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Abstract. In this paper the ring F2[t; ”]/< w3, 02, u.p >Where w=0,v"=0,uv=vu=0
is defined and (1 4+ v)— constacyclic codes over this ring are studied. It is shown that the Gray
image of (1 4 v)— constacyclic codes with odd order over the ring Flu, U]/< W3 02y >isa

cyclic code over the ring I [“]/ < 3 > where u? = 0. Also there is a quasicyclic code of index
2 over the binary field.

1 Introduction

Certain Linear codes for example cyclic, constacyclic and quasicyclic codes over the ring Z,x
and over the all types of finite chain rings were studied before. Gray maps which preserve
minimum distance of codes have been defined between these rings and finite fields. Then using
this kind map the new codes have been written. Especially; codes over the field I, which are the
Gray images of cyclic and constacyclic codes over I, +ulF, +u*F, where u? = 0 were studied in
[5]. Also (1+v)— constacyclic codes over Fy+ulFy+vFy+uvlFy where u? = v? = 0, uv—v.u =
0 were studied in [7]. (1 4+ v)—constacyclic codes over F, + ulF, + v, 4+ uvF, of odd length
were characterized by using cyclic codes over Fy + ulFy 4+ vy + wolF,. X. Xiaofang studied
(1 + v)—constacyclic codes over the ring Fy + ulfy + vIF, where u? = v> = 0, u.v = v.u =0
in [8].

In this paper the ring R = Fy + vFs + ulFy 4+ u’F, where v? = 0,v*> = 0, w.v = v.u = 0
is defined and the weight function on this ring is given at first. Then the Gray map is defined
from the ring R to the ring Fy + uFy + u’F, where u? = 0 and using this map the relation
between cyclic and constacyclic codes is obtained. Using a Gray map defined from the ring
F, + uF, + u2F, where u> = 0 to [F,, the relation between (1 + v)—constacyclic codes over R
and quasicyclic codes over I, is described.

2 Preliminaries

It is known that F, + ulF, + u°F, is a ring with the usual addition and multiplication. Also it
is known that this ring is isomorphic to the ring Fy [U]/ < 3 > Where u? = 0. Writing R; =
F, + vIFy where v = 0 instead of F, the set R; + uR; + u*R; where v?> = 0 is obtained.
Then we have R; + uR; + U2R1: (Fz + ’UFQ) + U(]Fz + sz) + uz.(Fz + UFQ): Fy + vFy +
ulFy + wvlFy + u?Fy 4+ u?vF, Adding the condition uv = vu = 0 to the conditions u* = 0 in
(Fy + uFy + u*F,+,-) and v* = 0in (Ry, +, -), it is obtained that v?v = (uu)v = u(uwv) =
w0 = 0. Then the set Ry + uR; + w’R; is equal to the set R = Fy + vFy + ulFy + u’F,
={0,1,v,u,u®, 14+v, l+u, 1 +u* , v+u,v+u?  ut+u®, 1+v+u, l+v+u?, 1+u+
u?, v+u+u?, 14+ v+u+u’}. Hence R is a ring with the usual addition and multiplication
under the conditions 3 = 0, v2 =0, u.v = v.u = 0. Itis easily seen that R is isomorphic to
the ring Falu, U]/< u? =0, v =0,uv=10.u
ring nor Frobenius ring.

Let C be a (n, M,d)_code. It means that C' has the length n, it has M elements and its
minimum distance is d.

— ( >- Note that the ring R is neither finite chain
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Definition 2.1. Let R be a ring. Each submodule C' of R" is called a linear code with lenght n
over the ring R. If C is a linear code with lenght n over the field [Fy, it is a subspace of F,™ .
Each codeword ¢ in such a code C is a n—tuple of the form ¢ = (c,, ¢y, ..., cn—1) € R™ and can
be represented by

n—1 .
c=(CosClyryCn_1) < c(x) = > ¢i.x' € R[z]
i=0

This notation can be written for the elements of the ring R;" and F7' similarly. The Gray map
from the ring R to R? is defined as ;

®: R R
®(a+bv+ cu+du*) = D(r+quv) = (q,q+7)

where 7 = a + cu + du? and ¢ = b+ au + (a + c)u? .

The map P can be generalized to R™ as ;

D(to,t1y s tn1) = (G0y Q1 ey Gn—1,90 + 70, @1 + 71, sy qn—1 + Tn—1) Where t; = r; + q;v
such that r; = a; + c;u+ dju?, q; = b; +a;u+ (a; +c;)u , foralli = 0,1,....n — 1. Note that
the Gray map from R; to 5 is defined as ;

(OJ R1—>IF3
(v +yu+z2u?) = (2,0 + 2,y + 2,2 +y+2)

The map @, can be generalized to R} as ;
®; @ R} - F3"

D1(bo,b1yesbn1) = (2o, 215 oy Zn1,T0 + 20, 1 4 215 ey Tl + Zn—1,Y0 + Zo, Y1 +
21, ey Yn—1 + Zn—1,To + Yo + 20, 1 + Y1 + 215 s Tt + Y1 + Zn—1)
where T, Yi, 25 € F,,fori=0,1,...,n— 1.
The weight function wp for each element s of R = IFy + vF» + ulF, + u’F, is defined as ;

0 ;=0
wi(s) = 2 ;s=14+v+u
AN I is=u,u+u?, l+v+u+u?
6 ;otherwise
n—1

Then wr(s) = Y. wr(s;) is satisfied for each element s = (s,, 1, ..., $p,—1) € R".

It is known that 'Ele Lee weight of each t € R is defined as ;

0 ;t=0
wr, (t) = 4 t= U2
2 ;otherwise

n—1
Then wy,(t) = > wg(t;) is satisfied for each element t = (t,,t1, ....t,,—1) € R} .
i=0
The Hamming weight on F; is defined as wy(0) = 0, wy(1) = 1 . Hence wy(c) =
n—1
> wg(e;) is hold for each ¢ = (¢o, 1, ...y 1) € FY .
i=0

The minimum distance of a code C'is defined as ;

dr(C) = min{dg(z,y)}, here z,y € C, x # yif Cisacodeover R,

dr(C) =min{dr(z,y)}, here z,y € C, x # yif Cis acode over R; and

dy(C) =min{dy(z,y)}, here z,y € C, z # yif Cis a code over I, . Each element of R
is written as a-+bv+ cu+du® = r+qv where r = a+cu+du® € Ry, q = b+au+(a+c)u® € Ry



GRAY IMAGES OF CONSTACYCLIC CODES OVER RING 243

Thus wr(a+bv+ cu+du®) = wr(r+vq) = wr(q,q+7) =wr(a+c,a+c+d,a+b+
e, b+c+d,e,d,b+c,a+b+d)

It is clearly seen that the equalities wg(s) = wr(®(s)) = wy(P1(P(s))) for each s € R"
are satisfied. Therefore it means that & is an isometry from (R",dR) to (R3",d;) and @, is an
isometry from (R3",dy,) to (F8",dy) .

A cyclic shift on R™ is a permutation ¢ such that

U(Coa Cly-eny Cn—l) = (Cn—la €Oy +ees Cn—Z)-

A linear code C over R of length n is said to be cyclic code if it is satisfied the equality o (C) = C.
A (1 + v)— constacyclic shift v acts on R" as

7(00;617 ~'~acn—l) = ((1 + U)-Cn—hcm '--7cn—2)-

A linear code C over R of length n is said to be (1 + v)—constacyclic code if it is satisfied the
equality v(C) = C.
Let C be a code of length n over R and P(C) be its polynomial representation,

n—1 )
P(C) = { Z ri'xz | (TOaTlv"'v’rn—l) S C}
=0

Let D be a code of length 2n over R; and P(D) be its polynomial representation,

2n—1 .
P1(D) = { Z s;.x" | (80,81, ...782n,1) S D} .
=0

Using these notations we have ;

Proposition 2.2. (a) A code C of length n over R is cyclic if and only if P(C) is an ideal of
Rzl ) n .
(z" = 1)
(b) A code C of length n over R is (1 + v)—constacyclic if and only if P(C) is an ideal of
R[x]/(x” —(14+v))-
A cyclic shift on R3" is a permutation 7 such that
7(do,d1, ..., dan—1) = (dan—1,do, ..., dan—2)

Let D C R3" be a linear code. If 7(D) = D then D is called a cyclic code over R;.
A (1 + u?)—constacyclic shift on R?" is a permutation v such that

V(dmdla -~-ad2n—1) = ((1 + u2>~d2n—1ad05 -~-ad2n—2)

Let D C R3" be a linear code. If (D) = D then D is called a (1 4 u*)—constacyclic code
over Ry . Let C' C an be a linear code,

o® : 8" — F§n
09 (doy di, s dgn—1) = (dan—1,do, .- dan—2, dgn—1, dap; ..., dgpn—2).
If 0®2(C") = C'then (" is called a quasicyclic code of index 2 over IF, .

Proposition 2.3. (a) A code D of length 2n over Ry is cyclic if and only if P\(D) is an ideal of

Rl[m]/{x” —1)
(b) A code D of length 2n over Ry is (1 + u?*)—constacyclic if and only if Pi(D) is an ideal

of It M/@ﬂ - (1+0))

3 Cyclic codes and (1 4+ v)—constacyclic codes over the ring R

The equality (1 4+ v)™ = (1 + v) is satisfied when n is an odd and the equality (1 +v)™ = 1 is
satisfied when n is even number. Through this section n is an odd number.

Proposition 3.1. Define yu : R[x]/<xn o R[x}/@n —(1+0))
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r(z) = r((14+v)z)

W is a ring isomorphism when n is an odd number.

Proof. Remember that (1 + v)™ = (1 + v) when n is an odd number.

Let a(z) = b(x) (mod z™ — 1). Itis clear that a(z) — b(x) = (2™ — 1).q(z), q(z) € R[x]
and writing (1 + v).z instead of z it is obtained that

a((1+v).x) =b((1 +v).x) = (1+v)"2" —1).q((1 +v).z), q((1+v).z) € R[x]

=((14+wv)z"—(1+
v)).q((1 +v).x).(1+
Then a((1 +v).x)

Therefore we have ;

Corollary 3.2. [ is an ideal ofR[x]/<zn —1) if and only if u(I) is an ideal ofR[x]/<xn —(1+v))

Proposition 3.3. Define the map 1: R™ — R"
(Toy 71y ey Tr1) = (1o, (14 0) 1, ey (14 0) 0y, (1 4+ 0)" e, g)

A code C of length n over R is a cyclic code if and only if 1 is a linear (1 + v)—constacyclic
code.

4 Gray images of the codes over the ring R

In this section firstly it will be shown that the Gray image of a (1 4+ v)—constacyclic code over
R is a cyclic code with even lenght. Secondly it will be shown that the Gray image of a (1 +
u*)—constacyclic code over R is a quasicyclic code with even length.

Proposition 4.1. Ler y be a (1 + v)—constacyclic shift on R™ and T be a cyclic shift on R%” f
® is a Gray map from R" to R%" which is defined before, then ®.v = 7.P is satisfied.

Proof. Let ¢ = (cg, ¢1, ..., cn1) € R" where ¢; =7, + qv forO0<i<n—1.
If ®(c) = P(co, c1y .o Cna1) = P10 + Q0,71 + @10, ..., "1 + Gn—10)

= (%7(]17 <5 qn—1,40 + 70, 41 + 15y qn—1 + Tnfl)
then tau (q)(c)) :T(CIO,QI» <y dn—1,40 + 70,41 + T,y Qqn—1 + rnfl)
= (Qn—l + Tn—1,40,41, -+, qn—1,40 + 70y ydn—2 + rn—Z)

On the other hand, y(c) = v(co, ¢1, .-y cn—1) = (1 4+v).cp_1, o, ..., cn—2) where (1+v).c,—1 =
Tn—1+(gn-1+7n-1)v. Then @ (v(c)) =P(rp—1+ (gn-1+7n-1)v, 70+ 90V, q1s ..., 'n—2+¢n—20)
= (Gn=1+Tn=1,00:q1+ s Gn—1,40 + 705 .- qn—2 + Tn—2)

Theorem 4.2. A code C with length n over R is (1 4+ v)—constacyclic code if and only if ®(C)
is a cyclic code with lenght 2n over R .

Proof. Suppose that C is (1 4+ v)—constacyclic code. Then v(C') = C' . By applying ® , we
have ®(v(C)) = ®(C) . By using the Proposition 4.1, we have 7(®(C)) = ®(~(C)) = ©(C).
So ®(C) is a cyclic code. Conversely, if ®(C) is a cyclic code, then 7(®(C)) = ®(C) . By
using the Proposition 4.1 , we have 7(®(C)) = ®(y(C)) = ®(C) . Since P is injective then
~C)=C".

Proposition 4.3. Let v be the (1 + u*)—constacyclic shift on R?" and 0% be the quasicyclic
shift on Fg” . Af Dy is a Gray map from R%" to ]Fg" which is defined before, then o®>.®; = ®;.v
is satisfied.
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Proof. Lett = (tg,t1,...,tn-1) € R%" where t; = z; + y;u + zu? for 0 < i < n — 1.
If V(t) = I/(to,tl,...,tznfl) :((1 + Uz).tzn,htow.wtzn,z) where (1 + uz).tzn,1 = (1 +
U?).(T2n-1 + Yon—1u + 220-1u?) = Topo1 + Yon—1u + (T2n—1 + 20n—1)u? , then Py(t) =
D1((1 + u?)ton—1,t0, s ton—2) = Pi(z2n—1 + Yon—1u + (T2n—1 + 22n-1)u?, 20 + you +
20U%, oy Ton—2 + Yon—2U + 22n—2u?) = (T2n—1 F 220—1,20, 215 s 220—1, T + 20, 5 ey T2n—2 +
2om—2, a1+ Yon—1+2n—1,Y0+ 20, s Yon—1+2on—1,T0+ Yo+ 20, -, Ton—2 +Y2n—2+ 20—2)

On the other hand, if @;(t) = @1 (to,t1, s t2n—1)= (20, 21, s 220—1, TO + 20 5 s T2n—1 +
2215 Y020, s Yon—1+F22n—1, L0F+Y0+20, ---s Ton—1+Y2n—1+22n—1) then we have 0®2.®; (t) =
U®2(t07 th (EX) t2n—1>: (207 Zly ey 2n—1, x0+ZOa PREEE) :L'Zn—1+z2n—l7 y0+207 ceey y2n—1+22n—17 To+
Yo + 20, o Ton—1 + Yon—1 + 22n—1)= (Ton—1 + 22n—1,20: 215 s 22n—1, L0 + 20,5 -, Ton—2 +
20m—2, L1+ Yon—1F 2201, Y0+ 205 s Y2an—1+ 22n—1, L0+ Y0 + 20, ---s L2pn—2 +Yon—2 + 22 —2).

Theorem 4.4. A code C with length 2n over Ry is a (1 + u*)—constacyclic code if and only if
@, (C) is quasicyclic code of index 2, with length 8n over F; .

Proof. If C is (1 + u*)—constacyclic code, v(C) = C . Then have ®;(v(C)) = ®;(C) and
o®2(P(C)) = P (v(C)) = ®,(C) from Proposition 4.3. So ®;(C) is quasicyclic code of
index 2. Conversely, if ®;(C) is quasicyclic code of index 2 , then 0®%(P;(C)) = &;(C). By
using the Proposition 4.3 , we have ¢%?(®;(C)) = ®(v(C)) = ®{(C). Since P is injective
then v(C) = C.

Using the above theories the main conclusion is given below:

Corollary 4.5. A code C with odd length n over R is (1 + v)—constacyclic code if and only if
D, (P®(C)) is quasicyclic code of index 2 and with length 8n over F,.

Conclusion. Itis presented the finite ring R = F» 4+ vF, +ulF, +u’F; where u® =0, v> =0
and u.v = v.u = 0. It is acquired that the Gray image of linear (1 + v)—constacyclic code over
R with length n.
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