CERTAIN SUBCLASS OF M-FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS' BOUNDS FOR INITIAL COEFFICIENTS

R. S. Dubey, N. Shekhawat, P. Vijaywargiya and K. Modi
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 30C45, 30C50; Secondary 30C80.
Keywords and phrases: Univalent functions, m-fold symmetric bi-univalent functions.

Abstract

In this paper, we introduced a new subclass $S_{\sum_{m}}^{d, l}(\gamma, \lambda)$ of bi-univalent functions with m-fold symmetry in the open unit disk Δ. Further, we investigated a_{n} to obtain bounds for the initial coefficients of functions which belongs to this subclass.

1 Introduction

An analytic function ξ in domain D of the extended complex plane C is univalent, if $\xi\left(z_{1}\right) \neq$ $\xi\left(z_{2}\right)$ whenever $z_{1} \neq z_{2}, z_{1}, z_{2} \in D$. Suppose A be the class containing a function $\xi(z)$ which is analytic in the open unit disk $\Delta=\{z: z \in C$, and, $|z|<1\}$ and satisfies the following normalization conditions:

$$
\xi(0)=\xi^{\prime}(0)-1=0
$$

and is given by:

$$
\begin{equation*}
\xi(z)=z+\Sigma_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

Suppose S is the subclass of A, containing functions that possess the property of univalence in the open unit disk Δ. According to the Koebe's theorem (see [1]), every univalent function has its inverse.

Suppose an analytic function $\xi \in \mathrm{A}$ with the property that ξ and ξ^{-1} both are univalent in Δ, then ξ is called bi-univalent in Δ.

The class of bi-univalent functions is denoted by \sum, which is defined in equation (1.1). This class of bi-univalent functions was investigated by Lewin [2]. He proved $\left|a_{2}\right|<1.51$ for biunivalent functions. In this progress, Brannan and Clunie [3] gave conjecture $\left|a_{2}\right| \leq \sqrt{2}$. And it is seen that in recent years, many researchers showed their interest in investigating subclass of bi-univalent functions and obtained results on the initial coefficient bounds (see [4,5,6,7,8,9]). If a rotation of domain M about the origin through an angle $\frac{2 \pi}{m}$ carries M on itself, then it is called the m-fold symmetric domain. Thus, an analytic function $\xi(z)$ in the open unit disk Δ is called m-fold symmetric for $m \in N$, if it satisfies the given below equation:

$$
\xi\left(e^{2 \pi i / m z}\right)=e^{2 \pi i / m} \xi(z)
$$

Let us define the class of m-fold symmetric univalent functions by S_{m}. A function $\xi \in S_{m}$ is given as follows:

$$
\begin{equation*}
\xi(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1}, \quad(z \in \Delta, m \in N) \tag{1.2}
\end{equation*}
$$

Every function $\xi \in S$ has the function, $d(z)=\sqrt[m]{\xi\left(z^{m}\right)},(z \in \Delta, m \in N)$, which is univalent
along with the property of mapping the unit disk Δ into a region with m-fold symmetry.
Initially, Srivastava et al. [10] described m-fold symmetric bi-univalent functions and have shown that for each $m \in N$, there is a function $\xi \in \sum$, that gives the m -fold symmetric biunivalent function. Also, they gave the series expansion for ξ^{-1}, (ξ is given by equation (1.2)), which is as follows:

$$
\begin{align*}
& \eta(w)=\xi^{-1}(w)=w-a_{m+1} w^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] w^{2 m+1} \\
& \quad-\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right] w^{3 m+1}+\ldots \tag{1.3}
\end{align*}
$$

where $\eta=\xi^{-1}$. The subclass of m-fold symmetric bi-univalent functions in the open unit disk Δ is given by \sum_{m}.

We study the recent works of mathematicians such as A. Zireh et al. [11], H. M. Srivastava et al. [12,13], and S. S. Eker [14], etc., to give the results of our paper.
In this research work, we introduce a new subclass $S_{\sum_{m}}^{d, l}(\gamma, \lambda)$ containing bi-univalent functions with the property that ξ and ξ^{-1} are m-fold symmetric. We also try to provide results on initial coefficient bounds. The purpose of this paper is to provide a formula of the upper bounds for initial coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ of the functions in this new subclass $S_{\sum_{m}}^{d, l}(\gamma, \lambda)$. Our results are motivated by the latest works of the researchers.

Definition 1.1: Suppose the functions $d, l: \Delta \rightarrow C$ are analytic and

$$
\begin{align*}
& d(z)=1+d_{m} z^{m}+d_{2 m} z^{2 m}+d_{3 m} z^{3 m}+\ldots \tag{1.4}\\
& l(w)=1+l_{m} w^{m}+l_{2 m} w^{2 m}+l_{3 m} w^{3 m}+\ldots \tag{1.5}
\end{align*}
$$

such that $\min \{\operatorname{Re}(d(z)), \operatorname{Re}(l(z))\}>0(z \in \Delta)$.
Let $\gamma \in C \backslash\{0\}$ and $\lambda \geq 1$. A function ξ given by equation (1.2) is said to be in subclass $S_{\sum_{m}}^{d, l}(\gamma, \lambda)$, if it satisfies the following conditions:

$$
\begin{equation*}
1+\frac{1}{\gamma}\left[\frac{z \xi^{\prime}(z)+\lambda z^{2} \xi^{\prime \prime}(z)}{(1-\lambda) \xi(z)+\lambda z \xi^{\prime}(z)}-1\right] \in \mathrm{d}(\Delta),(z \in \Delta) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\gamma}\left[\frac{w \eta^{\prime}(w)+\lambda w^{2} \eta^{\prime \prime}(w)}{(1-\lambda) \eta(w)+\lambda w \eta^{\prime}(w)}-1\right] \in l(\Delta),(w \in \Delta) \tag{1.7}
\end{equation*}
$$

where η is given by equation (1.3).

2 Coefficient estimates for class $S_{\sum_{m}}^{d, l}(\gamma, \lambda)$

Now, we find the bounds for the coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ of the subclass $S_{\sum_{m}}^{d, l}(\gamma, \lambda)$.
Theorem 2.1: Let the function $\xi(z)$ given by equation (1.2) be in the class $S_{\sum_{m}, l}^{d, l}(\gamma, \lambda)$, with $\gamma \in C \backslash\{0\}$ and $\lambda \geq 1$. Then,

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \min \left\{\sqrt{\frac{|\gamma|^{2}\left(\left|d^{(m)}(0)\right|^{2}+\left|l^{(m)}(0)\right|^{2}\right)}{2 m^{2}(m!)^{2}(1+\lambda m)^{2}}}, \sqrt{\frac{|\gamma|\left(\left|d^{(2 m)}(0)\right|+\left|l^{(2 m)}(0)\right|\right)}{2 m(2 m!)\left|(m+1)(1+2 \lambda m)-(1+\lambda m)^{2}\right|}}\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{gather*}
\left|a_{2 m+1}\right| \leq \min \left\{\frac{|\gamma|^{2}(m+1)\left(\left|d^{(m)}(0)\right|^{2}+\left|l^{(m)}(0)\right|^{2}\right)}{4 m^{2}(m!)^{2}(1+\lambda m)^{2}}+\frac{|\gamma|| | d^{2 m)}(0)\left|+\left|\left.\right|^{(2 m)}(0)\right|\right)}{4 m(2 m!)(2 \lambda m+1)]},\right. \\
\left.\frac{|\gamma|}{4 m(2 m!)}\left[\frac{\left|2(m+1)(1+2 \lambda m)-(1+\lambda m)^{2}\right|\left|d^{(2 m)}(0)\right|+\left.(1+m \lambda)^{2}\right|^{(2 m)}(0) \mid}{(1+2 \lambda m)\left|(m+1)(1+2 \lambda m)-(1+\lambda m)^{2}\right|}\right]\right\} . \tag{2.2}
\end{gather*}
$$

Furthermore, for any $\mu \in C$,

$$
\begin{align*}
& \left|a_{2 m+1}-\mu a_{m+1}^{2}\right| \leq \min \left\{\frac{|\gamma|^{2}|m+1-2 \mu|\left(\left|d^{(m)}(0)\right|^{2}+\left|l^{(m)}(0)\right|^{2}\right)}{4 m^{2}(m!)^{2}(1+\lambda m)^{2}}+\frac{|\gamma|\left(\left|d^{(2 m)}(0)\right|+\left|l^{(2 m)}(0)\right|\right)}{4 m(2 m!)(1+2 \lambda m)}\right. \tag{2.3}\\
& \left.\frac{|\gamma|}{4 m}\left[\frac{\left|2(1+2 \lambda m)(m+1-\mu)-(1+\lambda m)^{2}\right|\left|d^{(2 m)}(0)\right|+\left[(1+m \lambda)^{2}+2|\mu|(1+2 \lambda m)\right]\left|l^{(2 m)}(0)\right|}{(2 m!)(1+2 \lambda m)\left|(m+1)(1+2 \lambda m)-(1+\lambda m)^{2}\right|}\right]\right\}
\end{align*}
$$

Proof: First we write the equations (1.6) and (1.7) in equivalent forms,

$$
\begin{gather*}
1+\frac{1}{\gamma}\left[\frac{z \xi^{\prime}(\mathbf{z})+\lambda \mathrm{z}^{2} \xi^{\prime \prime}(\mathrm{z})}{(1-\lambda) \xi(\mathrm{z})+\lambda \mathrm{z} \xi^{\prime}(\mathrm{z})}-1\right]=\mathrm{d}(z) \tag{2.4}\\
1+\frac{1}{\gamma}\left[\frac{w \eta^{\prime}(w)+\lambda w^{2} \eta^{\prime \prime}(w)}{(1-\lambda) \eta(w)+\lambda w \eta^{\prime}(w)}-1\right]=l(w) \tag{2.5}
\end{gather*}
$$

respectively, here d and l follows the argument of Definition 1.1.
Now, using equations (1.4) and (1.5) in equations (2.4) and (2.5) respectively, and comparing the coefficients, we get:

$$
\begin{gather*}
\frac{m}{\gamma}(1+\lambda m) a_{m+1}=d_{m} \tag{2.6}\\
\frac{1}{\gamma}\left[2 m(1+2 \lambda m) a_{2 m+1}-m(1+\lambda m)^{2} a^{2}{ }_{m+1}\right]=d_{2 m}, \tag{2.7}\\
\frac{-m(1+\lambda m)}{\gamma} a_{m+1}=l_{m} \tag{2.8}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{1}{\gamma}\left[\left\{2 m(m+1)(1+2 \lambda m)-m(1+\lambda m)^{2}\right\} a_{m+1}^{2}-2 m(1+2 \lambda m) a_{2 m+1}\right]=l_{2 m} \tag{2.9}
\end{equation*}
$$

From equations (2.6) and (2.8), we obtain:

$$
\begin{equation*}
d_{m}=-l_{m} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2 m^{2}}{\gamma^{2}}(1+\lambda m)^{2} a_{m+1}^{2}=d_{m}^{2}+l_{m}^{2} \tag{2.11}
\end{equation*}
$$

Also, by adding equations (2.7) and (2.9), we obtain:

$$
\begin{equation*}
\frac{2 m}{\gamma}\left[(m+1)(1+2 \lambda m)-(1+\lambda m)^{2}\right] a_{m+1}^{2}=d_{2 m}+l_{2 m} \tag{2.12}
\end{equation*}
$$

By using equations (2.11) and (2.12), we get:

$$
\begin{equation*}
a_{m+1}^{2}=\frac{\gamma^{2}\left(d_{m}^{2}+l_{m}^{2}\right)}{2 m^{2}(1+\lambda m)^{2}} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{m+1}^{2}=\frac{\gamma\left(d_{2 m}+l_{2 m}\right)}{2 m\left[(m+1)(1+2 \lambda m)-(1+\lambda m)^{2}\right]} \tag{2.14}
\end{equation*}
$$

Taking absolute values in equations (2.13) and (2.14), we get:

$$
\left|a_{m+1}\right|^{2} \leq \frac{|\gamma|^{2}\left(\left|d^{(m)}(0)\right|^{2}+\left|l^{(m)}(0)\right|^{2}\right)}{2 m^{2}(m!)^{2}(1+\lambda m)^{2}}
$$

and

$$
\left|a_{m+1}\right|^{2} \leq \frac{|\gamma|\left(\left|d^{(2 m)}(0)\right|+\left|l^{(2 m)}(0)\right|\right)}{2 m(2 m!)\left|(m+1)(1+2 m \lambda)-(1+m \lambda)^{2}\right|}
$$

respectively, Hence, we obtain the result of inequality (2.1).
Now, to obtain the bound of $a_{2 m+1}$, we subtract equation (2.9) from (2.7),

$$
\begin{equation*}
\frac{4 m(1+2 \lambda m)}{\gamma} a_{2 m+1}-\frac{2 m(m+1)(1+2 \lambda m)}{\gamma} a_{m+1}^{2}=d_{2 m}-l_{2 m} \tag{2.15}
\end{equation*}
$$

Using equation (2.13) in equation(2.15), we get:

$$
\begin{equation*}
a_{2 m+1}=\frac{\gamma^{2}(m+1)\left(d_{m}^{2}+l_{m}^{2}\right)}{4 m^{2}(1+\lambda m)^{2}}+\frac{\gamma\left(d_{2 m}-l_{2 m}\right)}{4 m(1+2 \lambda m)} \tag{2.16}
\end{equation*}
$$

On taking absolute values, we get:

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leq \frac{|\gamma|^{2}(m+1)\left(\left|d^{(m)}(0)\right|^{2}+\left|l^{(m)}(0)\right|^{2}\right)}{4 m^{2}(m!)^{2}(1+\lambda m)^{2}}+\frac{|\gamma|\left(\left|d^{(2 m)}(0)\right|+\left|l^{(2 m)}(0)\right|\right)}{4 m(1+2 \lambda m)(2 m!)} \tag{2.17}
\end{equation*}
$$

Now by putting the value of a_{m+1}^{2} from equation (2.14) in equation(2.15), we get:

$$
a_{2 m+1}=\frac{\gamma(m+1)\left(d_{2 m}+l_{2 m}\right)}{4 m\left[(m+1)(1+2 \lambda m)-(1+m \lambda)^{2}\right]}+\frac{\gamma\left(d_{2 m}-l_{2 m}\right)}{4 m(1+2 \lambda m)}
$$

or

$$
\begin{equation*}
a_{2 m+1}=\frac{\gamma}{4 m}\left[\frac{\left\{2(m+1)(1+2 \lambda m)-(1+\lambda m)^{2}\right\} d_{2 m}+(1+\lambda m)^{2} l_{2 m}}{(1+2 \lambda m)\left\{(m+1)(1+2 \lambda m]-(1+m \lambda)^{2}\right\}}\right] \tag{2.18}
\end{equation*}
$$

Taking absolute value of the above equation, we get:

$$
\begin{align*}
& \left|a_{2 m+1}\right| \leq \\
& \frac{|\gamma|}{4 m(2 m!)}\left[\frac{\left|2(m+1)(1+2 \lambda m)-(1+\lambda m)^{2}\right|\left|d^{(2 m)}(0)\right|+(1+m \lambda)^{2}\left|l^{(2 m)}(0)\right|}{(1+2 \lambda m)\left|\left\{(m+1)(1+2 \lambda m)-(1+m \lambda)^{2}\right\}\right|}\right] \tag{2.19}
\end{align*}
$$

Equations (2.17) and (2.19) together give the desired inequality (2.2).
In the end, for any by using equations (2.13) and (2.16), we get:

$$
a_{2 m+1}-\mu a_{m+1}^{2}=\frac{\gamma^{2}(m+1)\left(d_{m}^{2}+l_{m}^{2}\right)}{4 m^{2}(1+m \lambda)^{2}}+\frac{\gamma\left(d_{2 m}-l_{2 m}\right)}{4 m(1+2 \lambda m)}-\frac{\mu \gamma^{2}\left(d_{m}^{2}+l_{m}^{2}\right)}{2 m^{2}(1+\lambda m)^{2}}
$$

or

$$
a_{2 m+1}-\mu a_{m+1}^{2}=\frac{[(m+1)-2 \mu] \gamma^{2}\left(d_{m}^{2}+l_{m}^{2}\right)}{4 m^{2}(1+\lambda m)^{2}}+\frac{\gamma\left(d_{2 m}-l_{2 m}\right)}{4 m(1+2 \lambda m)}
$$

Taking absolute values of the above equation:

$$
\begin{align*}
& \left|a_{2 m+1}-\mu a^{2}{ }_{m+1}\right| \\
& \quad \leq \frac{|m+1-2 \mu||\gamma|^{2}\left(\left|d^{(m)}(0)\right|^{2}+\left|l^{(m)}(0)\right|^{2}\right)}{4 m^{2}(1+\lambda m)^{2}\left((m!)^{2}\right.} \tag{2.20}\\
& \quad+\frac{|\gamma|\left(\left|d^{(2 m)}(0)\right|+\mid l^{\left(l^{2 m)}(0) \mid\right)}\right.}{4 m(1+2 \lambda m)(2 m!)} .
\end{align*}
$$

Similarly, on repeating the above method, by using equation (2.14) in equation (2.18), we get:

$$
\begin{aligned}
& a_{2 m+1}-\mu a^{2}{ }_{m+1} \\
& =\frac{\gamma}{4 m}\left[\frac{\left\{2(1+2 \lambda m)(m+1-\mu)-(1+\lambda m)^{2}\right\} d_{2 m}+\left\{(1+\lambda m)^{2}-2 \mu(1+2 \lambda m)\right\} l_{2 m}}{(1+2 \lambda m)\left\{(m+1)(1+2 \lambda m)-(1+\lambda m)^{2}\right\}}\right]
\end{aligned}
$$

thus

$$
\begin{align*}
& \left|a_{2 m+1}-\mu a^{2}{ }_{m+1}\right| \\
& \leq \frac{|\gamma|}{4 m}\left[\frac{\left|2(1+2 \lambda m)(m+1-\mu)-(1+\lambda m)^{2}\right|\left|d^{(2 m)}(0)\right|+\left\{(1+\lambda m)^{2}+2|\mu|(1+2 \lambda m)\right\}\left|l^{(2 m)}(0)\right|}{(2 m!)(1+2 \lambda m)\left|(m+1)(1+2 \lambda m)-(1+\lambda m)^{2}\right|}\right] \tag{2.21}
\end{align*}
$$

Inequalities (2.20) and (2.21) give the desired estimate $\left|a_{2 m+1}-\mu a^{2}{ }_{m+1}\right|$, as asserted in inequality (2.3). Hence proved the theorem.
Remark 2.1: If we take, $d(z)=l(z)=\left(\frac{1+z^{m}}{1-z^{m}}\right)^{p}=1+p z^{m}+2 p^{2} z^{2 m}+2 p^{3} z^{3 m}+\ldots$, $0<p \leq 1$, in the subclass $S_{\sum_{m}^{d, l}}(\gamma, \lambda)$ with $\gamma \in C \backslash\{0\}$ and $\lambda \geq 1$ in theorem (2.1), we get the subsequent consequences.

Corollary 2.1: Let the function $\xi(z)$ satisfy the equation (1.2) exists in the subclass $S_{\sum_{m}^{d, l}}(\gamma, \lambda)$. Then we obtain:

$$
\left|a_{m+1}\right| \leq \min \left\{\frac{2 p|\gamma|}{m(1+\lambda m)}, p \sqrt{\frac{2|\gamma|}{m\left|(m+1)(1+2 \lambda m)-(1+\lambda m)^{2}\right|}}\right\}
$$

and

$$
\begin{aligned}
& \left|a_{2 m+1}\right| \leq \\
& \quad \min \left\{\frac{p^{2}(m+1)|\gamma|^{2}}{2 m^{2}(1+\lambda m)^{2}}+\frac{p^{2}|\gamma|}{m(1+2 \lambda m)}, \frac{p^{2}(m+1)|\gamma|}{m\left|(m+1)(1+2 \lambda m)-(1+\lambda m)^{2}\right|}\right\}
\end{aligned}
$$

Remark 2.2: If we take,

$$
\begin{aligned}
& d(z)=l(z)=\left(\frac{1+z^{m}}{1-z^{m}}\right)^{p} \\
& \quad=1+p z^{m}+2 p^{2} z^{2 m}+2 p^{3} z^{3 m}+\ldots, 0<p \leq 1
\end{aligned}
$$

and $\gamma=\lambda=1$ in Theorem 2.1, the class $S_{\sum_{m}}^{d, l}(\gamma, \lambda)$ reduces to class $S_{\sum_{m}}^{d, l}$ and we obtain the following results.

Corollary 2.2: Let the function $\xi(z)$ which satisfy the equation (1.2), lies in the subclass $S_{\sum_{m}}^{d, l}$. Hence:

$$
\left|a_{m+1}\right| \leq \min \left\{\frac{2 p}{m(1+m)}, \frac{p}{m} \sqrt{\frac{2}{m+1}}\right\}
$$

and

$$
\left|a_{2 m+1}\right| \leq \min \left\{\frac{p^{2}(m+1)}{2 m^{2}(1+m)^{2}}+\frac{p^{2}}{m(1+2 m)}, \frac{p^{2}}{m^{2}}\right\}
$$

Remark 2.3: If we take, $d(z)=l(z)=\left(\frac{1+z^{m}}{1-z^{m}}\right)^{p}=1+p z^{m}+2 p^{2} z^{2 m}+2 p^{3} z^{3 m}+\ldots, 0<$ $p \leq 1$ and $\gamma=\lambda=m=1$ in the Theorem 2.1, the class $S_{\sum_{m}}^{d, l}$ reduces to class $S_{\sum}^{d, l}$ and we obtain the following results.

Corollary 2.3: Let the function $\xi(z)$ given by equation (1.1) be in class $S_{\sum}^{d, l}$. Then we obtain:

$$
\left|a_{2}\right| \leq p, \text { and },\left|a_{3}\right| \leq p^{2}
$$

Remark 2.4: Now, taking $d(z)=l(z)=1+2(1-q) z^{m}+2(1-q) z^{2 m}+2(1-q) z^{3 m}+$ $\ldots, 0 \leq q<1$, in the subclass, $S_{\sum_{m}}^{d, l}(\gamma, \lambda)$ with $\gamma \in C \backslash\{0\}$ and $\lambda \geq 1$ in theorem (2.1), we deduce the subsequent consequences.

Corollary 2.4:Suppose the function $\xi(z)$ defined in equation (1.2) exists in the subclass $S_{\sum_{m}^{d, l}}(\gamma, \lambda)$. Then we obtain:

$$
\left|a_{m+1}\right| \leq \min \left\{\frac{2(1-q)|\gamma|}{m(1+\lambda m)}, \sqrt{\frac{4(1-q)|\gamma|}{m\left|(m+1)(1+2 \lambda m)-(1+\lambda m)^{2}\right|}}\right\}
$$

and

$$
\left|a_{2 m+1}\right| \leq \min \left\{\frac{2(1+m)(1-q)^{2}|\gamma|^{2}}{m^{2}(1+\lambda m)^{2}}+\frac{(1-q)|\gamma|}{m(1+2 \lambda m)}, \frac{(m+1)(1-q)|\gamma|}{m\left|(m+1)(1+2 \lambda m)-(1+\lambda m)^{2}\right|}\right\}
$$

Remark 2.5: If we take

$$
\begin{aligned}
& d(z)=l(z) \\
& \quad=1+2(1-q) z^{m}+2(1-q) z^{2 m}+\ldots, 0 \leq q<1,
\end{aligned}
$$

and set $\gamma=\lambda=1$ in the theorem 2.1, then the class $S_{\sum_{m}}^{d, l}(\gamma, \lambda)$ reduces to the class $S_{\sum_{m}^{d, l}}$ and deduce the following result.

Corollary 2.5: Suppose the function $\xi(z)$ satisfying equation (1.2) exists in the subclass $S_{\sum_{m}}^{d, l}$.Then we obtain:

$$
\left|a_{m+1}\right| \leq \min \left\{\frac{2(1-q)}{m(1+m)}, \sqrt{\frac{4(1-q)}{m^{2}(m+1)}}\right\}
$$

and

$$
\left|a_{2 m+1}\right| \leq \min \left\{\frac{2(1-q)^{2}}{m^{2}(1+m)}+\frac{(1-q)}{m(1+2 m)}, \frac{(1-q)}{m^{2}}\right\}
$$

Remark 2.6: By putting,

$$
\begin{aligned}
& d(z)=l(z) \\
& \quad=1+2(1-q) z^{m}+2(1-q) z^{2 m}+\ldots, 0 \leq q<1
\end{aligned}
$$

$\gamma=\lambda=1$ and setting $m=1$ in the theorem 2.1, the class $S_{\sum_{m}}^{d, l}$ reduces to the class $S_{\sum}^{d, l}$.
Corollary 2.6: Suppose the function $\xi(z)$ satisfying equation (1.1) exists in the subclass $S_{\sum}^{d, l}$. Then we deduce:

$$
\left|a_{2}\right| \leq(1-q)
$$

and

$$
\left|a_{3}\right| \leq(1-q)
$$

3 Conclusion

We have tried to obtain coefficient bounds for the new subclass $S_{\sum_{m}}^{d, l}$ of bi-univalent functions, where $\xi(z)$ and $\xi^{-1}(z)$ both have the property of m-fold symmetry in the open unit disk Δ. Further, we get some results by using specific values in our main theorem. In the future, we will try to generalize the new subclass $S_{\sum_{m}}^{d, l}$ and will try to get upper bounds for the initial coefficients. Also, we can find the logarithmic coefficients for this subclass $S_{\sum_{m}}^{d, l}$.

4 Acknowledgement

Authors express their sincere thanks to the reviewers for their valuable comments and suggestions.

5 Data availability

There is no data used in the paper.

6 Conflict of Interest

There is no conflict of interest.

7 Authors Contribution

All authors contributed in writing the draft, calculations etc. And all reviewed and approved the final version of the manuscript.

References

[1] P. L. Duren, Univalent Functions,Grundlehren der Mathematischen Wissenschaften, Band 259, SpringerVerlag, New York, Berlin, Heidelberg and Tokyo, (1983).
[2] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18, 63-68 (1967).
[3] D. A. Brannan, J. G. Clunie, Aspects of Contemporary Complex Analysis, New York and London,(1980).
[4] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49, 109-115, (1975).
[5] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi- univalent functions, C. R. Math. Acad. Sci. Paris.352, 479-484, (2014).
[6] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23, 1188-1192, (2010).
[7] M. Caglar, H. Orhan, N. Yagmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27, 1165-1171, (2013).
[8] Q. H. Xu, Y.C.Gui, H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and biunivalent functions, Appl. Math. Lett. 25, 990-994, (2012).
[9] H.M. Srivastava, S.Sivasubramanian, R. Sivakumar, Initial coefficient bounds for a subclass of m - fold symmetric bi-univalent functions, . J. Tbilisi Math. 7, 1-10, (2014).
[10] H. M. Srivastava, S. Bulut, M.Caglar, N.Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, . Filomat 27, 831-842, (2013).
[11] A. Zireh, S.Hajiparvaneh, Initial coefficient Bounds for a subclass of m-fold symmetric Bi-univalent Functions,. Bol, Soc. Paran. Math., 153-164, (2018).
[12] H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi- univalent function,.Filomat 29, 1839-1845, (2015).
[13] H. M. Srivastava, S. Gaboury, F. Ghanim, Initial coefficient estimates for some sub classes of m-fold symmetric bi-univalent functions, . Acta Math. Sci. 36, 863-871, (2016).
[14] S. S. Eker, Coefficient bounds for sub classes of m-fold symmetric bi-univalent functions, . J. Turkish Math. 40, 641-646, (2016).

Author information

R. S. Dubey, Department of Mathematics, ASAS, AMITY University Rajasthan, Jaipur, 302002, India. E-mail: ravimath13@gmail.com
N. Shekhawat, Department of Mathematics, ASAS, AMITY University Rajasthan, Jaipur, 302002, India. E-mail: neetushekhawat1723@gmail.com
P. Vijaywargiya, Department of Mathematics, S. S. Jain Subodh Girls P. G. College, Sanganer, Jaipur, 302033, India.
E-mail: pramilavi jay 1979@gmail.com
K. Modi, Department of Mathematics, ASAS, AMITY University Rajasthan, Jaipur, 302002,.

E-mail: mangalkanak@gmail.com
Received: August 22nd, 2021
Accepted: November 7th, 2021

