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Abstract: In this manuscript, using (H − η)− accretive mappings we study the existence of
common solution of a system of generalized mixed variational-like inclusion problems and the
set of fixed point problems in q-uniformly smooth Banach spaces. The method used in this paper
can be considered as an extension of methods for studying the existence of common solution for
various classes of variational inclusions considered and studied by many authors in q-uniformly
smooth Banach spaces.

1. Introduction
A widely studied problem known as variational inclusion problem have many applications in
the fields of optimization and control, economics and transportation equilibrium, engineering
sciences, etc. Several researchers used different approaches to develop iterative algorithms for
solving various classes of variational inequality and variational inclusion problems. For details,
we refer,[7,11,13] and the references therein.
Equally important for the variational inequalities and variational inclusion problems, we also
have the problem of finding the fixed points of the nonlinear mappings, which is a subject of
current interest. In this direction, several authors have introduced some iterative schemes for
finding a common element of a set of the solutions of the variational problems and a set of the
fixed points of nonlinear mappings, see [4,9,12] and the references therein.
Motivated and inspired by the above works and by the ongoing research in this direction, in this
paper, we introduce and study a system of generalized mixed variational-like inclusion problems
and the set of fixed point problems in q-uniformly smooth Banach spaces.

2. Resolvent Operator and Formulation of Problem
We need the following definitions and results from the literature.

Let X be a real Banach space equipped with norm ‖.‖ and X? be the topological dual space of
X . Let < ., . > be the dual pair between X and X? and 2X be the power set of X .

Definition 0.1. Definition 2.1[13]. For q > 1, a mapping Jq : X → 2X
?

is said to be generalized
duality mapping, if it is defined by

Jq(x) = {f ∈ X? : 〈x, f〉 = ‖x‖q, ‖x‖q−1 = ‖f‖}, ∀x ∈ X.

In particular, J2 is the usual normalized duality mapping on X . It is well known (see, e.g., [13])
that

Jq(x) = ‖x‖q−2J2(x), ∀x(6= 0) ∈ X.

Note that if X ≡ H, a real Hilbert space, then J2 becomes the identity mapping on X .

Definition 0.2. Definition 2.2[13]. A Banach space X is said to be smooth if, for every x ∈ X
with ‖x‖ = 1, there exists a unique f ∈ X? such that ‖f‖ = f(x) = 1.
The modulus of smoothness of X is the function ρX : [0,∞)→ [0,∞), defined by

ρX(σ) = sup
{
‖x+ y‖+ ‖x− y‖

2
− 1 : x, y ∈ X, ‖x‖ = 1, ‖y‖ = σ

}
.
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Definition 0.3. Definition 2.3[13]. A Banach space X is said to be

(i) uniformly smooth if lim
σ→0

ρX(σ)

σ
= 0,

(ii) q-uniformly smooth, for q > 1, if there exists a constant c > 0 such that ρX(σ) ≤ cσq, σ ∈
[0,∞).

It is well known (see,e.g.,[14]) that

Lq(or lq) is


q−uniformlysmooth, if 1 < q ≤ 2,

2−uniformlysmooth, if q ≥ 2.

Note that if X is uniformly smooth, Jq becomes single-valued. In the study of characteristic
inequalities in q-uniformly smooth Banach spaces, Xu [13] established the following lemma.

Lemma 0.4. Lemma 2.4[13]. Let q > 1 be a real number and let X be a smooth Banach space.
Then the following statements are equivalent:

(i) X is q-uniformly smooth.

(ii) There is a constant cq > 0 such that for every x, y ∈ X, the following inequality holds

‖x+ y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ cq‖y‖q.

Definition 0.5. Definition 2.5. Let X be a q-uniformly smooth Banach space. Let H : X → X ,
η : X ×X → X be single-valued mappings and M : X ×X → 2X be multi-valued mapping.
Then

(i) H is said to be η-accretive, if〈
Hx−Hy, Jq

(
η(x, y)

)〉
≥ 0, ∀x, y ∈ X.

(ii) H is said to be strictly η-accretive, if H is η-accretive and equality holds if and only if
x = y.

(iii) H is said to be k-strongly η-accretive if there exists a constant k > 0 such that〈
Hx−Hy, Jq(η(x, y))

〉
≥ k‖x− y‖q, ∀x, y ∈ X.

(iv) η is said to be τ -Lipschitz continuous, if there exists a constant τ > 0 such that

‖η(x, y)‖ ≤ τ‖x− y‖, ∀x, y ∈ X.

(v) M is said to be η-accretive in the first argument if〈
u− v, Jq(η(x, y))

〉
≥ 0, ∀x, y ∈ X, ∀u ∈M(x, t), v ∈M(y, t), for each fixed t ∈ X.

(vi) M is said to be strictly η-accretive, if M is η-accretive in the first argument and equality
holds if and only if x = y.

Definition 0.6. Definition 2.6. Let X be a q-uniformly smooth Banach space. Let T : X → X ,
N, η : X × X → X be single-valued mappings and S1, S2 : X → X be nonlinear mappings.
Then

(i) T is said to be µ-η-cocoercive if there exists a constant µ > 0 such that〈
Tx− Ty, Jq(η(x, y))

〉
≥ µ‖Tx− Ty‖q, ∀x, y ∈ X.
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(ii) N is said to be (r, δ)-mixed Lipschitz continuous if there exist constants r > 0, δ > 0 such
that

‖N(x, z)−N(y, t)‖ ≤ r‖x− y‖+ δ‖z − t‖, ∀x, y, z, t ∈ X.

(iii) S1, S2 is said to be m1,m2-Lipschitz continous, respectively, if there exists a constant
m1,m2 > 0 such that

‖S1(x1)− S1(x2)‖ ≤ m1‖x1 − x2‖, ∀x1, x2 ∈ X.

‖S2(y1)− S2(y2)‖ ≤ m2‖y1 − y2‖, ∀y1, y2 ∈ X.

We denote by K(S1, S2) the set of fixed points of S1, S2 such that K(S1, S2) = {(x, y) ∈
X ×X : S1(x) = x, S2(y) = y.}

Throughout the rest of the paper unless otherwise stated, we assumeX to be q-uniformly smooth
Banach space.

Definition 0.7. Definition 2.7. Let H : X → X, η : X × X → X be single-valued mappings,
M : X ×X → 2X be a multi-valued mapping, then M is said to be (H − η)−accretive mapping
if for each fixed t ∈ X,M(., t) is η-accretive in the first argument and (H + λM(., t))X = X ,
∀λ > 0.

Lemma 0.8. Lemma 2.8[6]. Let {ζn}, {νn} and {cn} be nonnegative sequences satisfying

ζn+1 ≤ (1− ωn)ζn + ωnνn + cn, ∀n ≥ 0,

where {ωn}∞n=0 ⊂ [0, 1],
∞∑
n=0

ωn = +∞, lim
n→∞

νn = 0 and
∞∑
n=0

cn <∞. Then lim
n→∞

ζn = 0.

Definition 0.9. Definition 2.9. The Hausdorff metric D(·, ·) on CB(X), is defined by

D(B,P ) = max
{

sup
u∈B

inf
v∈P

d(u, v), sup
v∈P

inf
u∈B

d(u, v)

}
, B, P ∈ CB(X),

where d(·, ·) is the induced metric on X and CB(X) denotes the family of all nonempty closed
and bounded subsets of X .

Definition 0.10. Definition 2.10[3]. A set-valued mapping P : X → CB(X) is said to be
γ-D-Lipschitz continuous, if there exists a constant γ > 0 such that

D(P (x), P (y)) ≤ γ‖x− y‖, ∀x, y ∈ X.

Theorem 0.11. Theorem 2.11(Nadler [8]). Let P : X → CB(X) be a set-valued mapping on
X and (X, d) be a complete metric space. Then:

(i) For any given µ > 0 and for any given x, y ∈ X and u ∈ P (x), there exists v ∈ P (y) such
that

d(u, v) ≤ (1 + µ)D(P (x), P (y)).

(ii) If P : X → C(X), then (i) holds for µ = 0, (whereC(X) denotes the family of all nonempty
compact subsets of X).

Theorem 0.12. Theorem 2.12. Let H : X → X , η : X ×X → X be single-valued mappings.
Let H : X → X be k-strongly η-accretive, M : X ×X → 2X be (H − η)−accretive mapping.
If the following inequality :

〈
u − v, Jq(η(x, y))

〉
≥ 0, holds ∀(y, v) ∈ Graph (M(., t)), then

(x, u) ∈ Graph(M(., t)), where Graph (M(., t)) := {(x, u) ∈ X ×X : u ∈M(x, t)}.
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Theorem 0.13. Theorem 2.13. Let H : X → X , η : X ×X → X be single-valued mappings.
Let H : X → X be k-strongly η-accretive, M : X ×X → 2X be (H − η)−accretive mappings.
Then the mapping (H + λM(., t))−1 is single-valued, ∀ λ > 0.

Definition 0.14. Definition 2.14. Let H : X → X , η : X ×X → X be single-valued mappings.
Let H : X → X be k-strongly η-accretive, M : X ×X → 2X be (H − η)−accretive mappings.
Then for each fixed t ∈ X, the resolvent operator RH,η

M(.,t),λ : X → X is defined by

RH,η
M(.,t),λ(x) = (H + λM(., t))−1(x), ∀x ∈ X. (2.1)

Now, we prove the following result which guarentees the Lipschitz continuity of the resolvent
operator RH,η

M(.,t),λ.

Theorem 0.15. Theorem 2.15. Let H : X → X be k-strongly η-accretive and η : X ×X → X
be τ -Lipschitz continuous. LetM : X×X → 2X be (H−η)−accretive mappings. Then for each
fixed t ∈ X , the resolvent operator RH,η

M(.,t),λ : X → X is Lipschitz continuous with constant L,
that is,

‖RH,η
M(.,t),λ(x)−R

H,η
M(.,t),λ(y)‖ ≤ L‖x− y‖, ∀x, y ∈ X, where L :=

τ q−1

k
. (2.2)

Definition 0.16. Definition 2.16. Let H : X → X, η : X ×X → X be single-valued mappings,
let {Mn},Mn : X → 2X be a sequence of (H − η)−accretive mappings. A sequence {Mn}n≥0

is said to be graph convergent to M , denoted by Mn G−→M , if for each (x, u) ∈ graph(M), there
is a sequence {(xn, un)}n≥0 ⊆ graph(Mn) such that xn → x, un → u as n→∞.

Lemma 0.17. Lemma 2.17. Let H : X → X be k-strongly η-accretive and s-Lipschitz con-
tinuous, η : X × X → X be τ -Lipschitz continuous and {Mn},Mn : X × X → 2X be
a sequence of (H − η)−accretive mappings for n = 0, 1, 2, .... If Mn(., tn)

G−→M(., t) then
lim
n→∞

RH,η
Mn(.,tn),λ(u) = RH,η

M(.,t),λ(u), ∀u ∈ X .

Proof. Proof. Since (H + λM(., t))(X) = X, ∀z ∈ X.
Hence there exists (x, u) ∈ graph(M(., t)) such that z = H(x) + λu.
Since Mn(., tn) −→ M(., t), therefore there exists {xn, un} ⊂ graph(Mn(., tn)) such that
xn → x, un → u as n→∞.

Let zn = H(xn) + λun and noting that

RH,η
M(.,t),λ(H(x) + λu) = x, and RH,η

Mn(.,tn),λ(H(xn) + λun) = xn.

Using Lipschitz continuity of RH,η
M(.,t),λ, we have∥∥∥RH,ηMn(.,tn),λ(z)−R

H,η
M(.,t),λ(z)

∥∥∥
≤

∥∥∥RH,ηMn(.,tn),λ(z
n)−RH,η

M(.,t),λ(z)
∥∥∥+ ∥∥∥RH,ηMn(.,tn),λ(z

n)−RH,η
Mn(.,tn),λ(z)

∥∥∥
≤ ‖xn − x‖+ τ q−1

k
‖zn − z‖

= ‖xn − x‖+ τ q−1

k
‖(H(xn) + λun)− (H(x) + λu)‖
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≤ ‖xn − x‖+ τ q−1

k
{‖H(xn)−H(x)‖+ λ‖un − u‖}

≤ ‖xn − x‖+ τ q−1

k
{s‖xn − x‖+ λ‖un − u‖}

−→ 0 as n→∞.

This completes the proof.

Now, we formulate our main problem.

For each i = 1, 2, j ∈ {1, 2} \ i, let Xi be a qi-uniformly smooth Banach space with norm
‖.‖i. Let Ti, fi : Xi → Xi, pi, Ni : Xi × Xj → Xi be single-valued mappings, Mi : Xi ×
Xi → 2Xi be (Hi − ηi)− accretive mappings. Let Bi, Pi, Gi : Xi → C(Xi) be set-valued
mappings. We consider the following system of generalized mixed variational-like inclusion
problems (SGMVLIP): Find (xi, ui, vi, ti) where xi ∈ Xi, ui ∈ Bi(xi), vi ∈ Pi(xi), ti ∈ Gi(xi)
such that

0 ∈ T1

(
f1(x1) + p1(x1, x2)

)
+ λ1

(
N1(u1, v2) +M1(x1, t1)

)
,

0 ∈ T2

(
f2(x2) + p2(x2, x1)

)
+ λ2

(
N2(u2, v1) +M2(x2, t2)

)
.

 (2.3)

Special Cases:
I. If in problem (2.3), T1 = T2 ≡ I , (an identity mapping), then problem (2.3) reduces to the
following problem: Find (xi, ui, vi, ti) such that

0 ∈ f1(x1) + p1(x1, x2) + λ1

(
N1(u1, v2) +M1(x1, t1)

)
,

0 ∈ f2(x2) + p2(x2, x1) + λ2

(
N2(u2, v1) +M2(x2, t2)

)
,

 (2.4)

which is an important generalization of the problem considered and studied by Peng and Zhu
[10].

II. If in problem (2.3) Xi ≡ Hi (a real Hilbert space), T1 = T2 ≡ 0,(a zero mapping), λ1 = λ2 =
1, then problem (2.3) reduces to the following problem: Find (xi, ui, vi, ti) such that

0 ∈ N1(u1, v2) +M1(x1, t1),

0 ∈ N2(u2, v1) +M2(x2, t2).

 (2.5)

This type of problem has been considered and studied by Zeng et al. [15].

We remark that for appropriate and suitable choices of the above defined mappings, SGMVLIP
(2.3) includes a number of variational and variational-like inclusions as special cases, see for
example [1,2,5] and the related references cited therein.

3. Iterative Algorithm
First, we give the following technical lemma:

Lemma 0.18. Lemma 3.1. Let Xi be a real qi-uniformly smooth Banach space. Let Ti, fi :
Xi → Xi, pi, Ni : Xi × Xj → Xi be single-valued mappings, Mi : Xi × Xi → 2Xi be
(Hi − ηi)− accretive mappings. Then (xi, ui, vi, ti) is a solution of SGMVLIP (2.3) where xi ∈
Xi, ui ∈ Bi(xi), vi ∈ Pi(xi), ti ∈ Gi(xi) if and only if

x1 = RH1,η1
M1(.,t1),λ1

[
H1(x1)− T1

(
f1(x1) + p1(x1, x2)

)
− λ1N1(u1, v2)

]
,

x2 = RH2,η2
M2(.,t2),λ2

[
H2(x2)− T2

(
f2(x2) + p2(x2, x1)

)
− λ2N2(u2, v1)

]
.

 (3.1)
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where RH1,η1
M1(.,t1),λ1

= (H1+λ1M1(., t1))−1, RH2,η2
M2(.,t2),λ2

= (H2+λ2M2(., t2))−1 are the resolvent
operators.

Notation 3.2. For A ∈ X1 × X2, the symbol A ∩ K(S1, S2) 6= ∅ means that there exists
(x1, x2) ∈ X1×X2 such that (x1, x2) ∈ A and {x1, x2} ⊂ K(S1, S2), where S1, S2 are Lipschitz
continuous.

Now, we suggest the following Remark for finding a common element of two different sets
namely, the set of solutions of the system of generalized mixed variational-like inclusion prob-
lems and the set of fixed points of Lipschitz mappings S1, S2.

Remark 0.19. Remark 3.3. If (x1, x2) ∈ SGMVLIP (2.3) and {x1, x2} ⊂ K(S1, S2), then it
follows from Lemma 3.1 that

x1 = S1(x1) = S1

{
RH1,η1
M1(.,t1),λ1

[
H1(x1)− T1

(
f1(x1) + p1(x1, x2)

)
− λ1N1(u1, v2)

]}
, λ1 > 0,

x2 = S2(x2) = S2

{
RH2,η2
M2(.,t2),λ2

[
H2(x2)− T2

(
f2(x2) + p2(x2, x1)

)
− λ2N2(u2, v1)

]}
, λ2 > 0.

Lemma 3.1 and Remark 3.3 are very important from the numerical point of view as it along with
Nadler [8] allows us to suggest the following iterative algorithm for finding the approximate
solution of SGMVLIP (2.3).

Algorithm 0.20. Iterative Algorithm 3.4. For each i = 1, 2, given (x0
i , u

0
i , v

0
i , t

0
i ) where x0

i ∈
Xi, u

0
i ∈ Bi(x0

i ),v
0
i ∈ Pi(x0

i ) and t0i ∈ Gi(x0
i ) such that Bi, Pi, Gi : Xi → C(Xi), compute the

sequences {xni }, {uni }, {vni }, {tni } defined by the iterative schemes:

xn+1
1 = (1−αn)xn1 +αnS1

{
RH1,η1
Mn

1 (.,tn1 ),λ1

[
H1(x

n
1 )−T1

(
f1(x

n
1 )+p1(x

n
1 , x

n
2 )
)
−λ1N1(u

n
1 , v

n
2 )
]}

xn2 = S2

{
RH2,η2
Mn

2 (.,tn2 ),λ2

[
H2(x

n
2 )− T2

(
f2(x

n
2 ) + p2(x

n
2 , x

n
1 )
)
− λ2N2(u

n
2 , v

n
1 )
]}

uni ∈ Bi(xni ) : ||un+1
i − uni || ≤ D(Bi(xn+1

i ), Bi(x
n
i ))

vni ∈ Pi(xni ) : ||vn+1
i − vni || ≤ D(Pi(xn+1

i ), Pi(x
n
i ))

tni ∈ Gi(xni ) : ||tn+1
i − tni || ≤ D(Gi(xn+1

i ), Gi(x
n
i ))

where Mn
i : Xi × Xi → 2Xi are (Hi − ηi)−accretive mappings for i ∈ {1, 2}, n = 0, 1, 2, ...,

and
RH1,η1
Mn

1 (.,tn1 ),λ1
= (H1 + λ1M

n
1 (., t

n
1 ))
−1, RH2,η2

Mn
2 (.,tn2 ),λ2

= (H2 + λ2M
n
2 (., t

n
2 ))
−1,

and αn be a sequence of real numbers such that αn ∈ [0, 1] and
∞∑
n=0

αn = +∞.

4. Existence of Solution and Convergence Analysis
Now, we prove the existence of common element of solutions of SGMVLIP (2.3) and the set of
fixed points of Lipschitz mappings S1 and S2.

Theorem 0.21. Theorem 4.1. Let Xi be a real qi-uniformly smooth Banach space. Suppose for
each i = 1, 2, j ∈ {1, 2} \ i, Hi : Xi → Xi be ki-strongly-ηi-accretive, ηi : Xi ×Xi → Xi be
τi-Lipschitz continuous, Hi, Si, Ti : Xi → Xi be Lipschitz continuous with constants si,mi, γi,
respectively. Let Ni : Xi × Xj → Xi be (ri, δi)-mixed Lipschitz continuous, pi : Xi × Xj →
Xi be ξi-Lipschitz continuous in the second argument. Suppose, Mn

i : Xi × Xi → 2Xi be
(Hi − ηi)−accretive mappings such that Mn

i (., x
n
i )

G−→Mi(., xi) as n → ∞. Further, suppose
Hi, Ti, fi : Xi → Xi, pi : Xi × Xj → Xi be such that

[
Hi(.) − Ti

(
fi(.) + pi(., xnj )

)]
be

µi − ηi− cocoercive. Let Bi, Pi, Gi : Xi → C(Xi) be set-valued mappings such that Bi is
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LBi
−D−Lipschitz continuous, Pi is LPi

−D−Lipschitz continuous andGi is LGi
−D−Lipschitz

continuous. In addition, if{
1−m2L2

[
τ2

µq2−1
2

+ λ2r2LB2

]}
> 0,

0 < m1L1

[
τ1

µq1−1
1

+ λ1r1LB1

]
+m1L1

[
γ1ξ1 + λ1δ1LP2

]

×

(
m2L2

[
γ2ξ2 + λ2δ2LP1

]
{

1−m2L2

[
τ2

µq2−1
2

+ λ2r2LB2

]}) < 1,



(4.1)

where Li :=
τ qi−1
i

ki
. Then the sequences {xni }, {uni }, {vni }, {tni } generated by Iterative Algo-

rithm 3.4 converges strongly to xi, ui, vi, ti a solution of SGMVLIP (2.3) where xi ∈ Xi, ui ∈
Bi(xi), vi ∈ Pi(xi), ti ∈ Gi(xi) such that (x1, x2) ∈ SGMVLIP (2.3) and {x1, x2} ⊂ K(S1, S2).

Proof. Proof. From Lemma 3.1, we have

x1 = RH1,η1
M1(.,t1),λ1

[
H1(x1)− T1

(
f1(x1) + p1(x1, x2)

)
− λ1N1(u1, v2)

]
.

Therefore, from Lemma 3.1, Iterative Algorithm 3.4 and fixed point property of S1, it follows
that
‖xn+1

1 − x1‖1

=
∥∥∥(1− αn)xn1 + αnS1

{
RH1,η1
Mn

1 (.,tn1 ),λ1

[
H1(xn1 )− T1

(
f1(xn1 ) + p1(xn1 , x

n
2 )
)
− λ1N1(un1 , v

n
2 )
]}

−(1− αn)x1 − αnS1

{
RH1,η1
M1(.,t1),λ1

[
H1(x1)− T1

(
f1(x1) + p1(x1, x2)

)
− λ1N1(u1, v2)

]}∥∥∥
1

≤ (1− αn)‖xn1 − x1‖1

+αnm1

∥∥∥RH1,η1
Mn

1 (.,tn1 ),λ1

[
H1(xn1 )− T1

(
f1(xn1 ) + p1(xn1 , x

n
2 )
)
− λ1N1(un1 , v

n
2 )
]

−RH1,η1
M1(.,t1),λ1

[
H1(x1)− T1

(
f1(x1) + p1(x1, x2)

)
− λ1N1(u1, v2)

]∥∥∥
1

≤ (1− αn)‖xn1 − x1‖1

+αnm1

∥∥∥RH1,η1
Mn

1 (.,tn1 ),λ1

[
H1(xn1 )− T1

(
f1(xn1 ) + p1(xn1 , x

n
2 )
)
− λ1N1(un1 , v

n
2 )
]

−RH1,η1
Mn

1 (.,tn1 ),λ1

[
H1(x1)− T1

(
f1(x1) + p1(x1, x2)

)
− λ1N1(u1, v2)

]∥∥∥
1

+αnm1

∥∥∥RH1,η1
Mn

1 (.,tn1 ),λ1

[
H1(x1)− T1

(
f1(x1) + p1(x1, x2)

)
− λ1N1(u1, v2)

]
−RH1,η1

M1(.,t1),λ1

[
H1(x1)− T1

(
f1(x1) + p1(x1, x2)

)
− λ1N1(u1, v2)

]∥∥∥
1
. (4.2)

Using Theorem 2.15, we have∥∥∥RH1,η1
Mn

1 (.,tn1 ),λ1

[
H1(x

n
1 )− T1

(
f1(x

n
1 ) + p1(x

n
1 , x

n
2 )
)
− λ1N1(u

n
1 , v

n
2 )
]
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−RH1,η1
Mn

1 (.,tn1 ),λ1

[
H1(x1)− T1

(
f1(x1) + p1(x1, x2)

)
− λ1N1(u1, v2)

]∥∥∥
1

≤ L1

∥∥∥[H1(xn1 )− T1

(
f1(xn1 ) + p1(xn1 , x

n
2 )
)
− λ1N1(un1 , v

n
2 )
]

−
[
H1(x1)− T1

(
f1(x1) + p1(x1, x2)

)
− λ1N1(u1, v2)

]∥∥∥
1

≤ L1

∥∥∥[H1(xn1 )− T1

(
f1(xn1 ) + p1(xn1 , x

n
2 )
)]

−
[
H1(x1)− T1

(
f1(x1) + p1(x1, x

n
2 )
)]∥∥∥

1

+L1

∥∥∥[H1(x1)− T1

(
f1(x1) + p1(x1, x

n
2 )
)]

−
[
H1(x1)− T1

(
f1(x1) + p1(x1, x2)

)]∥∥∥
1

+L1λ1

∥∥∥N1(u
n
1 , v

n
2 )−N1(u1, v2)

∥∥∥
1
. (4.3)

Since
[
H1(.)− T1

(
f1(.) + p1(., xn2 )

)]
is µ1 − η1−cocoercive, we have

∥∥∥[H1(x
n
1 )− T1

(
f1(x

n
1 ) + p1(x

n
1 , x

n
2 )
)]

−
[
H1(x1)− T1

(
f1(x1) + p1(x1, x

n
2 )
)]∥∥∥

1

∥∥∥η1(xn1 , x1)
∥∥∥q1−1

1

≥

〈[
H1(xn1 )− T1

(
f1(xn1 ) + p1(xn1 , x

n
2 )
)]

−
[
H1(x1)− T1

(
f1(x1) + p1(x1, x

n
2 )
)]
, Jq1

(
η1(xn1 , x1)

)〉
1

≥ µ1

∥∥∥[H1(xn1 )− T1

(
f1(xn1 ) + p1(xn1 , x

n
2 )
)]

−
[
H1(x1)− T1

(
f1(x1) + p1(x1, x

n
2 )
)]∥∥∥q1

1
.

This implies

µ1

∥∥∥[H1(x
n
1 )− T1

(
f1(x

n
1 ) + p1(x

n
1 , x

n
2 )
)]

−
[
H1(x1)− T1

(
f1(x1) + p1(x1, x

n
2 )
)]∥∥∥q1

1

≤
∥∥∥[H1(xn1 )− T1

(
f1(xn1 ) + p1(xn1 , x

n
2 )
)]

−
[
H1(x1)− T1

(
f1(x1) + p1(x1, x

n
2 )
)]∥∥∥

1

∥∥∥η1(xn1 , x1)
∥∥∥q1−1

1
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=⇒
∥∥∥[H1(xn1 )− T1

(
f1(xn1 ) + p1(xn1 , x

n
2 )
)]

−
[
H1(x1)− T1

(
f1(x1) + p1(x1, x

n
2 )
)]∥∥∥q1−1

1

≤
τ q1−1

1
µ1
‖xn1 − x1‖q1−1

1

=⇒
∥∥∥[H1(x

n
1 )− T1

(
f1(x

n
1 ) + p1(x

n
1 , x

n
2 )
)]
−
[
H1(x1)− T1

(
f1(x1) + p1(x1, x

n
2 )
)]∥∥∥

1

≤ τ1

µq1−1
1

‖xn1 − x1‖1. (4.4)

Also, since T1 : X1 → X1 is γ1-Lipschitz continuous, p1 : X1 × X2 → X1 is ξ1-Lipschitz
continuous in the second argument, we have∥∥∥[H1(x1)− T1

(
f1(x1) + p1(x1, x

n
2 )
)]
−
[
H1(x1)− T1

(
f1(x1) + p1(x1, x2)

)]∥∥∥
1

≤
∥∥∥T1

(
f1(x1) + p1(x1, x

n
2 )
)
− T1

(
f1(x1) + p1(x1, x2)

)∥∥∥
1

≤ γ1

∥∥∥p1(x1, x
n
2 )− p1(x1, x2)

∥∥∥
1

≤ γ1ξ1‖xn2 − x2‖2. (4.5)

Again using (r1, δ1)-mixed Lipschitz continuity of N1 : X1 × X2 → X1, LB1 and LP2 − D-
Lipschitz continuity of B1 and P2 respectively, we have∥∥∥N1(u

n
1 , v

n
2 )−N1(u1, v2)

∥∥∥
1
≤ r1‖un1 − u1‖1 + δ1‖vn2 − v2‖2

≤ r1LB1‖xn1 − x1‖1 + δ1LP2‖xn2 − x2‖2. (4.6)

Using (4.3)-(4.6) in (4.2), we have
‖xn+1

1 − x1‖1

≤ (1− αn)‖xn1 − x1‖1 + αnm1L1

[ τ1

µq1−1
1

+ λ1r1LB1

]
‖xn1 − x1‖1

+αnm1L1

[
γ1ξ1 + λ1δ1LP2

]
‖xn2 − x2‖2 + αnm1b

n
1 ,

where
bn1 =

∥∥∥RH1,η1
Mn

1 (.,tn1 ),λ1

[
H1(x1)− T1

(
f1(x1) + p1(x1, x2)

)
− λ1N1(u1, v2)

]
−RH1,η1

M1(.,t1),λ1

[
H1(x1)− T1

(
f1(x1) + p1(x1, x2)

)
− λ1N1(u1, v2)

]∥∥∥
1
,

and bn1 → 0 as n→∞. Therefore, we have
‖xn+1

1 − x1‖1

≤ (1− αn)‖xn1 − x1‖1 + αnm1L1

[ τ1

µq1−1
1

+ λ1r1LB1

]
‖xn1 − x1‖1

+αnm1L1

[
γ1ξ1 + λ1δ1LP2

]
‖xn2 − x2‖2. (4.7)

Again, using Lemma 3.1, Iterative Algorithm 3.4 and fixed point property of S2, we have

‖xn2 − x2‖2
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=
∥∥∥S2

{
RH2,η2
Mn

2 (.,tn2 ),λ2

[
H2(xn2 )− T2

(
f2(xn2 ) + p2(xn2 , x

n
1 )
)
− λ2N2(un2 , v

n
1 )
]}

−S2

{
RH2,η2
M2(.,t2),λ2

[
H2(x2)− T2

(
f2(x2) + p2(x2, x1)

)
− λ2N2(u2, v1)

]}∥∥∥
2

≤ m2

∥∥∥RH2,η2
Mn

2 (.,tn2 ),λ2

[
H2(xn2 )− T2

(
f2(xn2 ) + p2(xn2 , x

n
1 )
)
− λ2N2(un2 , v

n
1 )
]

−RH2,η2
Mn

2 (.,tn2 ),λ2

[
H2(x2)− T2

(
f2(x2) + p2(x2, x1)

)
− λ2N2(u2, v1)

]∥∥∥
2

+m2

∥∥∥RH2,η2
Mn

2 (.,tn2 ),λ2

[
H2(x2)− T2

(
f2(x2) + p2(x2, x1)

)
− λ2N2(u2, v1)

]
−RH2,η2

M2(.,t2),λ2

[
H2(x2)− T2

(
f2(x2) + p2(x2, x1)

)
− λ2N2(u2, v1)

]∥∥∥
2
. (4.8)

Now, using Theorem 2.15, we have∥∥∥RH2,η2
Mn

2 (.,tn2 ),λ2

[
H2(x

n
2 )− T2

(
f2(x

n
2 ) + p2(x

n
2 , x

n
1 )
)
− λ2N2(u

n
2 , v

n
1 )
]

−RH2,η2
Mn

2 (.,tn2 ),λ2

[
H2(x2)− T2

(
f2(x2) + p2(x2, x1)

)
− λ2N2(u2, v1)

]∥∥∥
2

≤ L2

∥∥∥[H2(xn2 )− T2

(
f2(xn2 ) + p2(xn2 , x

n
1 )
)
− λ2N2(un2 , v

n
1 )
]

−
[
H2(x2)− T2

(
f2(x2) + p2(x2, x1)

)
− λ2N2(u2, v1)

]∥∥∥
2

≤ L2

∥∥∥[H2(xn2 )− T2

(
f2(xn2 ) + p2(xn2 , x

n
1 )
)]

−
[
H2(x2)− T2

(
f2(x2) + p2(x2, x

n
1 )
)]∥∥∥

2

+L2

∥∥∥[H2(x2)− T2

(
f2(x2) + p2(x2, x

n
1 )
)]

−
[
H2(x2)− T2

(
f2(x2) + p2(x2, x1)

)]∥∥∥
2

+L2λ2

∥∥∥N2(u
n
2 , v

n
1 )−N2(u2, v1)

∥∥∥
2
. (4.9)

Since
[
H2(.)−T2

(
f2(.)+p2(., xn1 )

)]
is µ2−η2−cocoercive, therefore following the same steps

as in (4.4), we have∥∥∥[H2(x
n
2 )− T2

(
f2(x

n
2 ) + p2(x

n
2 , x

n
1 )
)]
−
[
H2(x2)− T2

(
f2(x2) + p2(x2, x

n
1 )
)]∥∥∥

2

≤ τ2

µq2−1
2

‖xn2 − x2‖2. (4.10)

Again, as T2 : X2 → X2 is γ2-Lipschitz continuous, p2 : X2 × X1 → X2 is ξ2-Lipschitz
continuous in the second argument, therefore proceeding as in (4.5), we have∥∥∥[H2(x2)− T2

(
f2(x2) + p2(x2, x

n
1 )
)]
−
[
H2(x2)− T2

(
f2(x2) + p2(x2, x1)

)]∥∥∥
2

≤ γ2ξ2‖xn1 − x1‖1. (4.11)

Now, using (r2, δ2)-mixed Lipschitz continuity of N2 : X2 × X1 → X2, LB2 and LP1 − D-
Lipschitz continuity of B2 and P1 respectively, we have∥∥∥N2(u

n
2 , v

n
1 )−N2(u2, v1)

∥∥∥
2
≤ r2LB2‖xn2 − x2‖2 + δ2LP1‖xn1 − x1‖1. (4.12)
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Using (4.9)-(4.12) in (4.8), we have

‖xn2 − x2‖2 ≤ m2L2

[ τ2

µq2−1
2

+ λ2r2LB2

]
‖xn2 − x2‖2

+m2L2

[
γ2ξ2 + λ2δ2LP1

]
‖xn1 − x1‖1 +m2b

n
2 .

This implies{
1−m2L2

[ τ2

µq2−1
2

+ λ2r2LB2

]}
‖xn2 − x2‖2 ≤ m2L2

[
γ2ξ2 + λ2δ2LP1

]
‖xn1 − x1‖1 +m2b

n
2

or,

‖xn2 − x2‖2 ≤

(
m2L2

[
γ2ξ2 + λ2δ2LP1

]
{

1−m2L2

[ τ2

µq2−1
2

+ λ2r2LB2

]}) ‖xn1 − x1‖1

+

(
m2{

1−m2L2

[ τ2

µq2−1
2

+ λ2r2LB2

]}) bn2 (4.13)

where,
bn2 =

∥∥∥RH2,η2
Mn

2 (.,tn2 ),λ2

[
H2(x2)− T2

(
f2(x2) + p2(x2, x1)

)
− λ2N2(u2, v1)

]
−RH2,η2

M2(.,t2),λ2

[
H2(x2)− T2

(
f2(x2) + p2(x2, x2)

)
− λ2N2(u2, v1)

]∥∥∥
2
,

and bn2 → 0 as n→∞.
Using (4.13) in (4.7), we have

‖xn+1
1 − x1‖1 ≤ (1− αn)‖xn1 − x1‖1 + αnm1L1

[ τ1

µq1−1
1

+ λ1r1LB1

]
‖xn1 − x1‖1

+αnm1L1

[
γ1ξ1 + λ1δ1LP2

]( m2L2

[
γ2ξ2 + λ2δ2LP1

]
{

1−m2L2

[ τ2

µq2−1
2

+ λ2r2LB2

]}) ‖xn1 − x1‖1

+αnm1L1

[
γ1ξ1 + λ1δ1LP2

]( m2{
1−m2L2

[ τ2

µq2−1
2

+ λ2r2LB2

]}) bn2

≤

[
1− αn

{
1−m1L1

[ τ1

µq1−1
1

+ λ1r1LB1

]

−m1L1

[
γ1ξ1 + λ1δ1LP2

]( m2L2

[
γ2ξ2 + λ2δ2LP1

]
{

1−m2L2

[ τ2

µq2−1
2

+ λ2r2LB2

]})}] ‖xn1 − x1‖1

+αnm1L1

[
γ1ξ1 + λ1δ1LP2

]( m2{
1−m2L2

[ τ2

µq2−1
2

+ λ2r2LB2

]}) bn2

≤ [1− αn(1− h)]‖xn1 − x1‖1 + αnln, (4.14)

where

h = m1L1

[ τ1

µq1−1
1

+ λ1r1LB1

]
+m1L1

[
γ1ξ1 + λ1δ1LP2

]( m2L2

[
γ2ξ2 + λ2δ2LP1

]
{

1−m2L2

[ τ2

µq2−1
2

+ λ2r2LB2

]}),
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ln = L1

(
m1m2

[
γ1ξ1 + λ1δ1LP2

]
{

1−m2L2

[ τ2

µq2−1
2

+ λ2r2LB2

]}) bn2 .

Since h < 1 from assumption (4.1), therefore we can rewrite inequality (4.14) as

‖xn+1
1 − xn1 ‖1 ≤ [1− αn(1− h)]‖xn1 − x1‖1 + αn(1− h) ln

(1− h)
. (4.15)

If ζn = ||xn1 − x1||1, νn =
ln

(1− h)
and ωn = αn(1− h), then we have

ζn+1 ≤ (1− ωn)ζn + ωnνn.

Using Lemma 2.8, we have ζn → 0 as n→∞ and thus xn1 → x1 as n→∞, and therefore from
(4.13) it follows that xn2 → x2 as n→∞. Since Bi is LBi

−D-Lipschitz continuous, it follows
from Iterative Algorithm 3.4 that

||uni − ui||i ≤ D(Bi(xni ), Bi(xi))

≤ LBi ||xni − xi||i.

This implies that
uni → ui as n→∞.

Further we claim that ui ∈ Bi(xi)

d(ui, Bi(xi)) ≤ ||ui − uni ||i + d(uni , Bi(xi))

≤ ||ui − uni ||i +D(Bi(xni ), Bi(xi))

≤ ||ui − uni ||i + LBi ||xni − xi||i

→ 0 as n→∞.

Since Bi(xi) is compact, we have ui ∈ Bi(xi).
Similarly, we can prove that vi ∈ Pi(xi) and ti ∈ Gi(xi).
Thus the approximate solution (xni , u

n
i , v

n
i , t

n
i ) generated by Iterative Algorithm 3.4 converges

strongly to (xi, ui, vi, ti) a solution of SGMVLIP (2.3) where xi ∈ Xi, ui ∈ Bi(xi), vi ∈
Pi(xi), ti ∈ Gi(xi) such that (x1, x2) ∈ SGMVLIP (2.3) and {x1, x2} ⊂ K(S1, S2). This com-
pletes the proof.

Conclusion 4.2. In the present study it has been concluded that the convergence criteria of an it-
erative algorithm helps to find the common solution of a system of generalized mixed variational-
like inclusion problems and fixed point problems of nonlinear Lipschitz mappings. Moreover, it
has been proved that the sequences generated by the iterative algorithm converge strongly to a
common element of the two systems.
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