

1 f
9
6 = 0.

Finally, on dividing by f3
1 f

2
2 f

3
3 f

3
6 and after arrangement of terms, we obtain the required result.
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Theorem 2.2. We have

ϕ3(−q)
ϕ(−q3)

=
ψ3(q)

ψ(q3)
− 9q

ψ3(q3)

ψ(q)
.

Proof. On multiplying (2.7) throughout by y−12 we obtain

8
x3

y9 −
x9

y3 + 1 +
x12

y12 = 0,

which is equivalent to (
x9

y3 − 1
)(

1− 4
x3

y9

)
− 3

x12

y12

(
4
y3

x9 − 1
)
= 0.

Using (2.8) in the above, we obtain

x9

y3 − 1− 9
x12

y12
ϕ4(q3)

ϕ4(q)
= 0.

Using (2.12) in the above, we obtain

x9

y3 − 1− 9q2/3x
4

y4

(
f6

f2

)4

= 0.

On replacing q → −q in the above and rewriting x(−q) and y(−q) in terms of fn by using (2.11)
and then multiplying throughout by f9

2 f
4
3 , we obtain

f9
1 f3f

3
6 − f9

2 f
4
3 + 9qf4

1 f2f
8
6 = 0.

Finally, on dividing by f3
1 f

3
2 f

3
3 f

2
6 and after rearrangement of terms, we obtain the required result.

Theorem 2.3. We have

ϕ3(−q)
ϕ(−q3)

= 9
ϕ3(−q3)

ϕ(−q)
− 8

ψ3(q)

ψ(q3)
.

Proof. On multiplying (2.7) throughout by 4(xy)−9, we obtain

4
x3

y9 +
32
x6y6 − 4 + 4

y3

x9 = 0, (2.13)

which is equivalent to

3
(

1 + 8
y3

x9

)(
1− 4

x3

y9

)
− 9

(
4
y3

x9 − 1
)
= 0.

Using (2.8) in the above, we obtain(
1 + 8

y3

x9

)
ϕ4(q)

ϕ4(q3)
− 9 = 0.

Using (2.12) in the above, we obtain(
x8

y8 +
8
xy5

)(
f2

f6

)4

− 9q2/3 = 0.

On replacing q → −q in the above, rewriting x(−q) and y(−q) in terms of fn by using (2.11)
and then multiplying throughout by f1f

4
2 f

8
3 , we obtain

f9
1 f

4
6 − 9f1f

4
2 f

8
3 + 8f9

2 f
3
3 f6 = 0.

Finally, on dividing by f3
1 f

2
2 f

2
3 f

3
6 and after arrangement of terms, we obtain the required result.
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Theorem 2.4. We have

ϕ3(−q)
ϕ(−q3)

=
ϕ3(−q3)

ϕ(−q)
− 8q

ψ3(q3)

ψ(q)
.

Proof. On multiplying (2.7) throughout by 4(xy)−9, we obtain

3
(

1− 4
x3

y9

)
−
(

1 + 8
x3

y9

)(
4
y3

x9 − 1
)
= 0.

Using (2.8) in the above, we obtain

ϕ4(q)

ϕ4(q3)
− 1− 8

x3

y9 = 0.

Using (2.12) in the above, we obtain

x8

y8

(
f2

f6

)4

− q2/3 − 8q2/3x
3

y9 = 0.

On replacing q → −q in the above, rewriting x(−q) and y(−q) in terms of fn by using (2.11)
and then multiplying throughout by f4

2 f
9
3 , we obtain

f8
1 f3f

4
6 − f4

2 f
9
3 + 8qf3

1 f2f
9
6 = 0.

Finally, on dividing by f2
1 f

3
2 f

3
3 f

3
6 and after arrangement of terms, we obtain the required result.

Theorem 2.5. We have

ϕ4(−q)− 9ϕ4(−q3)

ϕ4(−q)− ϕ4(−q3)
=

ψ4(q)

qψ(q4)
.

Proof. On multiplying (2.7) throughout by 4(x4 − y4)
(
(x2 + y2)2 − x2y2

) (
x4 − x2y2 + y4

)
,

we obtain

4
y3

x9 +
32
x6y6 − 4 + 4

x12

y12 − 32
x6

y18 − 4
x15

y21 = 0,

which is equivalent to(
1− x12

y12

)(
1− 4

x3

y9

)(
4
y3

x9 − 1
)
+ 3

x12

y12

(
4
y3

x9 − 1
)2

− 3
(

1− 4
x3

y9

)2

= 0.

Using (2.8) in the above, we obtain

1− x12

y12 + 9
x12

y12
φ4(q3)

φ4(q)
− φ4(q)

φ4(q3)
= 0.

Using (2.12) in the above, we obtain

1− x12

y12 + 9q2/3x
4

y4

(
f6

f2

)4

− q−2/3x
8

y8

(
f2

f6

)4

= 0.

On replacing q → −q in the above, rewriting x(−q) and y(−q) in terms of fn by using (2.11)
and then multiplying throughout by f12

2 f12
3 , we obtain

qf12
1 f12

6 − 9qf4
1 f

4
2 f

8
3 f

8
6 − f8

1 f
8
2 f

4
3 f

4
6 + f12

2 f12
3 = 0.

Finally, on dividing by f4
1 f

4
2 f

4
3 f

4
6 and after arrangement of terms, we obtain the required result.
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Remark:

As an application of Somos’s theta function identities, one can see the application of these in
colored partitions.
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