# Solving some partial $q$-differential equations using transformation methods 

F. Masood, T.M. Al-shami and H. El-Metwally<br>Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 39A13; Secondary 39A14
Keywords and phrases: $q$-difference equations, transformed function, q-difference inverse transform.


#### Abstract

In this paper, we introduce the concepts of transformed functions and q-difference inverse transforms. Then, we apply them to solve some partial $q$-difference equations. Finally, we provide four examples to show how we can benefit from the obtained results.


## 1 Introduction

The subject of $q$-calculus started in the nineteenth century in intense works by Jackson [20], Carmichael [11], Mason [23], Trjitzinsky [29], Adams [1], Mason [23], and Trjitzinsky [29]. Recently, q-calculus has been a goal of some recent studies such as $[4,7,9]$.

The q -difference has a lot of applications in different fields of mathematics such as number theory, statistical physics [24], fractal geometry [14],[15], quantum mechanics, orthogonal polynomials [19] and other sciences including theory of relativity [5], mechanics and quantum theory.

In the last years, partial q-difference equations are generally studied by various methods of separation of variables, by the techniques of Lie symmetry, using q-integral transforms [3, 16, 17, 10, 22].

In this paper, we explain the solution of the partial q-difference equations using reduced transformation method.

First, let us recall some basic concepts of $q$-calculus mentioned in ([5, 6, 26, 12, 13, 18, 20, 21, 28]).
The shifted factorial $(r)_{n}$ is defined by:

$$
\begin{aligned}
(r ; q)_{0} & =1, \\
(r ; q)_{n} & =(1-r)(1-q r)\left(1-q^{2} r\right)\left(1-q^{3} r\right) \ldots\left(1-q^{n-1} r\right) \\
& =\prod_{k=0}^{n-1}\left(1-q^{k} r\right), \quad n \in N, 0<q<1, \text { and } r \in \mathbb{C} .
\end{aligned}
$$

A complex number $r$ is defined by:

$$
\begin{aligned}
{[r]_{q} } & =1+q+q^{2}+\ldots+q^{r-1} \\
& =\frac{1-q^{r}}{1-q}, \quad q \in \mathbb{C}-\{1\} ; r \in \mathbb{C}
\end{aligned}
$$

and the factorial function is

$$
\begin{aligned}
{[r]_{q}!} & =[1]_{q}[2]_{q}[3]_{q} \ldots[r]_{q} \\
& =\prod_{k=1}^{r}[k]_{q}, \quad q \neq 1 ; \quad k \in \mathbb{N}, \quad 0 \leq q \leq 1 .
\end{aligned}
$$

The q-binomial coefficient $[r k]_{q}$ is defined by:

$$
\left[\begin{array}{c}
r \\
k
\end{array}\right]_{q}=\frac{[r]_{q}!}{[r]_{q}![r-k]_{q}!}, \quad r=0,1,2, \ldots k .
$$

The function $(f+g)^{n}$ is defined as:

$$
(f+g)_{q}^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q} q^{k(k-1) / 2} f^{n-k} g^{k}, n \in \mathbb{N} .
$$

The exponential function is defined as:

$$
e_{q}^{t}=\sum_{k=0}^{\infty} \frac{t^{k}}{[k]_{q}!}, \quad 0<|q|<1 .
$$

The functions $e_{q}^{t}$ and $e_{q-1}^{-t}$ satisfy:

$$
e_{q}^{t} e_{q^{-1}}^{-t}=1
$$

The q -derivative $D_{q} f$ is defined as:

$$
\begin{aligned}
& D_{q} f(t)=\frac{f(q t)-f(t)}{q t-t}, \quad 0<|q|<1, \\
& \begin{aligned}
D_{q}(f g)(t) & =f(q t) D_{q} g(t)+g(t) D_{q} f(t) \\
& =g(q t) D_{q} f(t)+f(t) D_{q} g(t) .
\end{aligned}
\end{aligned}
$$

and

$$
D_{q}\left(\frac{f}{g}\right)(t)=\frac{g(t) D_{q} f(t)-f(t) D_{q} g(t)}{g(q t) g(t)} .
$$

The partial q-derivative of the function $f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ to a variable $t_{i}$ is defined by

$$
\left\{\begin{array}{r}
D_{q, t_{i}} f(t)=\frac{\partial_{q} f(\vec{t})}{\partial x_{i}}=\frac{\left(\epsilon_{q, i} f\right)(\vec{t})-f(\vec{t})}{(q-1) t_{i}} ; t \neq 0,0<q<1, \\
{\left[D_{q, t_{i}} f(t)\right]_{t_{i}=0}=\left[\frac{\partial_{q} f(\vec{t})}{\partial t_{i}}\right]_{t_{i}=0}=\lim _{t_{i} \rightarrow 0} \frac{\partial_{q} f(\vec{t})}{\partial t_{i}},}
\end{array}\right.
$$

where

$$
\left(\epsilon_{q, i} f\right)(\vec{t})=f\left(t_{1}, t_{2}, \ldots, q t_{i}, \ldots, t_{n}\right) .
$$

Remark 1.1. I) If $f\left(t_{1}, t_{2}\right)$ is a function of two variables then

$$
\left\{\begin{array}{l}
D_{q, t_{1}} f\left(t_{1}, t_{2}\right)=\frac{\partial_{q}}{\partial_{q} t_{1}} f\left(t_{1}, t_{2}\right)=\frac{f\left(q t_{1}, t_{2}\right)-f\left(t_{1}, t_{2}\right)}{(q-1)}, \quad t_{1} \neq 0,0<q<1, \\
{\left[D_{q, t_{1}} f\left(t_{1}, t_{2}\right)\right]_{t_{1}=0}=\left[\frac{\partial_{q}}{\partial_{q} t_{1}} f\left(t_{1}, t_{2}\right)\right]_{t_{1}=0}^{q-1}=\lim _{t_{1} \rightarrow 0} \frac{\partial_{q} f\left(t_{1}, t_{2}\right)}{\partial t_{1}} .}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
D_{q, t_{2}} f\left(t_{1}, t_{2}\right)=\frac{\partial_{q}}{\partial_{q} t_{2}} f\left(t_{1}, t_{2}\right)=\frac{f\left(t_{1}, q t_{2}\right)-f\left(t_{1}, t_{2}\right)}{\left(q_{2}-1\right) t_{2}}, t_{2} \neq 0,0<q<1, \\
{\left[D_{q, t_{2}} f\left(t_{1}, t_{2}\right)\right]_{t_{2}=0}=\left[\frac{\partial_{q}}{\partial_{q} t_{2}} f\left(t_{1}, t_{2}\right)\right]_{t_{2}=0}=\lim _{t_{2} \rightarrow 0} \frac{\partial_{q} f\left(t_{1}, t_{2}\right)}{\partial t_{2}} .}
\end{array}\right.
$$

also

$$
\begin{aligned}
D_{q, t_{1}, t_{2}} f\left(t_{1}, t_{2}\right) & =\frac{\partial_{q}^{2}}{\partial_{q} t_{2} \partial_{q} t_{1}} f\left(t_{1}, t_{2}\right)=\frac{\partial_{q}}{\partial_{q} t_{2}}\left[\frac{\partial_{q}}{\partial_{q} t_{1}} f\left(t_{1}, t_{2}\right)\right] \\
& =\frac{\partial_{q}}{\partial_{q} t_{2}}\left[\frac{f\left(q t_{1}, t_{2}\right)-f\left(t_{1}, t_{2}\right)}{(q-1) t_{1}}\right] \\
& =\frac{\frac{f\left(q t_{1}, q t_{2}\right)-f\left(q t_{1}, t_{2}\right)}{(q-1) t_{1}}-\frac{f\left(t_{1}, q_{2}\right)-f\left(t_{1}, t_{2}\right)}{(q-1) t_{1}}}{(q-1) y} \\
& =\frac{f\left(q t_{1}, q t_{2}\right)-f\left(t_{1}, q t_{2}\right)-f\left(q t_{1}, t_{2}\right)+f\left(t_{1}, t_{2}\right)}{(q-1)^{2} t_{1} t_{2}} \\
& =\frac{\partial_{q}^{2}}{\partial_{q} t_{1} \partial_{q} t_{2}} f\left(t_{1}, t_{2}\right)=D_{q, t_{2}, t_{1}} f\left(t_{1}, t_{2}\right), \quad t_{1} \neq 0, t_{2} \neq 0,
\end{aligned}
$$

then

$$
\frac{\partial_{q}^{2}}{\partial_{q} t_{1} \partial_{q} t_{2}} f\left(t_{1}, t_{2}\right)=\frac{f\left(q t_{1}, q t_{2}\right)-f\left(t_{1}, q t_{2}\right)-f\left(q_{1}, t_{2}\right)+f\left(t_{1}, t_{2}\right)}{(q-1)^{2} t_{1} t_{2}}=\frac{\partial_{q}^{2}}{\partial_{q} t_{2} \partial_{q} t_{1}} f\left(t_{1}, t_{2}\right)
$$

For example let $f\left(t_{1}, t_{2}\right)=t_{1}^{2} t_{2}^{3}$, then

$$
\begin{aligned}
D_{q, t_{1}} f\left(t_{1}, t_{2}\right) & =\frac{\partial_{q}}{\partial_{q} t_{1}} f\left(t_{1}, t_{2}\right)=\frac{\partial_{q}}{\partial_{q} t_{1}}\left(t_{1}^{2} t_{2}^{3}\right)=\frac{\left(q t_{1}\right)^{2} t_{2}^{3}-t_{1}^{2} t_{2}^{3}}{(q-1) t_{1}} \\
& =\frac{\left(q^{2}-1\right) t_{1}^{2} t_{2}^{3}}{(q-1) t_{1}}=(1+q) t_{1} t_{2}^{3}=[2]_{q} t_{1} t_{2}^{3} \\
D_{q, t_{2}} f\left(t_{1}, t_{2}\right) & =\frac{\partial_{q}}{\partial_{q} t_{2}} f\left(t_{1}, t_{2}\right)=\frac{\partial_{q}}{\partial_{q} t_{2}}\left(t_{1}^{2} t_{2}^{2}\right)=\frac{t_{1}^{2}\left(q t_{2}\right)^{3}-t_{1}^{2} t_{2}^{2}}{(q-1) t_{2}} \\
& =\frac{\left(q^{3}-1\right) t_{1}^{2} t_{2}^{3}}{(q-1) t_{2}}=\left(1+q+q^{2}\right) t_{1}^{2} t_{2}^{2}=[3]_{q} t_{1}^{2} t_{2}^{2} \\
\frac{\partial_{q}^{2}}{\partial_{q} t_{2} \partial_{q} t_{1}} f\left(t_{1}, t_{2}\right)= & \frac{\partial_{q}^{2}}{\partial_{q} t_{2} \partial_{q} t_{1}}\left(t_{1}^{2} t_{2}^{3}\right)=\frac{\left(q t_{1}\right)^{2}\left(q t_{2}\right)^{3}-t_{1}^{2}\left(q t_{2}\right)^{3}-\left(q t_{1}\right)^{2} t_{2}^{3}+t_{1}^{2} t_{2}^{3}}{(q-1)^{2} t_{1} t_{2}} \\
= & \frac{\left(q^{5}-q^{3}-q^{2}+1\right) t_{1} t_{2}^{2}}{(q-1)^{2}}=\left(1+2 q+2 q^{2}+q^{3}\right) t_{1} t_{2}^{2} \\
& =(1+q)\left(1+q+q^{2}\right) t_{1} t_{2}^{2}=[2]_{q}[3]_{q} t_{1} t_{2}^{2}=\frac{\partial_{q}^{2}}{\partial_{q} t_{1} \partial_{q} t_{2}} f\left(t_{1}, t_{2}\right)
\end{aligned}
$$

The formula of $q$-Leibniz is given as follows.

$$
\begin{equation*}
D_{q}^{s}\left(f(z) g(z)=\frac{\partial_{q}^{s}}{\partial_{q} z^{s}}(f(z) g(z))=\sum_{r=0}^{s}\binom{s}{r}_{q} \frac{\partial_{q}^{r}}{\partial_{q} z^{r}} f\left(z q^{s-r}\right) \frac{\partial_{q}^{s-r}}{\partial_{q} t^{s-r}} g(z)\right. \tag{1.1}
\end{equation*}
$$

## 2 Reducing the $q$-Differential transform method

In this section, we define transformed function and q-difference inverse transform. Then, we present a new technique to solve partial $q$-difference equations. Illustrative examples are given to clarify the obtained results.

Definition 2.1. Suppose that all q-differentials of $w(x, y)$ exist in some neighborhood of $y=\lambda$, then

$$
\begin{equation*}
W_{n}(x)=\frac{1}{[n]_{q}!}\left[\frac{\partial_{q}^{n}}{\partial_{q} t^{n}} w(x, y)\right]_{y=\lambda} \tag{2.1}
\end{equation*}
$$

where $W_{n}(x)$ is the transformed function.
Definition 2.2. The q-difference inverse transform of $W_{n}(x)$ is defined as follows:

$$
\begin{equation*}
w(x, y)=\sum_{n=0}^{\infty} W_{n}(x)(y-\lambda)^{(n)} \tag{2.2}
\end{equation*}
$$

The following formula is inferred by substituting (2.1) to (2.2):

$$
\begin{equation*}
w(x, y)=\sum_{n=0}^{\infty} \frac{1}{[n]_{q}!}\left[\frac{\partial_{q}^{n}}{\partial_{q} y^{n}} w(x, y)\right]_{y=\lambda}(y-\lambda)^{(n)} \tag{2.3}
\end{equation*}
$$

In the following results, we investigate the the properties of some transformations.

Theorem 2.3. (i) If $u(x, y)=\alpha v(x, y) \pm w(x, y)$, then $U_{n}(x)=\alpha V_{n}(x) \pm \beta W_{n}(x)$.
(ii) If $u(x, y)=v(x, y) w(x, y)$, then $U_{n}(x)=\sum_{m=0}^{n} V_{n-m}(x) W_{m}(x)$.

Proof. Let $\lambda=0$ in (2.3), then
I) By definition (2), we have

$$
\begin{aligned}
U_{n}(x) & =\frac{1}{[n]_{q}!}\left[\frac{\partial_{q}^{n}}{\partial_{q} y^{n}} u(x ; y)\right]_{y=0} \\
& =\frac{1}{[n]_{q}!}\left[\frac{\partial_{q}^{n}}{\partial_{q} y^{n}}(\alpha v(x ; y) \pm \beta w(x ; y))\right]_{y=0} \\
& =\frac{1}{[n]_{q}!}\left[\alpha \frac{\partial_{q}^{k}}{\partial_{q} y^{k}} v(x ; y)\right]_{y=0} \pm \frac{1}{[n]_{q}!}\left[\beta \frac{\partial_{q}^{n}}{\partial_{q} y^{n}} w(x ; y)\right]_{y=0} \\
& =\alpha \frac{1}{[n]_{q}!}\left[\frac{\partial_{q}^{n}}{\partial_{q} y^{n}} v(x)\right]_{y=0} \pm \beta \frac{1}{[n]_{q}!}\left[\frac{\partial_{q}^{n}}{\partial_{q} y^{n}} w(x ; y)\right]_{y=0} \\
& =\alpha V_{n}(x) \pm \beta W_{n}(x) .
\end{aligned}
$$

To prove(ii), we will use q-Leibniz formula.

$$
\begin{array}{r}
U_{n}(x)=\frac{1}{[n]_{q}!} \frac{\partial_{q}^{n}}{\partial_{q} y^{n}}[v(x, y) \cdot w(x, y)]_{y=0}=\frac{1}{[n]_{q}!} D_{q, y}^{n}[v(x, y) \cdot w(x, y)]_{y=0} \\
=\frac{1}{[n]_{q}!} \sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q}\left[D_{q, y}^{n-m} v\left(x, y q^{m}\right) D_{q, y}^{m} w(x, y)\right]_{y=0} \\
=\sum_{m=0}^{n} \frac{1}{[n-m]_{q}![m]_{q}!}\left[\sum_{r=0}^{n-m}(-1)^{r}(1-q)^{r}\left[\begin{array}{c}
n-m \\
r
\end{array}\right]_{q} q^{\left.\frac{r}{r} r-1\right)} y^{r}\left(D_{q, t}^{n-m+r} v(x, y)\right) D_{q, y}^{m} w(x, y)\right]_{y=0}
\end{array}
$$

at $(y=0)$ all the limits of the inner series vanish, except for $(r=0)$ then, we have

$$
\begin{aligned}
U_{n}(x) & =\sum_{m=0}^{n} \frac{1}{[n-m]_{q}![m]_{q}!}\left[D_{q, y}^{n-m} v(x, y) D_{q, y}^{m} w(x, y)\right]_{y=0} \\
& =\sum_{m=0}^{n}\left(\frac{1}{[n-m]_{q}!}\left[D_{q, y}^{n-m} v(x, y)\right]_{y=0}\right)\left(\frac{1}{[m]_{q}!}\left[D_{q, y}^{m} w(x, y)\right]_{y=0}\right) \\
& =\sum_{m=0}^{n} V_{n-m}(x) W_{m}(x)
\end{aligned}
$$

Theorem 2.4. If $u(x, y)=x^{m} y^{r}$ then $U_{n}(x)=x^{m} \delta(n-r)$,
where, $\delta(n-r)=\left\{\begin{array}{l}1 ; n=0, \\ 0 ; n \neq 0 .\end{array}\right.$
Proof. Let $\lambda=0$ in (2.3). By definition (2) we have:

$$
\begin{aligned}
U_{n}(x) & =\frac{1}{[n]_{q}!}\left[\frac{\partial_{q}^{n}}{\partial_{q} y^{n}} u(x ; y)\right]_{y=0}=\frac{1}{[n]_{q}!}\left[\frac{\partial_{q}^{n}\left(x^{m} y^{r}\right)}{\partial_{q} y^{n}} u(x ; y)\right]_{y=0} \\
& =\frac{x^{m}}{[n]_{q}!}\left[\frac{\partial_{q}^{n}\left(y^{r}\right)}{\partial_{q} y^{n}} u(x ; y)\right]_{y=0} \\
& =\left\{\begin{array}{cc}
x^{m}, \quad n=r \\
x^{m} \frac{[r]_{q}[r-1]_{q} \ldots[r-n+1]_{q}}{[k]_{q}} y^{r-n}, \quad n<r \\
0 ; \quad n>r,
\end{array}\right. \\
& =x^{m} \delta(n-r) .
\end{aligned}
$$

Theorem 2.5. (i) If $u(x, y)=\frac{\partial_{q}}{\partial_{q} x} w(x, y)$ then $U_{n}(x)=\frac{\partial_{q}}{\partial_{q} x} W_{n}(x)$.
(ii) If $u(x, y)=\frac{\partial_{q}^{m}}{\partial_{q} x^{m}} w(x, y)$ then $U_{n}(x)=[m+1]_{q}[m+2]_{q} \ldots[m+n]_{q} W_{m+n}(x)$.

Proof. Let $\lambda=0$ in (2.3).
(i): By definition (2), we have:

$$
\begin{aligned}
U_{n}(x) & =\frac{1}{[n]_{q}!}\left[\frac{\partial_{q}^{n}}{\partial_{q} t^{n}} u(x, y)\right]_{y=0}=\frac{1}{[n]_{q}!}\left[\frac{\partial_{q}^{n}}{\partial_{q} y^{n}}\left(\frac{\partial_{q}}{\partial_{q} x} w(x, y)\right)\right]_{y=0} \\
& =\frac{1}{[n]_{q}!}\left[\frac{\partial_{q}}{\partial_{q} x}\left(\frac{\partial_{q}^{n}}{\partial_{q} y^{n}} w(x, y)\right)\right]_{y=0}=\frac{\partial_{q}}{\partial_{q} x}\left[\frac{1}{[n]_{q}!} \frac{\partial_{q}^{n}}{\partial_{q} y^{n}} w(x, y)\right]_{y=0} \\
& =\frac{\partial_{q}}{\partial_{q} x} W_{k}(x) .
\end{aligned}
$$

(ii): By definition (2) we have:

$$
\begin{aligned}
U_{n}(x) & =\frac{1}{[n]_{q}!}\left[\frac{\partial_{q}^{n}}{\partial_{q} y^{n}} u(x, y)\right]_{y=0}=\frac{1}{[n]_{q}!}\left[\frac{\partial_{q}^{n}}{\partial_{q} y^{n}}\left(\frac{\partial_{q}^{m}}{\partial_{q} y^{m}} w(x, y)\right)\right]_{y=0} \\
& =\frac{1}{[n]_{q}!}\left[\frac{\partial_{q}^{n+m}}{\partial_{q} y^{n+m}} w(x, y)\right]_{y=0}=\frac{[n+m]_{q}!}{[n]_{q}!}\left[\frac{1}{[n+m]_{q}!} \frac{\partial_{q}^{n+m}}{\partial_{q} t^{n+m}} w(x, y)\right]_{y=0} \\
& =\frac{[n+m]_{q}!}{[n]_{q}!} W_{n+m}(x)=[n+1]_{q}[n+2]_{q \ldots}[n+m]_{q} W_{n+m}(x) .
\end{aligned}
$$

In what follow, we construct some examples that illustrate how we can apply the methods investigated in the previous three theorems.

Example 2.6. Consider the equation

$$
\begin{equation*}
\frac{\partial_{q}}{\partial_{q} y} w(x, y)-\frac{\partial_{q}^{2}}{\partial_{q} y^{2}} w(x, y)=0 \tag{2.4}
\end{equation*}
$$

With the initial condition

$$
\begin{equation*}
w(x ; 0)=g(x) . \tag{2.5}
\end{equation*}
$$

Solution: Let $\lambda=0$. Then

$$
\begin{gather*}
\frac{\partial_{q}}{\partial_{q} y} w(x, y)-\frac{\partial_{q}^{2}}{\partial_{q} y^{2}} w(x, y)=0, \\
\frac{\partial_{q}}{\partial_{q} y} w(x, y)=\frac{\partial_{q}^{2}}{\partial_{q} y^{2}} w(x, y), \\
{[n+1]_{q} W_{n+1}(x)=\frac{\partial_{q}^{2}}{\partial_{q} y^{2}} W_{n}(x), \quad n=0,1,2, \ldots} \tag{2.6}
\end{gather*}
$$

using the initial condition (2.5), we get

$$
\begin{equation*}
W_{0}(x)=w(x, 0)=g(x) . \tag{2.7}
\end{equation*}
$$

Now, substituting (2.7) into (2.6), we have

$$
\begin{aligned}
W_{1}(x)= & \frac{1}{[1]_{q}} g(x)=\frac{1}{[1]_{q}!} g(x), \\
W_{2}(x)= & \frac{1}{[2]_{q}} W_{1}(x)=\frac{1}{[1]_{q}[2]_{q}} g(x)=\frac{1}{[2]_{q}!} g(x), \\
W_{3}(x)= & \frac{1}{[3]_{q}!} g(x) \\
& \vdots \\
W_{n}(x)= & \frac{1}{[n]_{q}!} g(x),
\end{aligned}
$$

then, the analytic solution of (2.4) gives

$$
w(x, y)=\sum_{n=0}^{\infty} W_{n}(x) y^{n}=\sum_{n=0}^{\infty} \frac{1}{[n]_{q}!} g(x) y^{n}=g(x) \sum_{n=0}^{\infty} \frac{y^{n}}{[n]_{q}!}=g(x) e_{q}^{y}
$$

if $g(x)=e_{q}^{x}$ then

$$
w(x, y)=e_{q}^{x} e_{q}^{y}
$$

Example 2.7. Solve

$$
\begin{equation*}
\frac{\partial_{q}}{\partial_{q} y} k(x, y)=k^{2}(x, y)+\frac{\partial_{q}}{\partial_{q} x} k(x, y) \tag{2.8}
\end{equation*}
$$

with

$$
\begin{equation*}
k(x ; 0)=1+2 x \tag{2.9}
\end{equation*}
$$

Solution: Let $\lambda=0$. Then

$$
\begin{equation*}
[n+1]_{q} K_{n+1}(x)=\sum_{m=0}^{n} K_{n-m}(x) K_{m}(x)+\frac{\partial_{q}}{\partial_{q} x} K_{n}(x, y), \quad n=0,1,2, \ldots \tag{2.10}
\end{equation*}
$$

using the initial condition (2.9), we have

$$
\begin{equation*}
K_{0}(x)=1+2 x . \tag{2.11}
\end{equation*}
$$

Now, substituting (2.11) into (2.10), we obtain

$$
\begin{gathered}
K_{1}(x)=4 x^{2}+4 x+3 \\
K_{2}(x)=\frac{1}{1+q}\left(16 x^{3}+24 x^{2}+4(6+q) x+10\right) \\
K_{3}(x)=\frac{(80+56 q) x^{4}+(160+16 q) x^{3}+\left(16 q^{2}+72 q\right) x^{2}+(136+56 q) x+(53+13 q)}{(1+q)\left(1+q+q^{2}\right)}
\end{gathered}
$$

now, the solution of (2.8) is

$$
\begin{gathered}
k(x, y)=\sum_{n=0}^{\infty} K_{n}(x) y^{n} \\
=K_{0}(x)+K_{1}(x) y+K_{2}(x) y^{2}+K_{3}(x) y^{3}+\ldots \\
=1+2 x+\left(4 x^{2}+4 x+3\right) y+\frac{1}{1+q}\left(16 x^{3}+24 x^{2}+4(6+q) x+10\right) y^{2} \\
+\frac{(80+56 q) x^{4}+(160+16 q) x^{3}+\left(16 q^{2}+72 q\right) x^{2}+(136+56 q) x+(53+13 q)}{(1+q)\left(1+q+q^{2}\right)} y^{3}+\ldots
\end{gathered}
$$

Example 2.8. Consider

$$
\begin{equation*}
\frac{\partial_{q}}{\partial_{q} x} v(t, x)=\frac{\partial_{q}^{2}}{\partial_{q} x^{2}} v(t, x)+\frac{\partial_{q}}{\partial_{q} t}(t v(t, x)) \tag{2.12}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
v(t, 0)=t^{2} \tag{2.13}
\end{equation*}
$$

Solution: Let $\lambda=0$. Then

$$
\begin{equation*}
[n+1]_{q} V_{n+1}(t)=\frac{\partial_{q}^{2}}{\partial_{q} x^{2}} V_{n}(t)+\frac{\partial_{q}}{\partial_{q} t}\left(t V_{n}(t)\right) \tag{2.14}
\end{equation*}
$$

using the initial condition (2.13), we have

$$
\begin{equation*}
V_{0}(t)=t^{2} \tag{2.15}
\end{equation*}
$$

Now, substituting (2.15) into (2.14), we obtain

$$
\begin{gathered}
V_{1}(t)=\frac{[2]_{q}+[3]_{q} t^{2}}{[1]_{q}}=\frac{[2]_{q}+[3]_{q} t^{2}}{[1]_{q}!}, \\
V_{2}(t)=\frac{[2]_{q}\left(1+[3]_{q}\right)+[3]_{q}^{2} t^{2}}{[1]_{q}[2]_{q}}=\frac{[2]_{q}\left(1+[3]_{q}\right)+[3]_{q}^{2} t^{2}}{[2]_{q}!}, \\
V_{3}(t)=\frac{[2]_{q}\left(1+[3]_{q}+[3]_{q}^{2}\right)+[3]_{q}^{3} t^{2}}{[1]_{q}[2]_{q}[3]_{q}}=\frac{[2]_{q}\left(1+[3]_{q}+[3]_{q}^{2}\right)+[3]_{q}^{3} t^{2}}{[3]_{q}!}, \\
V_{n}(t)=\frac{[2]_{q}\left(1+[3]_{q}+[3]_{q}^{2}+\ldots+[3]_{q}^{k-1}\right)+[3]_{q}^{k} t^{2}}{[n]_{q}!} \\
=\left(\frac{[2]_{q}}{[3]_{q}-1}\left([3]_{q}^{n}-1\right)+[3]_{q}^{n} t^{2}\right) \frac{1}{[n]_{q}!} .
\end{gathered}
$$

Now, we obtain the series solution of (2.12) as

$$
\begin{gathered}
v(t, x)=\sum_{n=0}^{\infty} V_{n}(t) t^{n} \\
=V_{0}(t)+V_{1}(t) x+V_{2}(t) x^{2}+V_{3}(t) x^{3}+\ldots+V_{n}(t) x^{n}+\ldots \\
=t^{2}+\frac{[2]_{q}+[3]_{q} t^{2}}{[1]_{q}!} x+\frac{[2]_{q}\left(1+[3]_{q}\right)+[3]_{q}^{2} t^{2}}{[2]_{q}!} x^{2}+\frac{[2]_{q}\left(1+[3]_{q}+[3]_{q}^{2}\right)+[3]_{q}^{3} t^{2}}{[3]_{q}!} x^{3} \\
+\ldots+\left(\frac{[2]_{q}}{[3]_{q}-1}\left([3]_{q}^{n}-1\right)+[3]_{q}^{n} t^{2}\right) \frac{x^{n}}{[n]_{q}!}+\ldots \\
= \\
=\frac{[2]_{q}}{[3]_{q}-1}\left(\sum_{n=0}^{\infty} \frac{[3]_{q}^{n} x^{n}}{[n]_{q}!}-\sum_{k=0}^{\infty} \frac{x^{n}}{[n]_{q}!}\right)+t^{2} \sum_{n=0}^{\infty} \frac{[3]_{q}^{n} x^{n}}{[n]_{q}!} \\
{[3]_{q}-1} \\
\left.\sum_{n=0}^{\infty} \frac{\left([3]_{q} x\right)^{n}}{[n]_{q}!}-\sum_{n=0}^{\infty} \frac{x^{n}}{[n]_{q}!}\right)+t^{2} \sum_{n=0}^{\infty} \frac{\left([3]_{q} x\right)^{n}}{[n]_{q}!} \\
\\
=\frac{[2]_{q}}{[3]_{q}-1}\left(e_{q}^{[3]_{q} x}-e_{q}^{x}\right)+t^{2} e_{q}^{[3]]_{q} x} .
\end{gathered}
$$

Example 2.9. q-Laplace equation

$$
\begin{equation*}
\frac{\partial_{q}^{2}}{\partial_{q} x^{2}} v(x, t)+\frac{\partial_{q}^{2}}{\partial_{q} t^{2}} v(x, t)=0 \tag{2.16}
\end{equation*}
$$

with the boundary conditions

$$
\begin{align*}
v(x, 0) & =0 \\
\frac{\partial_{q}}{\partial_{q} t} v(x, 0) & =\frac{\sin a x}{a}, a \neq 0 . \tag{2.17}
\end{align*}
$$

where $a \neq 0$ is an integer.
Solution: Let $\lambda=0$. Then

$$
\begin{gather*}
\frac{\partial_{q}^{2}}{\partial_{q} x^{2}} v(x, t)=-\frac{\partial_{q}^{2}}{\partial_{q} t^{2}} v(x, t) \\
{[n+1]_{q}[n+2]_{q} V_{n+2}(x)=-\frac{\partial_{q}^{2}}{\partial_{q} x^{2}} V_{n}(x),} \tag{2.18}
\end{gather*}
$$

using the boundary conditions (2.17), we have

$$
\begin{align*}
V_{0}(x) & =0 \\
V_{1}(x) & =\frac{\sin a x}{a} \tag{2.19}
\end{align*}
$$

Now, substituting (2.19) into (2.18), we obtain

$$
\begin{gather*}
V_{2}(x)=0  \tag{2.20}\\
V_{3}(x)=-\frac{a \sin a x}{[2]_{q}[3]_{q}}=-\frac{a \sin a x}{[3]_{q}!}, \\
V_{4}(x)=0 \\
V_{5}(x)=-\frac{a^{3} \sin a x}{[5]_{q}!} \\
\vdots \\
V_{2 n}(x)=0 \\
V_{2 n+1}(x)=\frac{a^{2 n-1} \sin a x}{[2 n+1]_{q}!}
\end{gather*}
$$

Now, the solution of (2.16) is

$$
\begin{gathered}
v(x ; t)=\sum_{n=0}^{\infty} V_{n}(x) t^{n} \\
=V_{1}(x) t+V_{3}(x) t^{3}+V_{5}(x) t^{5}+\ldots+V_{2 n+1}(x) t^{2 n-1}+\ldots \\
=\frac{\sin _{q} a x}{a} t+\frac{a \sin _{q} a x}{[3]_{q}!} t^{3}+\frac{a^{3} \sin _{q} a x}{[5]_{q}!} t^{5}+\ldots+\frac{a^{2 n-1} \sin _{q} a x}{a^{2}[2 n+1]_{q}!} t^{2 n+1}-\ldots \\
=\frac{\sin _{q} a x}{a^{2}} \sum_{n=0}^{\infty} \frac{a^{2 n+1}}{[2 a+1]_{q}!} t^{2 n+1}=\frac{\sin _{q} a x \sinh _{q} a t}{a^{2}}, a \neq 0 .
\end{gathered}
$$

## References

[1] C. R. Adams, On the linear ordinary q-difference equation, Am. Math.Ser. II, 30 195-205 (1929).
[2] T. M. Al-shami and M. E. El-Shafei, $T$-soft equality relation, Turkish Journal of Mathematics, 44 (4) 1427-1441 (2020).
[3] Ballesteros, Angel, et al. "On quantum algebra symmetries of discrete Schr odinger equations." arXiv preprint math/9808043, (1998).
[4] G. Bangerezako, Variational q-calculus, J Math Anal Appl., 289, 650-665 (2004). doi:10.1016/j.jmaa.2003.09.004
[5] G. Bangerezako, An introduction to q-difference equations, preprint, University of Burundi, Bujumbura (2007).
[6] G. Bangerezako, An Introduction to q-Difference Equations, (Preprint Bujumbura, 2008).
[7] A. Dobrogowska and A. Odzijewicz, Second order q-difference equations solvable by factorization method, $J$. Comput. Appl. Math., 193 319-346 (2006).
[8] G. C. Wu, Variational iteration methode for the q-diffusion equations on time scales, Heat Transfer Research, 44(5) 393-398 (2013).
[9] M.E.H. Ismail and P. Simeonov, q-difference operators for orthogonal polynomials, J Computat Appl Math., 233 749-761 (2009).
[10] C. L.Ho, On the use of Mellin transform to a class of q-difference-differential equations, Phys.Lett. A, 268(4-6) 217-223 (2000).
[11] R. D. Carmichael, The general theory of linear q-difference equations, Am. J. Math., 34 147-168 (1912).
[12] M. El-Shahed and M. Gaber, Two-dimensional q-differential transformation and its application, Appl.Math.Comput., 217 (23) (2011) 9165-9172 .
[13] Ernst, Thomas. The history of q-calculus and a new method. Sweden: Department of Mathematics, Uppsala University, 2000.
[14] Erzan, Ayşe. "Finite q-differences and the discrete renormalization group, Physics Letters A, 225 (4-6) 235-238 (1997).
[15] Erzan, Ayşe, and Jean-Pierre Eckmann. "q-analysis of Fractal Sets, Physical review letters, 78(17) 3245-3248 (1997).
[16] Floreanini, Roberto, and Luc Vinet. "Lie symmetries of finite-difference equations, Journal of Mathematical Physics, 36 (12) 7024-7042 (1995).
[17] Floreanini, Roberto, et al. "Symmetries of the heat equation on the lattice, Letters in Mathematical Physics, 36(4) 351-355 (1996).
[18] Gasper, George, Mizan Rahman, and Gasper George. Basic hypergeometric series, Vol. 96. Cambridge university press, 2004.
[19] Ismail, Mourad, J. J. Foncannon, and Osmo Pekonen. "Classical and quantum orthogonal polynomials in one variable, The Mathematical Intelligencer, 30 54-60 (2008).
[20] H. F. Jackson, q-Difference equations, Am. J. Math., 32 305-314 (1910).
[21] Kac, Victor, and Pokman Cheung. Quantum calculus. Springer Science \& Business Media, 2001.
[22] Levi, Decio, and Orlando Ragnisco, eds. SIDE III: Symmetries and Integrability of Difference Equations. Vol. 25, American Mathematical Soc., 2000.
[23] T. E. Mason, On properties of the solution of linear q-difference equations with entire fucntion coefficients, Am. J. Math., 37 439-444 (1915).
[24] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Statist. Phys., 52 479-487 (1988).
[25] Y. Qin and D. Zeng, Commun. Frac. Calc., 3(1) 34-37 (2012).
[26] M. S. Stankovic and S. D. Marinkovic, On q-iterative methods for solving equations and systems, Novi Sad J. Math., 33(2) 127-137 (2003).
[27] H.Jafari, A. Haghbin, S. Hesam and D. Baleanu, Solving partial q-differential equations within reduced qdifferential transformation method, Rom. J. Phys., 59 399-407 (2014).
[28] Rajković, Predrag M., Sladjana D. Marinković, and Miomir S. Stanković, On q-Newton-Kantorovich method for solving systems of equations, Applied Mathematics and Computation, 168(2) 1432-1448 (2005).
[29] W. J. Trjitzinsky, Analytic theory of linear q-difference equations, Acta Mathematica, 62 (1) 227-237 (1933).

## Author information

F. Masood, (1)Department of mathematics, Faculty of Education and science, University of Saba Region, Marib, Yemen;
(2)Department of Mathematics, Faculty of Science, Sana'a University, P.O.Box 1247 Sana'a, Yemen.

E-mail: fahdmasoud22@gmail.com
T.M. Al-shami, (1)Department of Mathematics, Sana'a University, P.O.Box 1247 Sana'a, Yemen
(2)Future University, Egypt.

E-mail: tareqalshami83@gmail.com
H. El-Metwally, Department of Mathematics, Mansoura University, Mansoura 51931, Egypt.

E-mail: eaash69@yahoo.com
Received: December 19th, 2021.
Accepted: August 1st, 2022.

