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Abstract. In this paper, we demonstrate the generalization of uniform continuous of the

composition operators in the space of the bounded L-variation functions [2, 3]. In this paper

we extend the result obtained recently in [2, 3] and [11] the space of bounded L-variation in the

sense Waterman [21]. Also we give some results about locally de�ned operators.

1 Introduction

Let I be an interval of R, X a real normed space, C a closed convex subset of X, Y a real

Banach space and h : I × C → Y . Denote by XI the algebra of all functions f : I −→ X and

by H : XI −→ Y I the Nemytskii composition operator generated by the function h de�ned by

(Hf)(t) = h(t, f(t)), t ∈ I, f ∈ XI . (1.1)

Let (LBV (I,X), ∥ · ∥L) be the Banach space of functions f : I → X which are of bounded L

-variation in the sense of Waterman, where the norm ∥ · ∥L is de�ned with the aid of Luxemburg-

Nakano-Orlicz seminorm [16, 10, 18].

Assume thatH maps the set of functions f ∈ LBV (I,X) such that f(I) ⊂ C intoLBV (I, Y ).
In the present paper, we prove that, if H is uniformly continuous, then the left and right regula-

rization of its generator h with respect for the �rst variable are af�ne functions in the second

variable. This extends the main result of paper [2, 3].

2 Preliminaries

In this section we recall some facts which will be needed further on.

Denote by R the set of all real numbers and put R+ = [0,∞).

Next, let L = {λn} be a non-decreasing sequence of positive real numbers such that
∑ 1

λn
diverges.

If {In} denote a sequence of non-overlapping intervals In = [an, bn] ⊂ I and we write

f(In) = f(bn)− f(an). Throughout this paper, when we consider a collection of intervals, they
will be assumed to be non-decreasing without further reference to that fact.

Let I ⊂ R be an interval. Then, for a set X we denote by XI the set of all mappings

f : I −→ X acting from I into X.
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De�nition 2.1 ([21]). A function f ∈ XI is said to be of ∧-bounded variation (LBV ), in the

sense of Waterman in I , if for every {In}, we have

v∧(f) = v∧(f, I) := sup
∑
n

∥f(In)∥
λn

<∞, (2.1)

the supremum being taken over all {In}, {In} ⊆ I .

Various spaces of the functions of generalized bounded variation which have been considered

can be obtained by making special choices of the functions λn, n = 1, 2, · · · . If we take L =
{n} rise to be class of functions of harmonic bounded variation HBV . The de�nition (2.1)

coincides with the classical concept of variation in the sense of Jordan. For λn = φ, the condition
(2.1) coincides with the classical concept of variation in the sense of Wiener [22], where φ :

[0,+∞) −→ [0,+∞) denote a continuous, convex and non�decreasing function, with φ(0) = 0,

φ(x) > 0 for x > 0.

It is easily seen thatLBV = BV , the space of functions of ordinary Jordan bounded variation
on I , if and only if L is a bounded sequence. Consequently, if we suppose that sup

i∈N
λi = ∞, then

BV is a proper subspace of LBV .
It is known that for all a, b, c ∈ I , such that a ≤ c ≤ b, we have v∧(f, [a, c]) ≤ v∧(f, [a, b])

(that is, v∧ is increasing with respect to the interval) and

v∧(f, [a, c]) + v∧(f, [c, b]) ≤ v∧(f, [a, b]).
In what follows we denote by VL(I,X) the set of all boundedL-variation functions f ∈ XI in

the Waterman sense. This is a symmetric and convex set; but it is not necessarily a linear space.

In fact, Musielak-Orlicz proved the following statement: this class of functions (Vφ(I,X) ⊃
VL(I,X) ) is a linear space if, and only if, φ satis�es the δ2 condition [15] (there exist a > 0 and

k > 0 such that φ(2u) ≤ kφ(u) for 0 < u ≤ a). We denote by LBV (I,X) the linear space of
all functions f ∈ XI such that v∧(λf) <∞ for some constant λ > 0.

In the linear space LBV (I,X), the function ∥ · ∥L de�ned by

∥f∥L := |f(a)|+ p∧(f), f ∈ LBV (I,X),

where

p∧(f) := p∧(f, I) = inf
{
ϵ > 0 : v∧

(
f/ϵ

)
≤ 1

}
, f ∈ LBV (I,X), (2.2)

is a norm (see for instance [15, 6, 20]).

For X = R, the linear normed space (BVL(I,R), ∥ · ∥L) was studied by Daniel Waterman

([21]). Also he joint with Perlman shows that the space (LBV (I,R), ∥ · ∥L) is a Banach alge-

bra ([14, 19]). The functional p∧(·) de�ned by (2.2) is called the Luxemburg-Nakano-Orlicz

seminorm [16, 10, 18].

In the sequel, the symbol LBV (I, C) stands for the set of all functions f ∈ LBV (I,X) such
that f : I −→ C and C is a subset of X .

Lemma 2.2. For f ∈ LBV (I,X), we have:

(a) if t, t′ ∈ I , then ∥f(t)− f(t′)∥ ≤ λ1p∧(f);

(b) if p∧(f) > 0 then v∧
(
f/p∧(f)

)
≤ 1;

(c) for ϵ > 0,

(c1) p∧(f) ≤ ϵ if and only if v∧
(
f/ϵ

)
≤ 1;

(c2) if v∧
(
f/ϵ

)
= 1 then p∧(f) = ϵ.

Proof. (a) Take ϵ > p∧(f); then for any t, s ∈ I and for any �nite collection {In}, by virtue (2.1)
and (2.2), we have(

∥f(t)− f(s)∥
λ1ϵ

)
≤

∑
n

(
∥f(In)∥
λnϵ

)
≤ v∧

(
f

ϵ

)
≤ 1
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whence, taking the function λ1 we obtain (a). Property (a) in Lemma 2.2 implies that any

function f ∈ LBV (I,X) is bounded. Indeed, we have ∥f∥ ≤ ∥f(a)∥+∥f(t)−f(a)∥, whence

∥f∥∞ ≤ ∥f(a)∥+ λ−1

n (1)p∧(f) <∞.

(b) Suppose that sequence of the numbers λn > λ = p∧(f) converges a λ as n −→ ∞. If

follows from the de�nition of the number λ that v∧(f) ≤ 1 for all positive integers n. Since
f/λn pointwise converges to f/λ on I as n −→ ∞, by the lower semicontinuity of the functional

v∧(·), we obtain that v∧(f/λ) ≤ lim
n−→∞

v∧(f/λn) ≤ 1.

(c) To prove (c.1), it suf�ces to show that if 0 < p∧(f) < ϵ, then v∧(f/ϵ) < 1, and this is directly

implied by the convexity of v∧(·) and of the part (b), that is,

v∧(f/ϵ) ≤
p∧(f)

ϵ
v∧

(
f

p∧(f)

)
≤ p∧(f)

ϵ
≤ 1.

To prove the second assertion (c.2), it suf�ces to observe that the cases where p∧(f) > ϵ and
p∧(f) < ϵ are impossible.

We consider the following notation of interval I− by formula I− := I\{inf I}. If (X, | · |) is
a Banach space and f ∈ LBV (I,X), then f−(t) := lims↑t f(s), t ∈ I−, exists and is called

the left regularization of f it was proved in ([6]).

Let LBV −(I,X) denote the subset in LBV (I,X) that consists of those functions that are
left continuous on I−.

Lemma 2.3. If X is a Banach space and f ∈ LBV (I,X), then f− ∈ LBV −(I,X). The prove
is similar to the since by Chistyakov [4, Lemma 6].

Thus, if a function has a bounded L-variation, then its left regularization is a left continuous

function.

Lemma 2.4. [6] If f : I → X is monotone, then v∧(f) =
|f(b)−f(a)|

λ1

.

3 The Composition Operator

Our main result reads as follows:

Theorem 3.1. Let (X, | · |
X
) be a real normed space, (Y, | · |

Y
) a real Banach space, C ⊂ X

a closed convex set. Suppose that L1 = {λn}, L2 = {φn} two sequence in sense Waterman

and h : I × C −→ Y . If a composition operator H : CI −→ Y I generated by h, maps
L1BV (I, C) into L2BV (I, Y ) and is uniformly continuous, then the left regularization of h, i.e.
the function h− : I− ×X −→ Y , de�ned by

h−(t, y) := lim
s↑t

h(s, y), t ∈ I−; y ∈ C,

exists and

h−(t, y) = A(t)y +B(t), t ∈ I−, y ∈ C,

for some A : I− −→ L(X,Y )1 and B ∈ L2BV (I−, Y ). Moreover the functions A and B are

left-continuous in I−.

Proof. For every y ∈ C, the constant function f(t) = y (t ∈ I) belongs to L1BV (I, C). Since
H maps L1BV (I, C) into L2BV (I, Y ), it follows that the function t 7→ h(t, y) (t ∈ I) belongs
to L2BV (I, Y ). Now, by Lemma 2.3, the completeness of (Y, | · |

Y
) implies the existence of the

left regularization h− of h.
By assumption, H is uniformly continuous on L1BV (I, C). Let ω : R+ −→ R+ be the

modulus continuity of H that is

ω(ρ) := sup
{∥∥∥H(f1)−H(f2)

∥∥∥
L2BV (I,Y )

: ∥f1 − f2∥L1BV (I,C) ≤ ρ
}
,

1L(X,Y ) denote the space of all linear mappings A : X −→ Y
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for f1, f2 ∈ L1BV (I, C) and ρ > 0.

Hence we get

∥H(f1)−H(f2)∥L2BV (I,Y ) ≤ ω
(
∥f1 − f2∥L1BV (I,C)

)
, for f1, f2 ∈ L1BV (I, C). (3.1)

From the de�nition of the norm ∥ · ∥L, we obtain

p∧
(
H(f1)−H(f2)

)
≤ ∥H(f1)−H(f2)∥L2BV (I,Y ), for f1, f2 ∈ L1BV (I, C). (3.2)

From (3.1), (3.2) and Lemma 2.2 (c1), if ω
(
∥f1 − f2∥L1BV (I,C)

)
> 0, then

v∧

(
H(f1)−H(f2)

ω
(
∥f1 − f2∥L1BV (I,C)

)) ≤ 1. (3.3)

Therefore, for any α1 < β1 < α2 < β2 < · · · < αm < βm, αi, βi ∈ I,
i ∈ {1, 2, · · · ,m}, m ∈ N, the de�nitions of the operator H and the functional v∧(·) imply

m∑
n=1

(
|h(βi, f1(βi))− h(βi, f2(βi))− h(αi, f1(αi)) + h(αi, f2(αi))|

λnω(∥f1 − f2∥L1BV (I,C))

)
≤ 1. (3.4)

For α, β ∈ R, α < β, we de�ne auxiliary Lipschitz functions ηα,β : R −→ [0, 1] by

ηα,β(t) :=


0 if t ≤ α
t− α

β − α
if α ≤ t ≤ β

1 if β ≤ t .

(3.5)

Let us �x t ∈ I−. For arbitrary �nite sequence inf I < α1 < β1 < α2 < β2 < · · · < αm <
βm < t and y1, y2 ∈ C, y1 ̸= y2, the functions f1, f2 : I −→ X de�ned by

fℓ(τ) :=
1

2

(
ηαi,βi(τ)(y1 − y2) + yℓ + y2

)
, τ ∈ I, ℓ = 1, 2, (3.6)

belong to the space L1BV (I, C). From (3.6), we have

f1(·)− f2(·) =
y1 − y2

2
,

therefore

∥f1 − f2∥L1BV (I,C) =
∣∣∣y1 − y2

2

∣∣∣;
moreover

f1(βi) = y1; f2(βi) =
y1 + y2

2
; f1(αi) =

y1 + y2
2

; f2(αi) = y2.

Using (3.4), we hence get

m∑
i=1


∣∣∣h(βi, y1)− h

(
βi,

y1 + y2
2

)
− h

(
αi,

y1 + y2
2

)
+ h(αi, y2)

∣∣∣
λiω

(∣∣∣y1 − y2
2

∣∣∣)
 (3.7)

≤
∑
i≥1


∣∣∣h(βi, y1)− h

(
βi,

y1 + y2
2

)
− h

(
αi,

y1 + y2
2

)
+ h(αi, y2)

∣∣∣
λiω

(∣∣∣y1 − y2
2

∣∣∣)
 ≤ 1.

It is of great importance remarks that the constants functions de�ned on the interval I belong to
the space L1BV (I, C) since the composition operator H generate by h acts from L1BV (I, C)
into L2BV (I, Y ), it follows that the function t 7→ h(t, y) (t ∈ I) belong to L2BV (I, Y ) for
all y ∈ C. From the continuity of L2 and the de�nition of h

−, passing to the limit in (3.7) when

α1 ↑ t, we obtain that

m∑
i=1


∣∣∣h−(t, y1)− h−

(
t,
y1 + y2

2

)
− h−

(
t,
y1 + y2

2

)
+ h−(t, y2)

∣∣∣
λiω

(∣∣∣y1 − y2
2

∣∣∣)
 ≤ 1,
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The sum of the left hand side suppose without lost generality �x i = n for n = 1, 2, ...,m, such

that

m ·


∣∣∣h−(t, y1)− 2h−

(
t,
y1 + y2

2

)
+ h−(t, y2)

∣∣∣
λnω

(∣∣∣y1 − y2
2

∣∣∣)
 ≤ 1 .

we get 
∣∣∣h−(t, y1)− 2h−

(
t,
y1 + y2

2

)
+ h−(t, y2)

∣∣∣
ω
(∣∣∣y1 − y2

2

∣∣∣)
 ≤ 1

m

and since thatm ∈ N is arbitraries we derive
∣∣∣h−(t, y1)− 2h−

(
t,
y1 + y2

2

)
+ h−(t, y2)

∣∣∣
ω
(∣∣∣y1 − y2

2

∣∣∣)
 = 0,

then ∣∣∣h−(t, y1)− 2h−
(
t,
y1 + y2

2

)
+ h−(t, y2)

∣∣∣ = 0.

Or equivalently

h−
(
t,
y1 + y2

2

)
=
h−(t, y1) + h−(t, y2)

2

for all t ∈ I− and all y1, y2 ∈ C.
Thus, for each t ∈ I−, the function h−(t, ·) satis�es the Jensen functional equation in C.

Modifying a little the standard argument (cf. Kuczma [9]), we conclude that, for each t ∈ I−,
there exist A(t) : C −→ L(X,Y ) and B(t) ∈ Y such that h−(t, y) = A(t)y +B(t).

The uniform continuity of the operator H : L1BV (I, C) −→ L2BV (I, Y ) implies the

continuity of the additive function A(t). Consequently A(t) ∈ L(X,Y ), for each t ∈ I−.

Remark 3.2. Obviously, the counterpart of Theorem 3.1 for the right regularization h+ of h
de�ned by

h+(t, y) := lim
s↓t

h(s, y); t ∈ I+ := I\{sup I},

is also true.

Remark 3.3. Taking X = Z = R, L = φ := id
∣∣∣
[0,+∞)

in Theorem 3.1 and C := J where

J ⊂ R is an interval we obtain the main result from [11].

Remark 3.4. Theorem 3.1 extends also the result of Guerrero ([2, 3]).

Remark 3.5. In the proof of Theorem 3.1 we apply the uniform continuity of the operator H
only on the set of functions U ⊂ L1BV (I, C) such that f ∈ U if, and only if, there are α, β ∈
I, α < β, such that

f(t) =
1

2

[
ηα,β(t)(y1 − y2) + y + y2

]
, t ∈ I,

where ηα,β is de�ned by (3.5), y1, y2 ∈ C and y = y1 or y = y2.
Thus the assumption of the uniform continuity of H on L1BV (I, C) in Theorem 3.1 can be

replaced by a weaker condition of the uniform continuity of H on U .
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4 Locally De�ned Operators

It is well know that every Nemytskii composition operator is locally de�ned (cf. [1], also [13,

23, 24]). To recall the de�nition of a local operator assume that G = G(I,R) and H = H(I,R)
are two classes of functions φ : I → R, where I ⊂ R is an interval. A mapping K : G → H is

said to be a locally de�ned operator or (G,H)�local operator if for any open interval J ⊂ R and

for any functions φ,ψ ∈ G,

φ
∣∣∣
J∩I

= ψ
∣∣∣
J∩I

⇒ K(φ)
∣∣∣
J∩I

= K(ψ)
∣∣∣
J∩I

,

where φ
∣∣∣
J∩I

denotes the restriction of φ to J ∩ I .
The form of the locally de�ned operator strongly depends on the nature of the function spaces

G and H which are its domains and ranges, respectively.

Let C(I) be a family of real continuous functions de�ned on I and CM+(I) and CM−(I) de-
note, respectively, a family of continuous nondecreasing and continuous nonincreasing functions

f : I → R.
We write CBV (I) for C(I)

∩
BV (I,R).

Proposition 4.1. If a locally de�ned operatorK mapsCBV (I) intoCM+(I), then it is constant,
that is, a function b ∈ CM+(I) such that

K(φ) = b, φ ∈ CBV (I).

Proof. Let K : CBV (I) → CM+(I) be a local operator. Since CM+(I) ⊂ CBV (I) and

CM−(I) ⊂ CBV (I), an operator K is (CM+, CM+)− and (CM−, CM+)− locally de�ned.

Hence, K is the Nemytskii composition operator and by Theorem 1 and Theorem 4 from [24],

we get our claim.

Similarly, by [24, Remark 4], we can get the following

Proposition 4.2. If a locally de�ned operatorK mapsCBV (I) intoCM−(I), then it is constant,
that is there is a function b ∈ CM−(I) such that

K(φ) = b, φ ∈ CBV (I).
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