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Abstract. In this paper the ring F2[u, v]
/
< u3, v2, u.v >where u

3 = 0, v2 = 0 , u.v = v.u = 0

is de�ned and (1+ v)− constacyclic codes over this ring are studied. It is shown that the Gray

image of (1 + v)− constacyclic codes with odd order over the ring F2[u, v]
/
< u3, v2, u.v > is a

cyclic code over the ring F2[u]
/
< u3 > where u3 = 0. Also there is a quasicyclic code of index

2 over the binary �eld.

1 Introduction

Certain Linear codes for example cyclic, constacyclic and quasicyclic codes over the ring Zpk

and over the all types of �nite chain rings were studied before. Gray maps which preserve

minimum distance of codes have been de�ned between these rings and �nite �elds. Then using

this kind map the new codes have been written. Especially; codes over the �eld F2 which are the

Gray images of cyclic and constacyclic codes over F2+uF2+u2F2 where u
3 = 0 were studied in

[5]. Also (1+v)− constacyclic codes over F2+uF2+vF2+uvF2 where u
2 = v2 = 0 , u.v−v.u =

0 were studied in [7]. (1 + v)−constacyclic codes over F2 + uF2 + vF2 + uvF2 of odd length

were characterized by using cyclic codes over F2 + uF2 + vF2 + uvF2. X. Xiaofang studied

(1+ v)−constacyclic codes over the ring F2 + uF2 + vF2 where u
2 = v2 = 0 , u.v = v.u = 0

in [8].

In this paper the ring R = F2 + vF2 + uF2 + u2F2 where u3 = 0, v2 = 0, u.v = v.u = 0

is de�ned and the weight function on this ring is given at �rst. Then the Gray map is de�ned

from the ring R to the ring F2 + uF2 + u2F2 where u3 = 0 and using this map the relation

between cyclic and constacyclic codes is obtained. Using a Gray map de�ned from the ring

F2 + uF2 + u2F2 where u
3 = 0 to F2, the relation between (1+ v)−constacyclic codes over R

and quasicyclic codes over F2 is described.

2 Preliminaries

It is known that F2 + uF2 + u2F2 is a ring with the usual addition and multiplication. Also it

is known that this ring is isomorphic to the ring F2[u]
/
< u3 > where u3 = 0. Writing R1 =

F2 + vF2 where v2 = 0 instead of F2 the set R1 + uR1 + u2R1 where u3 = 0 is obtained.

Then we have R1 + uR1 + u2R1= (F2 + vF2) + u.(F2 + vF2) + u2.(F2 + vF2)= F2 + vF2 +
uF2 + uvF2 + u2F2 + u2vF2 Adding the condition uv = vu = 0 to the conditions u3 = 0 in(
F2 + uF2 + u2F2,+, ·

)
and v2 = 0 in (R1 , + , · ), it is obtained that u2v = (uu)v = u(uv) =

u 0 = 0. Then the set R1 + uR1 + u2R1 is equal to the set R = F2 + vF2 + uF2 + u2F2

= { 0 , 1 , v , u , u2 , 1+v , 1+u , 1+u2 , v+u , v+u2 , u+u2 , 1+v+u , 1+v+u2 , 1+u+
u2 , v + u+ u2 , 1+ v + u+ u2}. Hence R is a ring with the usual addition and multiplication

under the conditions u3 = 0, v2 = 0, u.v = v.u = 0 . It is easily seen that R is isomorphic to

the ring F2[u, v]
/
< u3 = 0, v2 = 0, u.v = v.u = 0 >. Note that the ring R is neither �nite chain

ring nor Frobenius ring.

Let C be a (n,M, d)_code. It means that C has the length n, it has M elements and its

minimum distance is d.
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De�nition 2.1. Let R be a ring. Each submodule C of Rn is called a linear code with lenght n
over the ring R. If C is a linear code with lenght n over the �eld F2, it is a subspace of F2

n
.

Each codeword c in such a code C is a n−tuple of the form c = (co, c1, ..., cn−1) ∈ Rn and can

be represented by

c = (co, c1, ..., cn−1) ↔ c(x) =
n−1∑
i=0

ci.x
i ∈ R[x]

This notation can be written for the elements of the ring R1
n and Fn

2
similarly. The Gray map

from the ring R to R2

1
is de�ned as ;

F : R → R2

1

F(a+ bv + cu+ du2) = F(r + qv) = (q, q + r)

where r = a+ cu+ du2 and q = b+ au+ (a+ c)u2 .
The map F can be generalized to Rn as ;

F(to, t1, ..., tn−1) = (q0, q1, ..., qn−1, q0 + r0, q1 + r1, ..., qn−1 + rn−1) where ti = ri + qiv
such that ri = ai + ciu+ diu

2, qi = bi + aiu+(ai + ci)u2 , for all i = 0, 1, ..., n− 1 . Note that

the Gray map from R1 to F4

2
is de�ned as ;

F1 : R1 → F4

2

F1(x+ yu+ zu2) = (z, x+ z, y + z, x+ y + z)

The map F1 can be generalized to Rn
1
as ;

F1 : Rn
1
→ F4n

2

F1(bo, b1, ..., bn−1) = (zo, z1, ..., zn−1, x0 + zo, x1 + z1, ..., xn−1 + zn−1, y0 + zo, y1 +
z1, ..., yn−1 + zn−1, xo + y0 + zo, x1 + y1 + z1, ..., xn−1 + yn−1 + zn−1)

where xi, yi, zi ∈ F2 , for i = 0, 1, ..., n− 1.

The weight function wR for each element s of R = F2 + vF2 + uF2 + u2F2 is de�ned as ;

wR(s) =


0 ; s = 0

2 ; s = 1+ v + u

4 ; s = u , u+ u2 , 1+ v + u+ u2

6 ; otherwise

Then wR(s) =
n−1∑
i=0

wR(si) is satis�ed for each element s = (so, s1, ..., sn−1) ∈ Rn.

It is known that the Lee weight of each t ∈ R1 is de�ned as ;

wL(t) =


0 ; t = 0

4 ; t = u2

2 ; otherwise

Then wL(t) =
n−1∑
i=0

wL(ti) is satis�ed for each element t = (to, t1, ..., tn−1) ∈ Rn
1
.

The Hamming weight on F2 is de�ned as wH(0) = 0 , wH(1) = 1 . Hence wH(c) =
n−1∑
i=0

wH(ci) is hold for each c = (co, c1, ..., cn−1) ∈ Fn
2
.

The minimum distance of a code C is de�ned as ;

dR(C) = min{dR(x, y)}, here x, y ∈ C , x ̸= y if C is a code over R ,

dL(C) = min{dL(x, y)}, here x, y ∈ C , x ̸= y if C is a code over R1 and

dH(C) = min{dH(x, y)}, here x, y ∈ C , x ̸= y if C is a code over F2 . Each element of R
is written as a+bv+ cu+du2 = r+qv where r = a+cu+du2 ∈ R1, q = b+au+(a+c)u2 ∈ R1

.
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Thus wR(a+ bv+ cu+ du2) = wR(r+ vq) = wL(q, q+ r) = wH(a+ c, a+ c+ d, a+ b+
c, b+ c+ d, c, d, b+ c, a+ b+ d)

It is clearly seen that the equalities wR(s) = wL(F(s)) = wH(F1(F(s))) for each s ∈ Rn

are satis�ed. Therefore it means that F is an isometry from (Rn, dR) to (R2n
1
, dL) and F1 is an

isometry from (R2n
1
, dL) to (F8n

2
, dH) .

A cyclic shift on Rn is a permutation σ such that

σ(co, c1, ..., cn−1) = (cn−1, c0, ..., cn−2).

A linear codeC overR of length n is said to be cyclic code if it is satis�ed the equality σ(C) = C.
A (1+ v)− constacyclic shift γ acts on Rn as

γ(co, c1, ..., cn−1) = ((1+ v).cn−1, c0, ..., cn−2).

A linear code C over R of length n is said to be (1 + v)−constacyclic code if it is satis�ed the

equality γ(C) = C.
Let C be a code of length n over R and P (C) be its polynomial representation,

P (C) = {
n−1∑
i=0

ri.x
i | (r0, r1, ..., rn−1) ∈ C }.

Let D be a code of length 2n over R1 and P (D) be its polynomial representation,

P1(D) = {
2n−1∑
i=0

si.x
i | (s0, s1, ..., s2n−1) ∈ D } .

Using these notations we have ;

Proposition 2.2. (a) A code C of length n over R is cyclic if and only if P (C) is an ideal of
R[x]/⟨xn − 1⟩ .

(b) A code C of length n over R is (1 + v)−constacyclic if and only if P (C) is an ideal of
R[x]/⟨xn − (1+ v)⟩ .

A cyclic shift on R2n
1

is a permutation τ such that

τ(do, d1, ..., d2n−1) = (d2n−1, d0, ..., d2n−2)

Let D ⊆ R2n
1

be a linear code. If τ(D) = D then D is called a cyclic code over R1.

A (1+ u2)−constacyclic shift on R2n
1

is a permutation ν such that

ν(do, d1, ..., d2n−1) = ((1+ u2).d2n−1, d0, ..., d2n−2)

Let D ⊆ R2n
1

be a linear code. If ν(D) = D then D is called a (1+ u2)−constacyclic code
over R1 . Let C

′ ⊆ F8n
2

be a linear code,

σ⊗2 : F8n
2

→ F8n
2

σ⊗2(do, d1, ..., d8n−1) = (d4n−1, d0, ..., d4n−2, d8n−1, d4n, ..., d8n−2).

Ifσ⊗2(C ′) = C ′then C ′ is called a quasicyclic code of index 2 over F2 .

Proposition 2.3. (a) A code D of length 2n over R1 is cyclic if and only if P1(D) is an ideal of
R1[x]

/
⟨xn − 1⟩.

(b) A code D of length 2n over R1 is (1+ u2)−constacyclic if and only if P1(D) is an ideal

of R1[x]
/
⟨xn − (1+ v)⟩.

3 Cyclic codes and (1 + v)−constacyclic codes over the ring R

The equality (1+ v)n = (1+ v) is satis�ed when n is an odd and the equality (1+ v)n = 1 is

satis�ed when n is even number. Through this section n is an odd number.

Proposition 3.1. De�ne µ : R[x]
/
⟨xn − 1⟩ → R[x]/⟨xn − (1+ v)⟩
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r(x) 7→ r((1+ v)x)

µ is a ring isomorphism when n is an odd number.

Proof. Remember that (1+ v)n = (1+ v) when n is an odd number.

Let a(x) ≡ b(x) (mod xn − 1). It is clear that a(x) − b(x) = (xn − 1).q(x) , q(x) ∈ R[x]
and writing (1+ v).x instead of x it is obtained that

a((1+ v).x)− b((1+ v).x) = ((1+ v)n.xn − 1).q((1+ v).x) , q((1+ v).x) ∈ R[x]

= ((1+ v).xn − 1).q((1+ v).x)

= ((1 + v).xn − (1+ v)2).q((1 + v).x)= (1 + v).(xn − (1 + v)).q((1 + v).x) = (xn − (1 +
v)).q((1+ v).x) .(1+ v) = (xn − (1+ v)).p(x) , p(x) ∈ R[x].

Then a((1+ v).x) ≡ b((1+ v).x) (mod (xn − (1+ v))) .

Therefore we have ;

Corollary 3.2. I is an ideal ofR[x]
/
⟨xn − 1⟩ if and only if µ(I) is an ideal ofR[x]

/
⟨xn − (1+ v)⟩.

Proposition 3.3. De�ne the map
−
µ : Rn → Rn

(ro, r1, ..., rn−1) 7→ (ro, (1+ v).r1, ..., (1+ v)i.ri, (1+ v)n−1rn−1)

A code C of length n over R is a cyclic code if and only if
−
µ is a linear (1 + v)−constacyclic

code.

4 Gray images of the codes over the ring R

In this section �rstly it will be shown that the Gray image of a (1+ v)−constacyclic code over
R is a cyclic code with even lenght. Secondly it will be shown that the Gray image of a (1 +
u2)−constacyclic code over R1 is a quasicyclic code with even length.

Proposition 4.1. Let γ be a (1+ v)−constacyclic shift on Rn and τ be a cyclic shift on R2n
1

. If

F is a Gray map from Rn to R2n
1

which is de�ned before, then F.γ = τ.F is satis�ed.

Proof. Let c = (c0, c1, ..., cn−1) ∈ Rn where ci = ri + qiv for 0 6 i 6 n− 1.

If F(c) = F(c0, c1, ..., cn−1) = F(r0 + q0v, r1 + q1v, ..., rn−1 + qn−1v)

= (q0, q1, ..., qn−1, q0 + r0, q1 + r1, ..., qn−1 + rn−1)

then tau (F(c)) =τ(q0, q1, ..., qn−1, q0 + r0, q1 + r1, ..., qn−1 + rn−1)

= (qn−1 + rn−1, q0, q1, ..., qn−1, q0 + r0, ..., qn−2 + rn−2)

On the other hand, γ(c) = γ(c0, c1, ..., cn−1) = ((1+v).cn−1, c0, ..., cn−2) where (1+v).cn−1 =
rn−1+(qn−1+rn−1)v. ThenF (γ(c)) =F(rn−1+(qn−1+rn−1)v, r0+q0v, q1, ..., rn−2+qn−2v)
= (qn−1 + rn−1, q0, q1, ..., qn−1, q0 + r0, ..., qn−2 + rn−2)

Theorem 4.2. A code C with length n over R is (1+ v)−constacyclic code if and only if F(C)
is a cyclic code with lenght 2n over R1 .

Proof. Suppose that C is (1 + v)−constacyclic code. Then γ(C) = C . By applying F , we

have F(γ(C)) = F(C) . By using the Proposition 4.1, we have τ(F(C)) = F(γ(C)) = F(C).
So F(C) is a cyclic code. Conversely, if F(C) is a cyclic code, then τ(F(C)) = F(C) . By

using the Proposition 4.1 , we have τ(F(C)) = F(γ(C)) = F(C) . Since F is injective then

γ(C) = C .

Proposition 4.3. Let ν be the (1 + u2)−constacyclic shift on R2n
1

and σ⊗2 be the quasicyclic

shift on F8n
2

. If F1 is a Gray map from R2n
1

to F8n
2

which is de�ned before, then σ⊗2.F1 = F1.ν
is satis�ed.
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Proof. Let t = (t0, t1, ..., tn−1) ∈ R2n
1

where ti = xi + yiu + ziu
2 for 0 6 i 6 n − 1.

If ν(t) = ν(t0, t1, ..., t2n−1) =((1 + u2).t2n−1, t0, ..., t2n−2) where (1 + u2).t2n−1 = (1 +
u2).(x2n−1 + y2n−1u + z2n−1u

2) = x2n−1 + y2n−1u + (x2n−1 + z2n−1)u2 , then F1.ν(t) =
F1((1 + u2).t2n−1, t0, ..., t2n−2) = F1(x2n−1 + y2n−1u + (x2n−1 + z2n−1)u2, x0 + y0u +
z0u

2, ..., x2n−2 + y2n−2u + z2n−2u
2) = (x2n−1 + z2n−1, z0, z1, ..., z2n−1, x0 + z0, , ..., x2n−2 +

z2n−2, x2n−1+y2n−1+z2n−1, y0+z0, ..., y2n−1+z2n−1, x0+y0+z0, ..., x2n−2+y2n−2+z2n−2)
On the other hand, if F1(t) = F1(t0, t1, ..., t2n−1)= (z0, z1, ..., z2n−1, x0 + z0, , ..., x2n−1 +

z2n−1, y0+z0, ..., y2n−1+z2n−1, x0+y0+z0, ..., x2n−1+y2n−1+z2n−1) then we have σ⊗2.F1(t) =
σ⊗2(t0, t1, ..., t2n−1)= (z0, z1, ..., z2n−1, x0+z0, , ..., x2n−1+z2n−1, y0+z0, ..., y2n−1+z2n−1, x0+
y0 + z0, ..., x2n−1 + y2n−1 + z2n−1)= (x2n−1 + z2n−1, z0, z1, ..., z2n−1, x0 + z0, , ..., x2n−2 +
z2n−2, x2n−1+y2n−1+z2n−1, y0+z0, ..., y2n−1+z2n−1, x0+y0+z0, ..., x2n−2+y2n−2+z2n−2).

Theorem 4.4. A code C with length 2n over R1 is a (1 + u2)−constacyclic code if and only if

F1(C) is quasicyclic code of index 2, with length 8n over F2 .

Proof. If C is (1 + u2)−constacyclic code, ν(C) = C . Then have F1(ν(C)) = F1(C) and
σ⊗2(F1(C)) = F1(ν(C)) = F1(C) from Proposition 4.3. So F1(C) is quasicyclic code of

index 2. Conversely, if F1(C) is quasicyclic code of index 2 , then σ⊗2(F1(C)) = F1(C). By
using the Proposition 4.3 , we have σ⊗2(F1(C)) = F1(ν(C)) = F1(C). Since F1 is injective

then ν(C) = C.

Using the above theories the main conclusion is given below:

Corollary 4.5. A code C with odd length n over R is (1 + v)−constacyclic code if and only if

F1(F(C)) is quasicyclic code of index 2 and with length 8n over F2.

Conclusion. It is presented the �nite ringR = F2+vF2+uF2+u2F2 where u
3 = 0 , v2 = 0

and u.v = v.u = 0. It is acquired that the Gray image of linear (1+ v)−constacyclic code over
R with length n.
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