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Abstract. Some properties of projective curvature tensor in an ε-Kenmotsu manifold with
respect to the semi-symmetric metric connection have been studied.

1 Introduction

In 1972, K. Kenmotsu studied a class of contact Riemannian manifolds satisfying some special
conditions [10]. We call it Kenmotsu manifold. After that Kenmotsu manifolds have been stud-
ied by many authors in several ways to a different extent such as [4, 8, 16, 19]. In 1993, A.
Bejancu and K. L. Duggal [1] introduced the concept of (ε)-Sasakian manifolds, which later on
showed by X. Xufeng and C. Xiaoli [21] that the manifolds are real hypersurfaces of indefinite
Kahlerian manifolds. (ε)-almost para-contact manifolds were introduced by M. M. Tripathi et al.
[14]. While the concept of (ε)-Kenmotsu manifolds was introduced by U. C. De and A. Sarkar
[17] who showed that the existence of new structure on an indefinite metrics influences the cur-
vatures. Recently, A. Haseeb, M. A. Khan and M. D. Siddiqi [3] studied ε-Kenmotsu manifolds
with a semi-symmetric metric connection.

In 1924, the idea of semi-symmetric linear connection on a differentiable manifold was in-
troduced by A. Friedmann and J. A. Schouten [2]. In 1930, E. Bortolotti [7] gave a geometrical
meaning of such a connection. In 1932, H. A. Hayden [9] defined and studied semi-symmetric
metric connection. In 1970, K. Yano [11] started a systematic study of the semi-symmetric met-
ric connection in a Riemannian manifold and this was further studied by various authors such as
S. Ahmad and S. I. Hussain [15], M. M. Tripathi [13], C. Özgür et al. [5] and many others.

Let ∇ be a linear connection in an n-dimensional differentiable manifold M. The torsion
tensor T and the curvature tensor R of ∇ are given respectively by

T (X,Y ) = ∇XY −∇YX − [X,Y ],

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The connection∇ is said to be symmetric if its torsion tensor T vanishes, otherwise it is non-
symmetric. The connection ∇ is said to be metric connection if there is a Riemannian metric g
in M such that ∇g = 0, otherwise it is non-metric. It is well known that a linear connection is
symmetric and metric if it is the Levi-Civita connection.

A linear connection ∇ is said to be semi-symmetric connection if its torsion tensor T is of
the form

T (X,Y ) = η(Y )X − η(X)Y,

where η is a 1-form.

Semi-symmetric connections play an important role in the study of Riemannian manifolds.
There are various physical problems involving the semi-symmetric metric connection. For exam-
ple, if a man is moving on the surface of the earth always facing one definite point, say Jerusalem
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or Mekka or the North pole, then this displacement is semi-symmetric and metric [2].

Motivated by the above studies, in this paper we study some properties of projective curva-
ture tensor in an ε-Kenmotsu manifold with respect to the semi-symmetric metric connection.
The paper is organized as follows : In Section 2, we give a brief introduction of an ε-Kenmotsu
manifold and define semi-symmetric metric connection. In Section 3, we find the curvature
tensor, the Ricci tensor and the scalar curvature in an ε-Kenmotsu manifold with respect to the
semi-symmetric metric connection. Section 4 deals with the study of projective curvature tensor
in an ε-Kenmotsu manifold with respect to the semi-symmetric metric connection. Projectively
flat and ξ-projectively flat ε-Kenmotsu manifolds with respect to the semi-symmetric metric con-
nection are studied in Sections 5 and 6, respectively. In Section 7, we investigate partially Ricci-
pseudosymmetric ε-Kenmotsu manifolds with respect to the semi-symmetric metric connection
and proved that such a manifold is an η-Einstein manifold. In Section 8, we have shown that a
φ-Ricci symmetric ε-Kenmotsu manifold with respect to the semi-symmetric metric connection
is an η-Einstein manifold.

2 Preliminaries

An n-dimensional smooth manifold (M, g) is said to be an ε-almost contact metric manifold
[17], if it admits a (1, 1) tensor field φ, a structure vector field ξ, a 1-form η and an indefinite
metric g such that

φ2X = −X + η(X)ξ, (2.1)

η(ξ) = 1, (2.2)

g(ξ, ξ) = ε, (2.3)

η(X) = εg(X, ξ), (2.4)

g(φX, φY ) = g(X,Y )− εη(X)η(Y ) (2.5)

for all vector fields X , Y on M, where ε is 1 or -1 according as ξ is space like or time like vector
field and rank φ is (n− 1). If

dη(X,Y ) = g(X,φY ) (2.6)

for every X,Y ∈ TM , then we say that M(φ, ξ, η, g, ε) is an almost contact metric manifold.
Also, we have

φξ = 0, η(φX) = 0. (2.7)

If an ε-contact metric manifold satisfies

(∇Xφ)(Y ) = −g(X,φY )− εη(Y )φX, (2.8)

where ∇ denotes the Levi-Civita connection with respect to g, then M is called an ε-Kenmotsu
manifold [6].
An ε-almost contact metric manifold is an ε-Kenmotsu manifold, if and only if

∇Xξ = ε(X − η(X)ξ). (2.9)

Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator Q in an ε-Kenmotsu
manifold M with respect to the Levi-Civita connection satisfy [17]

(∇Xη)Y = [g(X,Y )− εη(X)η(Y )], (2.10)

R(X,Y )ξ = η(X)Y − η(Y )X, (2.11)

R(ξ,X)Y = η(Y )X − εg(X,Y )ξ, (2.12)
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R(ξ,X)ξ = −R(X, ξ)ξ = X − η(X)ξ, (2.13)

η(R(X,Y )Z) = ε[g(X,Z)η(Y )− g(Y,Z)η(X)], (2.14)

S(X, ξ) = −(n− 1)η(X), (2.15)

Qξ = −ε(n− 1)ξ, (2.16)

where g(QX,Y ) = S(X,Y ). It yields to

S(φX, φY ) = S(X,Y ) + ε(n− 1)η(X)η(Y ). (2.17)

We note that if ε = 1 and the structure vector field ξ is space like, then an ε-Kenmotsu manifold
is usual Kenmotsu manifold.

Definition 2.1. An ε-Kenmotsu manifold M is said to be an η-Einstein manifold if its Ricci
tensor S of type (0, 2) is of the form ([12], [22])

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), (2.18)

where a and b are smooth functions on M . If b = 0, then an η-Einstein manifold becomes an
Einstein manifold.

Definition 2.2. The projective curvature tensor P in an ε-Kenmotsu manifold M of dimension n
with respect to the connection ∇ is defined by

P (X,Y )Z = R(X,Y )Z − 1
(n− 1)

[g(Y, Z)QX − g(X,Z)QY ] (2.19)

for any vector fields X,Y, Z on M , where Q is the Ricci operator defined by S(X,Y ) =
g(QX,Y ). The manifold is said to be projectively flat if P vanishes identically on M .

A linear connection ∇̄ in M is called a semi-symmetric connection [5], if its torsion tensor

T (X,Y ) = ∇̄XY − ∇̄YX − [X,Y ] (2.20)

satisfies
T (X,Y ) = η(Y )X − η(X)Y. (2.21)

Further, a semi-symmetric connection is called a semi-symmetric metric connection [5], if

(∇̄Xg)(Y,Z) = 0. (2.22)

Let M be an n-dimensional ε-Kenmotsu manifold and ∇ be the Levi-Civita connection on
M , the semi-symmetric metric connection ∇̄ on M is given by

∇̄XY = ∇XY + η(Y )X − g(X,Y )ξ. (2.23)

3 Curvature tensor on an ε-Kenmotsu manifold with respect to the
semi-symmetric metric connection

If R and R̄, respectively, are the curvature tensors of the Levi-Civita connection∇ and the semi-
symmetric metric connection ∇̄ on an ε-Kenmotsu manifold M . Then we have

R̄(X,Y )Z = R(X,Y )Z + (2 + ε)[g(X,Z)Y − g(Y,Z)X] (3.1)

+(1 + ε)[g(Y,Z)η(X)− g(X,Z)η(Y )]ξ

+(1 + ε)[η(Y )X − η(X)Y ]η(Z),
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where
R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

is the Riemannian curvature tensor of the connection ∇.
Contracting X in (3.1), we have

S̄(Y, Z) = S(Y, Z) + [(ε+ 2)(ε− n) + 2]g(Y, Z) + (1 + ε)(n− 2ε)η(Y )η(Z), (3.2)

where S̄ and S are the Ricci tensors of the connections ∇̄ and ∇, respectively on M .
This gives

Q̄Y = QY + [(ε+ 2)(ε− n) + 2]Y + (1 + ε)(n− 2ε)η(Y )ξ. (3.3)

Contracting again Y and Z in (3.2), it follows that

r̄ = r + n[(ε+ 2)(ε− n) + 2] + (1 + ε)(n− 2ε), (3.4)

where r̄ and r are the scalar curvatures of the connections ∇̄ and ∇, respectively on M .

Remark. Also in an n-dimensional ε-Kenmotsu manifold with respect to the semi-symmetric
metric connection, the following relations hold [3] :

R̄(X,Y )ξ = (1 + ε)[η(X)Y − η(Y )X], (3.5)

R̄(X, ξ)Y = −R̄(ξ,X)Y = (1 + ε)[g(X,Y )ξ − η(Y )X], (3.6)

R̄(ξ,X)ξ = −R̄(X, ξ)ξ = (1 + ε)[X − εη(X)ξ], (3.7)

S̄(Y, ξ) = −(n− 1)(1 + ε)η(Y ), (3.8)

Q̄ξ = −(n− 1)(1 + ε)ξ, (3.9)

∇̄Xξ = (1 + ε)X − 2εη(X)ξ, (3.10)

S̄(φX, φY ) = S(X,Y ) + [(ε+ 2)(ε− n) + 2]g(X,Y ) (3.11)

+ε[n− 3− (ε+ 2)(ε− n)]η(X)η(Y )

for all X,Y ∈ χ(M).

4 Projective curvature tensor in an ε-Kenmotsu manifold with respect to the
semi-symmetric metric connection

Analogous to the Definition 2.2, the projective curvature tensor P̄ in an ε-Kenmotsu manifold
with respect to the semi-symmetric metric connection is given by

P̄ (X,Y )Z = R̄(X,Y )Z − 1
(n− 1)

[g(Y, Z)Q̄X − g(X,Z)Q̄Y ] (4.1)

for any vector fieldsX,Y, Z inM , where Q̄ is the Ricci operator defined by S̄(X,Y ) = g(Q̄X, Y ).
By interchanging X and Y in (4.1), we have

P̄ (Y,X)Z = R̄(Y,X)Z − 1
(n− 1)

[g(X,Z)Q̄Y − g(Y,Z)Q̄X]. (4.2)

On adding (4.1) and (4.2) and using the fact that R(X,Y )Z +R(Y,X)Z = 0, we get

P̄ (X,Y )Z + P̄ (Y,X)Z = 0. (4.3)
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Next, from (3.1), (4.1) and the Bianchi’s first identity R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0
with respect to ∇, we obtain

P̄ (X,Y )Z + P̄ (Y,Z)X + P̄ (Z,X)Y = 0. (4.4)

Thus equation (4.3) (resp.,(4.4)) shows that in an ε-Kenmotsu manifold with respect to the semi-
symmetric metric connection the projective curvature tensor is skew-symmetric (resp., cyclic).
From (2.19), (3.3), (3.11) and (4.1), we get

P̄ (X,Y )Z = P (X,Y )Z + (2 + ε)[g(X,Z)Y − g(Y,Z)X] (4.5)

+(1 + ε)[g(Y,Z)η(X)− g(X,Z)η(Y )]ξ + (1 + ε)[η(Y )X − η(X)Y ]η(Z)

− 1
(n− 1)

[((ε+ 2)(ε− n) + 2)(g(Y,Z)X − g(X,Z)Y )

+(1 + ε)(n− 2ε)(g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ)].

Putting Z = ξ in the last equation and using (2.2), (2.4), (2.11) and (2.19), we get

P̄ (X,Y )ξ = (η(X)Y − η(Y )X)(
1 + 2ε− nε
n− 1

)− 1
n− 1

(η(Y )QX − η(X)QY ). (4.6)

5 Projectively flat ε-Kenmotsu manifolds with respect to the semi-symmetric
metric connection

Let us assume that the manifold M with respect to the semi-symmetric metric connection is
projectively flat, that is, P̄ = 0. Then from (4.1), it follows that

R̄(X,Y )Z =
1

(n− 1)
[g(Y,Z)Q̄X − g(X,Z)Q̄Y ]. (5.1)

Using (3.1) and (3.2), we have

R(X,Y )Z = −(2 + ε)[g(X,Z)Y − g(Y, Z)X] (5.2)

−(1 + ε)[g(Y,Z)η(X)− g(X,Z)η(Y )]ξ − (1 + ε)[η(Y )X − η(X)Y ]η(Z)

+
1

(n− 1)
[g(Y,Z)(QX + ((ε+ 2)(ε− n) + 2)X + (1 + ε)(n− 2ε)η(X)ξ)

−g(X,Z)(QY + ((ε+ 2)(ε− n) + 2)Y + (1 + ε)(n− 2ε)η(Y )ξ)].

Taking inner product of (5.2) with ξ and using (2.3) and (2.4), we obtain

g(R(X,Y )Z, ξ) = −ε(2 + ε)[g(X,Z)η(Y )− g(Y,Z)η(X)] (5.3)

−(1 + ε)[g(Y, Z)η(X)− g(X,Z)η(Y )] + 1
(n− 1)

[g(Y,Z)S(X, ξ)

+(ε(ε+ 2)(ε− n) + 2ε+ (1 + ε)(n− 2ε))η(X)g(Y,Z)

−g(X,Z)S(Y, ξ)− (ε(ε+ 2)(ε− n) + 2ε− (1 + ε)(n− 2ε))η(Y )g(X,Z)]

which on using (2.15), reduces to

g(R(X,Y )Z, ξ) = g(X,Z)η(Y )− g(Y, Z)η(X).

This gives
R(X,Y, Z, U) = −ε[g(Y,Z)g(X,U)− g(X,Z)g(Y,U)],

where R(X,Y, Z, U) = g(R(X,Y )Z,U).
This shows that the manifold is isomorphic to the Hyperbolic space Hn(−ε). Hence we can state
the following theorem:

Theorem 5.1. An n-dimensional projectively flat ε-Kenmotsu manifold with respect to the semi-
symmetric metric connection is locally isomorphic to the Hyperbolic space Hn(−ε).
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6 ξ-projectively flat ε-Kenmotsu manifolds with respect to the
semi-symmetric metric connection

Definition 6.1. An ε-Kenmotsu manifold is said to be ξ-projectively flat with respect to the semi-
symmetric metric connection if

P̄ (X,Y )ξ = 0, X, Y ∈ χ(M). (6.1)

From (4.1), we have

g[R̄(X,Y )ξ − 1
(n− 1)

(g(Y, ξ)Q̄X − g(X, ξ)Q̄Y ),W ] = 0. (6.2)

Using (2.4) and (3.5) in the last equation, we have

(n− 1)(1 + ε)[η(X)g(Y,W )− η(Y )g(X,W )]− η(Y )S̄(X,W ) + η(X)S̄(Y,W ) (6.3)

which by taking Y = ξ and using (2.2), (2.4) and (3.8) reduces to

S̄(X,W ) + (n− 1)(1 + ε)g(X,W ) = 0. (6.4)

In view of (3.2), (6.4) takes the form

S(X,W ) = −[ε− n+ 2]g(X,W )− (1 + ε)(n− 2ε)η(X)η(W ). (6.5)

Thus we can state the following theorem:

Theorem 6.2. An n-dimensional ξ-projectively flat ε-Kenmotsu manifold with respect to the semi-
symmetric metric connection is an η-Einstein manifold.

7 Partially Ricci-pseudosymmetric ε-Kenmotsu manifolds with respect to the
semi-symmetric metric connection

Definition 7.1. An ε-Kenmotsu manifold M is said to be partially Ricci-pseudosymmetric if and
only if the relation [20]

R · S = f(p)Q(g, S) (7.1)

holds on the set A = [x ∈ M : Q(g, S) 6= 0 at x], where f ∈ C∞(A) for p ∈ (A), R · S and
Q(g, S) are respectively defined by

(R(X,Y ) · S)(U, V ) = −S(R(X,Y )U, V )− S(U,R(X,Y )V ) (7.2)

and

Q(g, S) = ((X ∧g Y ) · S)(U, V ), where (X ∧g Y )Z = g(Y,Z)X − g(X,Z)Y (7.3)

for all X,Y, U and V ∈ χ(M).

Let an n-dimensional (n > 2) ε-Kenmotsu manifold with respect to the semi-symmetric
metric connection be partially Ricci-pseudosymmetric. Then we have

(R̄(X,Y ) · S̄)(U, V ) = f(p)[((X ∧g Y ) · S̄)(U, V )]

for all X,Y, U and V ∈ χ(M). From the above relation it follows that

S̄[R̄(X,Y )U, V ] + S̄[U, R̄(X,Y )V ] = f(p)[S̄((X ∧g Y )U, V ) + S̄(U, (X ∧g Y )V )]. (7.4)

Taking Y = V = ξ in (7.4), we have

S̄[R̄(X, ξ)U, ξ] + S̄[U, R̄(X, ξ)ξ] = f(p)[S̄((X ∧g ξ)U, ξ) + S̄(U, (X ∧g ξ)ξ)]. (7.5)
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Now by using (2.2)-(2.4) and (3.6)-(3.8) in (7.5), we find

(n− 1)(1+ ε)2g(X,U)+ (1+ ε)S̄(X,U) = −f(p)[εS̄(X,U)+ (n− 1)(1+ ε)g(X,U)]. (7.6)

Thus we have
[S̄(X,U) + (n− 1)(1 + ε)g(X,U)][1 + ε+ f(p)] = 0 (7.7)

which in view of (3.2) takes the form

[S(X,U) + (ε− n+ 2)g(X,U) + (1 + ε)(n− 2ε)η(X)η(U)][1 + ε+ f(p)] = 0. (7.8)

This implies that either S(X,U) = −(ε − n + 2)g(X,U) − (1 + ε)(n − 2ε)η(X)η(U) or
f(p) = −1− ε.

Thus we can state the following theorem:

Theorem 7.2. A partially Ricci-pseudosymmetric ε-Kenmotsu manifold with respect to the semi-
symmetric metric connection is an η-Einstein manifold, providing f(p) 6= −1− ε.

8 φ-Ricci symmetric ε-Kenmotsu manifolds with respect to the
semi-symmetric metric connection

Definition 8.1. An ε-Kenmotsu manifold with respect to the semi-symmetric metric connection
is said to be φ-Ricci symmetric if the Ricci operator Q̄ satisfies [18]

φ2((∇̄XQ̄)(Y )) = 0

for all vector fields X,Y on M .

Theorem 8.2. An n-dimensional φ-Ricci symmetric ε-Kenmotsu manifold with respect to the
semi-symmetric metric connection is an η-Einstein manifold.

Proof. Let us assume that the manifold with respect to the semi-symmetric metric connection is
φ-Ricci symmetric. Then we have

φ2((∇̄XQ̄)(Y )) = 0.

In view of (2.1), we have
−(∇̄XQ̄)Y + η((∇̄XQ̄)Y )ξ = 0. (8.1)

Taking inner product of (8.1) with Z and using (2.4), we have

−g((∇̄XQ̄)Y,Z) + εη((∇̄XQ̄)Y )η(Z) = 0

from which, we have

−g(∇̄XQ̄Y, Z) + S̄(∇̄XY, Z) + εη((∇̄XQ̄)Y )η(Z) = 0. (8.2)

Now putting Y = ξ in (8.2) and using (3.9) and (3.10), we get

2(n− 1)(1 + ε)g(X,Z) + (1 + ε)S̄(X,Z) + εη((∇̄XQ̄)ξ)η(Z) = 0. (8.3)

Replacing X by φX and Z by φZ in (8.3), we have

S̄(φX, φZ) = −2(n− 1)g(φX, φZ). (8.4)

Using (2.5) and (3.11) in the last equation, we get

S(X,Z) = −(1 + 2ε− nε)g(X,Z) + (1 + ε)(2− n)η(X)η(Z). (8.5)

This completes the proof.
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