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Abstract. In this paper, we establish some generalized weighted Ostrowski inequalities for

local fractional integrals on fractal sets Rα (0 < α ≤ 1) of real line numbers. The results pre-

sented here would provide extensions of those given in earlier works.

1 Introduction

In 1938, Ostrowski established the following interesting integral inequality for differentiable

mappings with bounded derivatives [14]:

Theorem 1.1 (Ostrowski inequality). Let f : [a, b] → R be a differentiable mapping on (a, b)
whose derivative f ′ : (a, b) → R is bounded on (a, b) , i.e. ∥f ′∥∞ := sup

t∈(a,b)
|f ′(t)| < ∞. Then,

we have the inequality∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
[
1

4
+

(
x− a+b

2

)2
(b− a)

2

]
(b− a) ∥f ′∥∞ , (1.1)

for all x ∈ [a, b]. The constant 1

4
is the best possible.

This inequality is well known in the literature as the Ostrowski inequality. For more informa-

tion recent development on Ostrowski inequality, please refer to [1]-[5],[7]-[11],[15]-[20] and

so on.

2 Preliminaries

Recall the set Rα of real line numbers and use the Gao-Yang-Kang's idea to describe the de�ni-

tion of the local fractional derivative and local fractional integral, see [26, 27] and so on.

Recently, the theory of Yang's fractional sets [26] was introduced as follows.

For 0 < α ≤ 1, we have the following α-type set of element sets:

Zα : The α-type set of integer is de�ned as the set {0α,±1α,±2α, ...,±nα, ...} .
Qα : The α-type set of the rational numbers is de�ned as the set {mα =

(
p
q

)α
: p, q ∈ Z,

q ̸= 0}.
Jα : The α-type set of the irrational numbers is de�ned as the set {mα ̸=

(
p
q

)α
: p, q ∈ Z,

q ̸= 0}.
Rα : The α-type set of the real line numbers is de�ned as the set Rα = Qα ∪ Jα.
If aα, bα and cα belongs the set Rα of real line numbers, then

(1) aα + bα and aαbα belongs the set Rα;

(2) aα + bα = bα + aα = (a+ b)
α
= (b+ a)

α
;

(3) aα + (bα + cα) = (a+ b)
α
+ cα;

(4) aαbα = bαaα = (ab)
α
= (ba)

α
;

(5) aα (bαcα) = (aαbα) cα;
(6) aα (bα + cα) = aαbα + aαcα;
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(7) aα + 0α = 0α + aα = aα and aα1α = 1αaα = aα.
The de�nition of the local fractional derivative and local fractional integral can be given as

follows.

De�nition 2.1. [26] A non-differentiable function f : R → Rα, x → f(x) is called to be local

fractional continuous at x0, if for any ε > 0, there exists δ > 0, such that

|f(x)− f(x0)| < εα

holds for |x− x0| < δ, where ε, δ ∈ R. If f(x) is local continuous on the interval (a, b) , we
denote f(x) ∈ Cα(a, b).

De�nition 2.2. [26]The local fractional derivative of f(x) of order α at x = x0 is de�ned by

f (α)(x0) =
dαf(x)

dxα

∣∣∣∣
x=x0

= lim
x→x0

D
α (f(x)− f(x0))

(x− x0)
α ,

where Dα (f(x)− f(x0)) =̃G(α+ 1) (f(x)− f(x0)) .

If there exists f (k+1)α(x) =

k+1 times︷ ︸︸ ︷
Dα

x ...D
α
xf(x) for any x ∈ I ⊆ R, then we denoted f ∈

D(k+1)α(I), where k = 0, 1, 2, ...

De�nition 2.3. [26] Let f(x) ∈ Cα [a, b] . Then the local fractional integral is de�ned by,

aI
α
b f(x) =

1

G(α+ 1)

b∫
a

f(t)(dt)α =
1

G(α+ 1)
lim
Dt→0

N−1∑
j=0

f(tj)(Dtj)
α,

with Dtj = tj+1 − tj and Dt = max {Dt1,Dt2, ...,DtN−1} , where [tj , tj+1] , j = 0, ..., N − 1 and

a = t0 < t1 < ... < tN−1 < tN = b is partition of interval [a, b] .
Here, it follows that aI

α
b f(x) = 0 if a = b and aI

α
b f(x) = −bI

α
a f(x) if a < b. If for any

x ∈ [a, b] , there exists aI
α
x f(x), then we denoted by f(x) ∈ Iαx [a, b] .

De�nition 2.4 (Generalized convex function). [26] Let f : I ⊆ R → Rα. For any x1, x2 ∈ I and
λ ∈ [0, 1] , if the following inequality

f(λx1 + (1− λ)x2) ≤ λαf(x1) + (1− λ)αf(x2)

holds, then f is called a generalized convex function on I.

Here are two basic examples of generalized convex functions:

(1) f(x) = xαp, x ≥ 0, p > 1;

(2) f(x) = Eα(xα), x ∈ R where Eα(xα) =
∞∑
k=0

xαk

G(1+kα) is the Mittag-Leffer function.

Theorem 2.5. [12] Let f ∈ Dα(I), then the following conditions are equivalent

a) f is a generalized convex function on I
b) f (α) is an increasing function on I
c) for any x1, x2 ∈ I,

f(x2)− f(x1) ≥
f (α)(x1)

G (1+ α)
(x2 − x1)

α
.

Corollary 2.6. [12] Let f ∈ D2α(a, b). Then f is a generalized convex function ( or a general-

ized concave function) if and only if

f (2α)(x) ≥ 0
(
or f (2α)(x) ≤ 0

)
for all x ∈ (a, b) .
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Lemma 2.7. [26]

(1) (Local fractional integration is anti-differentiation) Suppose that f(x) = g(α)(x) ∈
Cα [a, b] , then we have

aI
α
b f(x) = g(b)− g(a).

(2) (Local fractional integration by parts) Suppose that f(x), g(x) ∈ Dα [a, b] and f (α)(x),
g(α)(x) ∈ Cα [a, b] , then we have

aI
α
b f(x)g

(α)(x) = f(x)g(x)|ba −a I
α
b f

(α)(x)g(x).

Lemma 2.8. [26] We have

i)
dαxkα

dxα
=

G(1+ kα)

G(1+ (k − 1)α)
x(k−1)α;

ii)
1

G(α+ 1)

b∫
a

xkα(dx)α =
G(1+ kα)

G(1+ (k + 1)α)

(
b(k+1)α − a(k+1)α

)
, k ∈ R.

Lemma 2.9. [26] Suppose that f(x) ∈ Cα [a, b] , then

dα ( aI
α
x f(t))

dxα
= f(x) a < x < b.

Lemma 2.10 (Generalized Hölder's inequality). [26] Let f, g ∈ Cα [a, b] , p, q > 1 with 1

p +
1

q =
1, then

1

G(α+ 1)

b∫
a

|f(x)g(x)| (dx)α ≤

 1

G(α+ 1)

b∫
a

|f(x)|p (dx)α


1

p
 1

G(α+ 1)

b∫
a

|g(x)|q (dx)α


1

q

.

In [21], Sarikaya and Budak proved the following generalized Ostrowski inequality:

Theorem 2.11 (Generalized Ostrowski inequality). Let I ⊆ R be an interval, f : I0 ⊆ R → Rα

(I0 is the interior of I) such that f ∈ Dα(I0) and f (α) ∈ Cα [a, b] for a, b ∈ I0 with a < b Then.
for all x ∈ [a, b] , we have the inequality∣∣∣∣f(x)− G (1+ α)

(b− a)
α aI

α
b f(t)

∣∣∣∣ ≤ 2α
G (1+ α)

G (1+ 2α)

 1

4α
+

(
x− a+b

2

b− a

)2α
 (b− a)

α
∥∥∥f (α)

∥∥∥
∞

.

(2.1)

For more information and recent developments on local fractional theory, please refer to

[6],[12],[13],[21]-[30].

The aim of the this paper is to obtain some generalized weighted Ostrowski inequality for

local fractional integrals.

3 Main Results

We will give a identity for local fractional integrals as follow:

Theorem 3.1. Let I ⊆ R be an interval, f : I0 ⊆ R → Rα (I0 is the interior of I) such that

f ∈ Dα(I0) and f (α) ∈ Cα [a, b] for a, b ∈ I0 with a < b and w : [a, b] → Rα, non-negative and
w(x) ∈ Iαx [a, b] . Then, for all x ∈ [a, b] , we have the identity

[aI
α
b w(t)] f(x)− aI

α
b w(t)f(t) =

1

G (1+ α)

b∫
a

pw(x, t)f
(α)(t) (dt)

α
(3.1)

where

p(x, t) =


1

G(1+α)

t∫
a

w(u) (du)
α
, t ∈ [a, x]

1

G(1+α)

t∫
b

w(u) (du)
α
, t ∈ (x, b] .
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Proof. We have

K =
1

G (1+ α)

b∫
a

pw(x, t)f
(α)(t) (dt)

α

=
1

G (1+ α)

x∫
a

 1

G (1+ α)

t∫
a

w(u) (du)
α

 f (α)(t) (dt)
α

+
1

G (1+ α)

b∫
x

 1

G (1+ α)

t∫
b

w(u) (du)
α

 f (α)(t) (dt)
α

= K1 +K2.

Using the local fractional integration by parts, we have

K1 =
1

G (1+ α)

x∫
a

 1

G (1+ α)

t∫
a

w(u) (du)
α

 f (α)(t) (dt)
α

(3.2)

=

 1

G (1+ α)

t∫
a

w(u) (du)
α

 f(t)

∣∣∣∣∣∣
x

a

− 1

G (1+ α)

x∫
a

w(t)f(t) (dt)
α

=

 1

G (1+ α)

x∫
a

w(u) (du)
α

 f(x)− 1

G (1+ α)

x∫
a

w(t)f(t) (dt)
α

and similarly,

K2 =

 1

G (1+ α)

b∫
x

w(u) (du)
α

 f(x)− 1

G (1+ α)

b∫
x

w(t)f(t) (dt)
α
. (3.3)

Adding (3.2) and (3.3), we obtain

K =

 1

G (1+ α)

b∫
a

w(u) (du)
α

 f(x)− 1

G (1+ α)

b∫
a

w(t)f(t) (dt)
α

= [aI
α
b w(t)] f(x)− aI

α
b w(t)f(t)

which completes the proof.

Remark 3.2. If we take w ≡ 1α in Theorem 3.1, then Theorem 3.1 reduces Theorem 3 in [21].

Theorem 3.3 (Generalized weighted Ostrowski inequality). Suppose that the assumptions of

Theorem 3.1 are satis�ed,
∥∥f (α)

∥∥
∞ = sup

x∈[a,b]

∣∣f (α)(x)
∣∣ , then we have the following generalized

weighted Ostrowski inequality

|[aIαb w(t)] f(x)− aI
α
b w(t)f(t)| (3.4)

≤ 2α (b− a)
2α

G (1+ 2α)

 1

4α
+

(
x− a+b

2

b− a

)2α
 ∥w∥∞

∥∥∥f (α)
∥∥∥
∞

.
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Proof. Taking modulus in Theorem 3.1, we have

|[aIαb w(t)] f(x)− aI
α
b w(t)f(t)|

≤ 1

G (1+ α)

b∫
a

|pw(x, t)|
∣∣∣f (α)(t)

∣∣∣ (dt)α

=
1

G (1+ α)

x∫
a

 1

G (1+ α)

t∫
a

w(u) (du)
α

∣∣∣f (α)(t)
∣∣∣ (dt)α

+
1

G (1+ α)

b∫
x

 1

G (1+ α)

b∫
t

w(u) (du)
α

∣∣∣f (α)(t)
∣∣∣ (dt)α .

Then, it follows that

|[aIαb w(t)] f(x)− aI
α
b w(t)f(t)|

≤
∥∥f (α)

∥∥
∞ ∥w∥∞

G (1+ α)

 1

G (1+ α)

x∫
a

(t− a)α (dt)
α
+

1

G (1+ α)

x∫
a

(b− t)α (dt)
α



=

∥∥f (α)
∥∥
∞ ∥w∥∞

G (1+ α)

G (1+ α)

G (1+ 2α)

[
(x− a)

2α
+ (b− x)

2α
]

=
2α (b− a)

2α

G (1+ 2α)

 1

4α
+

(
x− a+b

2

b− a

)2α
∥∥∥f (α)

∥∥∥
∞

∥w∥∞ .

which completes the proof.

Remark 3.4. If we take w ≡ 1α in Theorem 3.3, then the inequality (3.4) reduces the inequality

(2.1).

Theorem 3.5. Suppose that the assumptions of Theorem 3.1 are satis�ed, then we have the in-

equality

|[aIαb w(t)] f(x)− aI
α
b w(t)f(t)|

≤

∥∥f (α)
∥∥
q
∥w∥p

G (1+ α)

(
G (1+ pα)

G (1+ (p+ 1)α)

) 1

p [
(x− a)

(p+1)α + (b− x)
(p+1)α

] 1

p

where q > 1, 1

p + 1

q = 1 and
∥∥f (α)

∥∥
q
is de�ned by

∥∥∥f (α)
∥∥∥
q
=

 1

G (1+ α)

b∫
a

∣∣∣f (α)(t)
∣∣∣q (dt)α


1

q

.

Proof. Taking modulus in Theorem 3.1 and using the generalized Hölder's inequality (Lemma
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2.10), we obtain

|[aIαb w(t)] f(x)− aI
α
b w(t)f(t)|

≤ 1

G (1+ α)

b∫
a

|pw(x, t)|
∣∣∣f (α)(t)

∣∣∣ (dt)α

≤

 1

G (1+ α)

b∫
a

|p(x, t)|p (dt)α


1

p
 1

G (1+ α)

b∫
a

∣∣∣f (α)(t)
∣∣∣q (dt)α


1

q

=
∥∥∥f (α)

∥∥∥
q

 1

G (1+ α)

x∫
a

 1

G (1+ α)

t∫
a

w(u) (du)
α

p

(dt)
α

+
1

G (1+ α)

b∫
x

 1

G (1+ α)

b∫
t

w(u) (du)
α

p

(dt)
α


1

p

≤

∥∥f (α)
∥∥
q
∥w∥p

G (1+ α)

 1

G (1+ α)

x∫
a

(t− a)
pα

(dt)
α
+

1

G (1+ α)

b∫
x

(b− t)
pα

(dt)
α



=

∥∥f (α)
∥∥
q
∥w∥p

G (1+ α)

(
G (1+ pα)

G (1+ (p+ 1)α)

[
(x− a)

(p+1)α + (b− x)
(p+1)α

]) 1

p

which completes the proof.

Remark 3.6. If we take w ≡ 1α in Theorem 3.5, then we have the inequality∣∣∣∣f(x)− G (1+ α)

(b− a)
α aI

α
b f(t)

∣∣∣∣
≤

∥∥f (α)
∥∥
q

(b− a)
α

(
G (1+ pα)

G (1+ (p+ 1)α)

) 1

p [
(x− a)

(p+1)α + (b− x)
(p+1)α

] 1

p

which is proved by Sarikaya and Budak in [21].

Theorem 3.7. The assumptions of Theorem 3.1 are satis�ed. If
∣∣f (α)

∣∣q is a generalized convex,

then we have the following inequality

|[aIαb w(t)] f(x)− aI
α
b w(t)f(t)| (3.5)

≤
∥w∥[a,b],p

(b− a)
α
q G (1+ α)

(
G (1+ pα)

G (1+ (p+ 1)α)

) 1

p
(
G (1+ α)

G (1+ 2α)

) 1

q

×
[
(x− a)(

p+1

p )α
([

(b− a)
2α − (b− x)

2α
] ∣∣∣f (α)(a)

∣∣∣q + (x− a)
2α
∣∣∣f (α)(b)

∣∣∣q) 1

q

+(b− x)(
p+1

p )α
(
(b− x)

2α
∣∣∣f (α)(a)

∣∣∣q + [(b− a)
2α − (x− a)

2α
] ∣∣∣f (α)(b)

∣∣∣q) 1

q

]
where q > 1, 1

p + 1

q = 1 and ∥w∥[a,b],p is de�ned by

∥w∥[a,b],p =

 1

G (1+ α)

b∫
a

|w(t)|p (dt)α


1

p

.
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Proof. Taking modulus in Theorem 3.1

|[aIαb w(t)] f(x)− aI
α
b w(t)f(t)| (3.6)

≤ 1

G (1+ α)

b∫
a

|pw(x, t)|
∣∣∣f (α)(t)

∣∣∣ (dt)α

=
1

G (1+ α)

x∫
a

 1

G (1+ α)

t∫
a

w(u) (du)
α

∣∣∣f (α)(t)
∣∣∣ (dt)α

+
1

G (1+ α)

b∫
x

 1

G (1+ α)

b∫
t

w(u) (du)
α

∣∣∣f (α)(t)
∣∣∣ (dt)α .

= K3 +K4.

Using the generalized Hölder's inequality, we obtain

K3 ≤

 1

G (1+ α)

x∫
a

 1

G (1+ α)

t∫
a

w(u) (du)
α

p

(dt)
α


1

p

×

 1

G (1+ α)

x∫
a

∣∣∣f (α)(t)
∣∣∣q (dt)α

 1

q

.

Since
∣∣f (α)

∣∣q is a generalized convex, we have∣∣∣f (α)(t)
∣∣∣q =

∣∣∣∣f (α)

(
b− t

b− a
a+

t− a

b− a
b

)∣∣∣∣q

≤
(
b− t

b− a

)α ∣∣∣f (α)(a)
∣∣∣q + ( t− a

b− a

)α ∣∣∣f (α)(b)
∣∣∣q .

Then, it follows that

K3 ≤ ∥w∥[a,x],p

 1

G (1+ α)

x∫
a

(t− a)
pα

[G (1+ α)]
p (dt)

α

 1

p

×

∣∣f (α)(a)
∣∣q

G (1+ α)

x∫
a

(
b− t

b− a

)α

(dt)
α
+

∣∣f (α)(b)
∣∣q

G (1+ α)

x∫
a

(
t− a

b− a

)α

(dt)
α

 1

q

=
∥w∥[a,x],p

(b− a)
α
q G (1+ α)

(
G (1+ pα)

G (1+ (p+ 1)α)
(x− a)

(p+1)α
) 1

p
(
G (1+ α)

G (1+ 2α)

) 1

q

×
([

(b− a)
2α − (b− x)

2α
] ∣∣∣f (α)(a)

∣∣∣q + (x− a)
2α
∣∣∣f (α)(b)

∣∣∣q) 1

q

.

Using the similar way, we have

K4 ≤
∥w∥[x,b],p

(b− a)
α
q G (1+ α)

(
G (1+ pα)

G (1+ (p+ 1)α)
(b− x)

(p+1)α
) 1

p
(
G (1+ α)

G (1+ 2α)

) 1

q

×
(
(b− x)

2α
∣∣∣f (α)(a)

∣∣∣q + [(b− a)
2α − (x− a)

2α
] ∣∣∣f (α)(b)

∣∣∣q) 1

q

.
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Using the fact that ∥w∥[a,x],p ≤ ∥w∥[a,b],p and ∥w∥[x,b],p ≤ ∥w∥[a,b],p , then we obtain required

result.

Corollary 3.8. Under assumptions of Theorem 3.7 with w ≡ 1, then we have the inequality∣∣∣∣f(x)− G (1+ α)

(b− a)
α aI

α
b f(t)

∣∣∣∣ (3.7)

≤ G (1+ α)

(b− a)(
1+ 1

q )α

(
G (1+ pα)

G (1+ (p+ 1)α)

) 1

p
(
G (1+ α)

G (1+ 2α)

) 1

q

×
[
(x− a)(

p+1

p )α
([

(b− a)
2α − (b− x)

2α
] ∣∣∣f (α)(a)

∣∣∣q + (x− a)
2α
∣∣∣f (α)(b)

∣∣∣q) 1

q

+(b− x)(
p+1

p )α
(
(b− x)

2α
∣∣∣f (α)(a)

∣∣∣q + [(b− a)
2α − (x− a)

2α
] ∣∣∣f (α)(b)

∣∣∣q) 1

q

]
.

Corollary 3.9. If we choose x = a+b
2

in inequality (3.7), then we obtain the following midpoint

inequality ∣∣∣∣f (a+ b

2

)
− G (1+ α)

(b− a)
α aI

α
b f(t)

∣∣∣∣
≤ G (1+ α) (b− a)

α

4α

(
G (1+ pα)

G (1+ (p+ 1)α)

) 1

p
(
G (1+ α)

G (1+ 2α)

) 1

q

×

(3α
∣∣f (α)(a)

∣∣q + ∣∣f (α)(b)
∣∣q

4α

) 1

q

+

(∣∣f (α)(a)
∣∣q + 3α

∣∣f (α)(b)
∣∣q

4α

) 1

q

 .
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