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Abstract We establish the classical Weyl-Titchmarsh theory for conformable fractional Dirac
system.

1 Introduction

Nowadays, conformable fractional calculus have become a very active area of research. Con-
formable fractional calculus were introduced by Khalil, Al Horani, Yousef and Sababheh in
[12]. Later Abdeljawad [1] defined the right and left conformable fractional derivatives and
conformable fractional integrals. Although classical fractional derivatives (Riemann–Liouville
and Caputo) share some weaknesses, the conformable fractional derivative allows for many ex-
tensions of classical properties in ordinary calculus. For some recent works on the theory of
conformable fractional calculus we refer the readers to [1, 2, 12, 8, 11, 10] and reference therein.

The theory of Titchmarsh-Weyl plays an important role in the spectral analysis of differential
operators. This theory of was introduced by H. Weyl in 1910 ([16]). In [16], the author studied
that the following Sturm-Liouville problem

− (py′)
′
+ qy = λy, 0 ≤ x <∞.

Weyl defined the limit-point, limit-circle classification. Since then many authors have expounded
on various features of this theory (see [14, 13, 18, 5, 6, 7]). Recently, in [9], Baleanu et al. studied
the singular conformable Sturm-Liouville problem. They investigated Titchmarsh-Weyl theory.
Allahverdiev and Tuna studied one-dimensional conformable fractional Dirac systems ([3, 4]).

The purpose of this article is to develop Titchmarsh-Weyl theory for a conformable fractional
(CF) Dirac system defined by{

−Tαy2 + p(x)y1 = λy1

Tαy1 + r(x)y2 = λy2
, x ∈ [0,∞), (1.1)

where p and r are real-valued functions defined on [0,∞) and λ is a complex spectral parameter. To
the best of authors knowledge such study has not been reported earlier in the literature.

In this context, we give some basic concepts of conformable fractional calculus (see [1, 2, 12]
for more details). Let α be a positive number with 0 < α < 1.

Definition 1.1. Let g : [0,∞)→ R. The CF-derivative of g is defined by

Tαg(t) = lim
ε→0

g(t+ εt1−α)− g(t)
ε

.

Definition 1.2. Let g : [0,∞)→ R. The CF-integral g is defined by

(Iαg) (t) =

t∫
0

g(x)dα (x) =

t∫
0

xα−1g(x)dx.
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Let L2
α(0,∞) denotes the Hilbert space (see [17]) consisting of all functions satisfying the

following

‖g‖ :=
(∫ ∞

0
|g (t)|2 dα (t)

)1/2

<∞

with the inner product

(g, h) :=
∫ ∞

0
g (t)h (t)dα (t) ,

where g, h ∈ L2
α(0,∞).

Let us consider the following system:

τy = λy, 0 ≤ x <∞, (1.2)

where

τy :=

{
−Tαy2 + p(x)y1

Tαy1 + r(x)y2
, y =

(
y1

y2

)
, λ ∈ C,

p, r : [0,∞)→ R, and p, r ∈ L1
α,loc (0,∞) ,

L1
α,loc (0,∞) :=

{
g : [0,∞)→ C :

∫ b

0
|g (t)| dα (t) <∞, ∀b ∈ (0,∞)

}
.

Now, we shall define an appropriate Hilbert space. Let us consider the following inner prod-
uct in the Hilbert space L2

α((0,∞);E) (E := C2)

(g, h) :=
∫ ∞

0
(g(t), h(t))Edα (t) .

Theorem 1.3 ([3]). Let ci, i = 0, 1, be given complex constants. Then, the CF-Dirac system (1.2)

has a unique solution Ψ(x, λ) =

(
Ψ1(x, λ)

Ψ2(x, λ)

)
such that

Ψ1 (0, λ) = c0, Ψ2 (0, λ) = c1, λ ∈ C. (1.3)

Further, for each x ∈ [0,∞), the vector-valued function Ψ(x, λ) is an entire function of λ.

Let Dα be a subset of L2
α((0,∞);E) such that

Dα =
{
y ∈ L2

α((0,∞);E) : y ∈ ACloc[0,∞);E), τy ∈ L2
α((0,∞);E)

}
,

where ACloc([0,∞);E) denotes the collection of vector-valued functions y which are absolutely
continuous on all compact intervals [0, b] ⊂ [0,∞), ∀b ∈ (0,∞).

Lemma 1.4. Following equality holds∫ x

0
[((τy(t), u(t))E − (y(t), τu(t))E ] dα (t)

= [y, u]x − [y, u]0 , (1.4)

where x ∈ (0,∞) , y, u ∈ Dα and

[y, u]x := y1 (x)u2 (x)− u1 (x)y2 (x) .
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Proof. For y, u ∈ Dα one has∫ x

0
[(τy(t), u(t))E − (y(t), τu(t))E ] dα (t)

=

∫ x

0
(−Tαy2(t) + p (t) y1(t))u1(t)dα (t)

+

∫ x

0
(Tαy1(t) + r (t) y2(t))u2(t)dα (t)

−
∫ x

0
y1(t)(−Tαu2(t) + p (t)u1(t))dα (t)

−
∫ x

0
y2(t)(Tαu1(t) + r (t)u2(t))dα (t)

= −
∫ x

0
[(Tαy2(t))u1(t) + y2(t)Tαu1(t)]dα (t)

+

∫ x

0
[(Tαy1(t))u2(t) + y1(t)Tαu2(t))]dα (t) .

Thus we get ∫ x

0
[(τy(t), u(t))E − (y(t), τu(t))E ] dα (t)

=

∫ x

0

[
(Tαy1 (t))u2 (t)− (Tαu1 (t))y2 (t)

]
dα (t)

=

∫ x

0
Tα[y1 (t)u2 (t)− u1 (t)y2 (t)] dα (t)

= [y, u]x − [y, u]0 .

Let ϕ(x, λ) and ψ(x, λ) be two solutions of (1.2) satisfying

ϕ1 (0, λ) = cos δ, ϕ2 (0, λ) = sin δ, (1.5)

ψ1 (0, λ) = sin δ, ψ2 (0, λ) = − cos δ, (1.6)

where δ ∈ R be fixed.

Lemma 1.5. For x ∈ [0,∞) and λ ∈ C, following equalities hold

ϕ(x, λ) = ϕ
(
x, λ

)
,

ψ(x, λ) = ψ
(
x, λ

)
.

Proof. By virtue of the fact that ϕ(x, λ) is a solution of (1.2), we arrive that

−Tαϕ2 + p(x)ϕ1 = λϕ1,

Tαϕ1 + r(x)ϕ2 = λϕ2,
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where x ∈ [0,∞). Thus, we obtain

−Tαϕ2 + p(x)ϕ1 = λϕ1,

Tαϕ1 + r(x)ϕ2 = λϕ2.

It follows from (1.5) that the function ϕ(x, λ) is a solution of the following system

−Tαz2 + p(x)z1 = λz1,

Tαz1 + r(x)z2 = λz2.

On the other hand, ϕ
(
x, λ

)
is also a solution of (1.2)-(1.5). From the uniqueness of solutions,

we conclude that
ϕ(x, λ) = ϕ

(
x, λ

)
.

Now we define the Wronskian of y and z by

W (y, z) (x) = y1(x)z2 (x)− z1(x)y2 (x) , (1.7)

where y(x) =

(
y1(x)

y2(x)

)
, z(x) =

(
z1(x)

z2(x)

)
.

Theorem 1.6. Let y and z be two solutions of Eq.(1.2). Then W (y, z) (x) does not depend on
x, 0 ≤ x <∞, λ ∈ C.

Proof. From (1.4), we conclude that∫ x

0

[(
τy(t, λ), u(t, λ)

)
E
−
(
y(t, λ), τu(t, λ)

)
E

]
dα (t)

= [y, u]x − [y, u]0 =W (y, u) (x, λ)−W (y, u) (0, λ) .

Since τy = λy and τu = λu, we conclude that∫ x

0

[
(λy(t, λ), u(t, λ))E − (y(t, λ), λu(t, λ))E

]
dα (t)

= (λ− λ)
∫ x

0
(y(t, λ), u(t, λ))Edα (t) = 0

=W (y, u) (x, λ)−W (y, u) (0, λ) . (1.8)

This proves the assertion.

Lemma 1.7. Let y is a solution of Eq. (1.2). Then the following equation holds∫ ξ

0
‖y(x, λ)‖2

E dα (x) =
[W (y, y) (ξ, λ)−W (y, y) (0, λ)]

2iv
, (1.9)

ξ > 0, v = Imλ, λ ∈ C.

Proof. Writing u(x, λ) = y(x, λ) in (1.8), we can get the desired result.
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2 Main Results

Let us consider the general solution
ψ + lϕ

of (1.2) satisfying

(ψ1 (b, λ) + lϕ1 (b, λ)) cosβ + (ψ2 (b, λ) + lϕ2 (b, λ)) sinβ = 0, (2.1)

where b ∈ (0,∞) and β ∈ R. Then, we see that

l = −ψ1,b cotβ + ψ2,b

ϕ1,b cotβ + ϕ2,b
, (2.2)

where

ψ1,b = ψ1 (b, λ) , ψ2,b = ψ2 (b, λ) ,

ϕ1,b = ϕ1 (b, λ) , ϕ2,b = ϕ2 (b, λ) .

Since ψ(x, λ) and ϕ(x, λ) are entire functions of λ, l is a meromorphic function of λ. Since the
regular CF Dirac system has real eigenvalue, all poles of l are real and simple. Replacing cotβ
by z yields

l = −ψ1,bz + ψ2,b

ϕ1,bz + ϕ2,b
. (2.3)

From Theorem 1.6, we obtain

ψ1,bϕ2,b − ϕ1,bψ2,b =W (ψ,ϕ) (b, λ)

=W (ψ,ϕ) (0, λ) = 1 6= 0.

The real axis in the z-plane is associated with a circle Cb (λ) in the l-plane. These circles are
called the Weyl’s circles.

The task is now to find Pb (λ) and Rb (λ) , where Pb (λ) and Rb (λ) are the circle’s center
and radius, respectively.

Theorem 2.1. Following equalities hold

Pb (λ) = −
W (ψ,ϕ) (b, λ)

W (ϕ,ϕ) (b, λ)
, (2.4)

Rb (λ) =

(
2v
∫ b

0
‖ϕ(x, λ)‖2

E dα (x)

)−1

, (2.5)

where λ ∈ C and v = Imλ 6= 0.

Proof. An easy computation shows that l (λ, z′) =∞ if and only if

z′ = −ϕ2,b

ϕ1,b
.

Hence, Pb (λ) is given by the formula

Pb (λ) = l

(
λ,−ϕ2,b

ϕ1,b

)

= −
ψ1,b

(
−ϕ2,b
ϕ1,b

)
+ ψ2,b

ϕ1,b

(
−ϕ2,b
ϕ1,b

)
+ ϕ2,b

= −ψ1,bϕ2(b, λ)− ϕ1(b, λ)ψ2,b

ϕ1,bϕ2(b, λ)− ϕ1(b, λ)ϕ2,b

= − W (ψ,ϕ)(b, λ)

W (ϕ,ϕ) (b, λ))
.
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Moreover, we may write

Rb (λ) =

∣∣∣∣ψ2 (b, λ)

ϕ2 (b, λ)
− W (ψ,ϕ)(b, λ)

W (ϕ,ϕ)(b, λ)

∣∣∣∣
=

∣∣∣∣∣ϕ2
(
b, λ
)
W (ψ,ϕ)(b, λ)

ϕ2 (b, λ)W (ϕ,ϕ) (b, λ)

∣∣∣∣∣
=

∣∣∣∣W (ψ,ϕ)(b, λ)

W (ϕ,ϕ)(b, λ)

∣∣∣∣ = 1
|W (ϕ,ϕ)(b, λ)|

,

since Wq (ψ,ϕ)(b) = 1. By Lemma 1.7, we have

W (ϕ,ϕ)(b, λ) = 2iv
∫ b

0
‖ϕ(x, λ)‖2

E dα (x) .

Thus, we get

|W (ϕ,ϕ)(b, λ)| = 2 |v|
∫ b

0
‖ϕ(x, λ)‖2

E dα (x) ,

and the theorem follows.

Theorem 2.2. For all λ ∈ C with Imλ > 0, the exterior of the circle Cb is associated with the
upper half-plane.

Proof. Let λ = u+ iv, where v > 0. From (1.7), we have

Im
{
ϕ2,b

ϕ1,b

}
=

1
2
i

{
−ϕ2,b

ϕ1,b
+
ϕ2
(
b, λ
)

ϕ1
(
b, λ
)}

=
1
2
i
W (ϕ,ϕ) (b, λ)

|ϕ1,b|2

= −1
2
i
W (ϕ,ϕ) (b, λ)

|ϕ1,b|2

=
v

|ϕ1,b|2

∫ b

0
‖ϕ(x, λ)‖2

E dα (x) > 0.

Theorem 2.3. Let ψ(x, λ) and ϕ(x, λ) be the solutions of (1.2) satisfying

ϕ1 (0, λ) = cos δ, ϕ2 (0, λ) = sin δ,

ψ1 (0, λ) = sin δ, ψ2 (0, λ) = − cos δ,

where Imλ 6= 0. Then, the solution χ = ψ + lϕ satisfies the following condition

{ψ1 (b, λ) + lϕ1 (b, λ)} cosβ + {ψ2 (b, λ) + lϕ2 (b, λ)} sinβ = 0

if and only if l is on Cb with
W (χ, χ) (b, λ) = 0.

Letting b → ∞, the circles Cb may converge either to a circle C∞ or a point m∞. In the limit-
circle (LC) case, all solutions of (1.2) belong to L2

α((0,∞);E). In that case, a point is on C∞
⇔

lim
b→∞

W (χ, χ) (b, λ) = 0.

In the limit-point (LP) case, precisely one linearly independent solution in L2
α((0,∞);E), if

Imλ 6= 0.
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Proof. Let λ ∈ C. Then, we find

W (ψ + lϕ, ψ + lϕ)(0, λ)

=W
(
ψ,ψ

)
(0, λ) + lW

(
ϕ,ψ

)
(0, λ) + lW (ψ,ϕ) (0, λ)

+ |l|2 W (ϕ,ϕ) (0, λ) = −l+ l = −2i Im l.

Using Lemma 1.7,

2v
∫ b

0
‖ψ(x, λ) + lϕ(x, λ)‖2

E dα (x)

=
1
i
(W (ψ + lϕ, ψ + lϕ)(b, λ) + 2i Im l). (2.6)

From Theorem 2.2, l is inside Cb for v > 0 if Im z < 0. It follows from (2.3) that

z = −ψ2,b + lϕ2,b

ψ1,b + lϕ1,b
.

and

i (z − z) = i

{
−ψ2,b + lϕ2,b

ψ1,b + lϕ1,b
+
ψ2,b + lϕ2,b

ψ1,b + lϕ1,b

}

= i
W
(
ψ + lϕ, ψ + lϕ

)
(b, λ)

|ψ1,b + lϕ1,b|2
.

Thus
Im z < 0⇔ iW

(
ψ + lϕ, ψ + lϕ

)
(b, λ) > 0. (2.7)

From (2.6) and (2.7), we obtain∫ b

0
‖ψ(x, λ) + lϕ(x, λ)‖2

E dα (x) <
Im l

v
. (2.8)

Moreover, Im z = 0⇔ the point l is on Cb. Hence

W
(
ψ + lϕ, ψ + lϕ

)
(b, λ) = 0.

and ∫ b

0
‖ψ(x, λ) + lϕ(x, λ)‖2

E dα (x) =
Im l

v
.

Moreover, if the point l is inside Cb and 0 < k < b, then we have∫ k

0
‖ψ(x, λ) + lϕ(x, λ)‖2

E dα (x)

<

∫ b

0
‖ψ(x, λ) + lϕ(x, λ)‖2

E dα (x) <
Im l

v
,

i.e., the circle Ck contains the circle Cb if k < b. Consequently, these circles are nested and
may converge to the limit-circle C∞ or to limit-point m∞ as b → ∞. It follows from (2.5) that
ϕ(., λ) ∈ L2

α((0,∞) ;E) If Cb → C∞. Let ξ ∈ C∞. From (2.8), we deduce that∫ b

0
‖ψ(x, λ) + lϕ(x, λ)‖2

E dα (x) <
Im ξ

v
.
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Thus, we obtain ψ(., λ)+ lϕ(., λ) ∈ L2
α((0,∞);E). If Cb → C∞, b→∞ and Imλ 6= 0, then all

solutions of (1.2) are in the space L2
α((0,∞);E). If Cb → m∞, b→∞, then limb→∞Rb (λ) =

0. From (2.5), we get ϕ(., λ) /∈ L2
α((0,∞);E) i.e., only one solution belongs to L2

α((0,∞);E).
Furthermore, l is on C∞ ⇔∫ ∞

0
‖ψ(x, λ) + lϕ(x, λ)‖2

E dα (x) =
Im l

v
. (2.9)

By virtue of (2.9), (2.6) and (2.8), we see that l is on C∞ ⇔

lim
b→∞

W
(
ψ + lϕ, ψ + lϕ

)
(b, λ) = 0,

which completes the proof.

Now, we study the behavior of the solutions of (1.2) around∞.

Theorem 2.4. The equation (1.2) is LP at infinity.

Proof. Let

θ(t) =

(
θ1(t)

θ2(t)

)
and φ(t) =

(
φ1(t)

φ2(t)

)

be the linearly independent solutions of

τy = 0,

where t ∈ [0,∞). It is easy to check that

W (θ, φ) (t) = κ 6= 0, t ∈ [0,∞).

Then, for

ρ(t) =

(
θ1(t)

θ2 (t)

)
, ω(t) =

(
φ2 (t)

−φ1(t)

)
,

we obtain

|κ| = |W (θ, φ) (t)|

= |θ1(t)φ2 (t)− φ1(t)θ2 (t)|

= |(ρ(t), ω(t))E | ≤ ‖ρt)‖E ‖ω(t)‖E

≤ 1
2
(‖ρ(t)‖2

E + ‖ω(t)‖2
E).

It immediately that ρ and ω (also θ and φ) can not both lie right in the spaceL2
α((0,∞);E),which

proves the theorem.

Remark 2.5. For α = 1, Theorem 2.4 was introduced in [13, 15].

Conclusion. In this study, the Weyl-Titchmarsh theory for a CF-Dirac system is studied.
This paper extends classical Weyl-Titchmarsh theory.
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