COEFFICIENT ESTIMATES FOR SOME SUBCLASSES OF ANALYTIC AND Bi-UNIVALENT FUNCTIONS

Pravati Sahoo and Saumya Singh
Communicated by Ayman Badawi

MSC 2010 Classifications: 30C45, 30C50.
Keywords and phrases: Bi-univalent, bi-starlike and bi-convex functions, subordination

Abstract

In the present paper, we introduce and investigate two new subclasses $\mathcal{B}_{\Sigma}(\alpha, \lambda, \mu)$ and $\mathcal{M}_{\Sigma}(\beta, \lambda, \mu)$ of bi-valent functions in the unit disk \mathbb{U}. For functions belonging to the classes $\mathcal{B}_{\Sigma}(\alpha, \lambda, \mu)$ and $\mathcal{M}_{\Sigma}(\beta, \lambda, \mu)$, we obtain bounds of the first two Taylor-Maclaurin coefficients of $f(z)$.

1 Introduction and Preliminaries

Let \mathcal{A} be the class of analytic functions defined on the unit disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ with the normalized conditions $f(0)=0=f^{\prime}(0)-1$. Let \mathcal{S} be the class of all functions $f \in \mathcal{A}$ which are univalent in \mathbb{U}. So $f(z) \in \mathcal{S}$ has the form

$$
\begin{equation*}
f(z)=z+\sum_{n=1}^{\infty} a_{n} z^{n}, \quad z \in \mathbb{U} \tag{1.1}
\end{equation*}
$$

Let $f^{-1}(z)$ be inverse of the function $f(z)$ and it is well known that every function $f \in \mathcal{S}$ has an inverse $f^{-1}(z)$, defined by

$$
f^{-1}(f(z))=z, \quad z \in \mathbb{U}
$$

and

$$
f\left(f^{-1}(w)\right)=w, \quad \text { for } \quad|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}
$$

where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both $f(z)$ and $f^{-1}(w)$ are univalent in \mathbb{U}.
Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1.1).
Many interesting examples of the functions of the class Σ, together with various other properties and characteristics associated with bi-univalent functions (including also several open problems and conjectures involving bounds of the coefficients of the functions in Σ), can be found in the earlier work studied by Lewin[7], Brannan and Clunie [5], Netanyahu[8] and others. They introduced subclasses of Σ, like class of bi-starlike and bi-convex functions, bi-strongly starlike and bi-convex functions similar to the well-known subclasses $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}^{*}(\alpha)$ of starlike and convex functions of order $\alpha(0<\alpha<1)$, respectively (see [2]) and obtained non-sharp estimates on the initial coefficients in the Taylor-Maclaurin series exapansion (1.1) see [4, 5, 13]. More recently, Srivastava et.al [12, 14, 15], Frasin and Aouf [6], R.M. Ali et.al [1] introduced some new subclasses of Σ and obtained bounds for the initial coefficients of the function given by (1.1).

Motivated by the work of [12, 14, 15] and Sahoo et.al [11], we introduce and study some new subclasses $\mathcal{B}_{\Sigma}(\alpha, \lambda, \mu)$ and $\mathcal{M}_{\Sigma}(\alpha, \lambda, \mu)$.

Definition 1.1. A function f given by (1.1) is said to be in the class $\mathcal{B}_{\Sigma}(\alpha, \lambda, \mu)$ if the following conditions are satisfied:
$f \in \Sigma, \quad 0<\alpha \leq 1,0<\mu<1, \lambda>\mu$

$$
\begin{equation*}
\left|\arg \left((1-\lambda)\left(\frac{z}{f(z)}\right)^{\mu}+\lambda\left(\frac{z}{f(z)}\right)^{\mu+1}\right)\right|<\frac{\alpha \pi}{2} \quad z \in \mathbb{U} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left((1-\lambda)\left(\frac{w}{g(w)}\right)^{\mu}+\lambda\left(\frac{w}{g(w)}\right)^{\mu+1}\right)\right|<\frac{\alpha \pi}{2} \quad w \in \mathbb{U} \tag{1.4}
\end{equation*}
$$

where

$$
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots .
$$

$\mathcal{B}_{\Sigma}(\alpha, \lambda,-1)$ was introduced and studied in [6] and $\mathcal{B}_{\Sigma}(\alpha, 1,-1)$ was introduced and studied in [12]. In this paper, we found the estimates for the initial coefficients a_{2} and a_{3} of bi-univalent functions belonging to the class $\mathcal{B}_{\Sigma}(\alpha, \lambda, \mu)$. Our results generalizes several well-known results in $[6,12,15]$.
In order to prove our main result we need the following lemma:
Lemma 1.2. [9] If $p \in \mathcal{P}$, then $\left|c_{k}\right| \leq 2$ for each k, where \mathcal{P} is the family of all functions $p(z)$ analytic in \mathbb{U} for which $\operatorname{Re} p(z)>0, p(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ for $z \in \mathbb{U}$.

2 Coefficient bounds for the function belonging to the class $\mathcal{B}_{\boldsymbol{\Sigma}}(\alpha, \lambda, \mu)$

Theorem 2.1. Let $f(z)$ given by (1.1) be in the class $\mathcal{B}_{\Sigma}(\alpha, \lambda, \mu), 0<\mu<\alpha \leq 1, \lambda>\mu$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{(\lambda-\mu)^{2}+\alpha\left(2 \lambda-\lambda^{2}-\mu\right)}} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{(\lambda-\mu)^{2}}+\frac{2 \alpha}{2 \lambda-\mu} \tag{2.2}
\end{equation*}
$$

Proof. It follows from (1.3) and (1.4) that

$$
\begin{align*}
& (1-\lambda)\left(\frac{z}{f(z)}\right)^{\mu}+\lambda\left(\frac{z}{f(z)}\right)^{\mu+1}=(p(z))^{\alpha} \tag{2.3}\\
& (1-\lambda)\left(\frac{w}{g(w)}\right)^{\mu}+\lambda\left(\frac{w}{g(w)}\right)^{\mu+1}=(q(w))^{\alpha} \tag{2.4}
\end{align*}
$$

where $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ and $q(w)=1+q_{1} w+q_{2} w^{2}+\cdots$ in \mathcal{P}. Now on equating the coefficients in (2.3) and (2.4), we have

$$
\begin{gather*}
(\lambda-\mu) a_{2}=\alpha p_{1} \tag{2.5}\\
(2 \lambda-\mu) a_{3}+\frac{(\mu-2 \lambda)(\mu+1)}{2} a_{2}^{2}=\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2} \tag{2.6}\\
-(\lambda-\mu) a_{2}=\alpha q_{1} \tag{2.7}
\end{gather*}
$$

and

$$
\begin{equation*}
-(2 \lambda-\mu) a_{3}+\frac{(3-\mu)(2 \lambda-\mu)}{2} a_{2}^{2}=\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2} \tag{2.8}
\end{equation*}
$$

From (2.5) and (2.7) we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
2(\lambda-\mu)^{2} a_{2}^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{2.10}
\end{equation*}
$$

From (2.6), (2.8) and (2.10), we get

$$
\begin{aligned}
{[(\mu-1)(\mu-2 \lambda)] a_{2}^{2} } & =\left(p_{2}+q_{2}\right) \alpha+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}+q_{1}^{2}\right) \\
& =\left(p_{2}+q_{2}\right) \alpha+\frac{\alpha-1}{\alpha}(\lambda-\mu)^{2} a_{2}^{2}
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
a_{2}^{2}=\frac{\alpha^{2}\left(p_{2}+q_{2}\right)}{(\lambda-\mu)^{2}+\alpha\left(2 \lambda-\mu-\lambda^{2}\right)} . \tag{2.11}
\end{equation*}
$$

Applying Lemma 1.2 for (2.11), we get

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{(\lambda-\mu)^{2}+\alpha\left(2 \lambda-\mu-\lambda^{2}\right)}}
$$

which gives us desired estimate on $\left|a_{2}\right|$ as asserted in (2.1).
Next in order to find the bound on $\left|a_{3}\right|$, by subtracting (2.8) from (2.6), we get

$$
\begin{equation*}
2(2 \lambda-\mu) a_{3}-2(2 \lambda-\mu) a_{2}^{2}=\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2}-\left(\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2}\right) \tag{2.12}
\end{equation*}
$$

It follows from (2.9), (2.10) and (2.12)

$$
\begin{equation*}
a_{3}=\frac{\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2(\lambda-\mu)^{2}}+\frac{\alpha\left(p_{2}-q_{2}\right)}{2(2 \lambda-\mu)} . \tag{2.13}
\end{equation*}
$$

Applying Lemma 1.2 for (2.13), we get

$$
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{(\lambda-\mu)^{2}}+\frac{2 \alpha}{2 \lambda-\mu}
$$

This completes the proof of Theorem 2.1.
If we take $\mu=1$ in Theorem 2.1, we have the following corollary.
Corollary 2.2. Let $f(z)$ given by (1.1) be in the class $\mathcal{B}_{\Sigma}(\alpha, \lambda, 1), 0<\alpha \leq 1, \lambda>1$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{(\lambda-1)^{2}+\alpha\left(2 \lambda-\lambda^{2}-1\right)}} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{(\lambda-1)^{2}}+\frac{2 \alpha}{2 \lambda-1} \tag{2.15}
\end{equation*}
$$

3 Coefficient bounds for the function belonging to the class $\mathcal{M}_{\Sigma}(\boldsymbol{\beta}, \boldsymbol{\lambda}, \mu)$

Definition 3.1. A function f given by (1.1) is said to be in the class $\mathcal{M}_{\Sigma}(\beta, \lambda, \mu)$ if the following conditions are satisfied:
$f \in \Sigma, 0 \leq \beta<1,0<\mu<1, \lambda>\mu$

$$
\begin{equation*}
\operatorname{Re}\left((1-\lambda)\left(\frac{z}{f(z)}\right)^{\mu}+\lambda\left(\frac{z}{f(z)}\right)^{\mu+1}\right)>\beta \quad z \in \mathbb{U} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left((1-\lambda)\left(\frac{w}{g(w)}\right)^{\mu}+\lambda\left(\frac{w}{g(w)}\right)^{\mu+1}\right)>\beta \quad w \in \mathbb{U} \tag{3.2}
\end{equation*}
$$

where

$$
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots
$$

Theorem 3.2. Let $f(z)$ given by (1.1) be in the class $\mathcal{M}_{\Sigma}(\beta, \lambda, \mu), 0<\beta<1,0<\mu<1, \lambda>$ μ. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\beta)}{\lambda-\mu}, 2 \sqrt{\frac{1-\beta}{(1-\mu)(2 \lambda-\mu)}}\right\} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\frac{4(1-\beta)^{2}}{(\lambda-\mu)^{2}}+\frac{2(1-\beta)}{2 \lambda-\mu}, \frac{4(1-\beta)}{(2 \lambda-\mu)(1-\mu)}\right\} \tag{3.4}
\end{equation*}
$$

Proof. It follows from (3.1) and (3.2) that

$$
\begin{align*}
(1-\lambda)\left(\frac{z}{f(z)}\right)^{\mu}+\lambda\left(\frac{z}{f(z)}\right)^{\mu+1} & =\beta+(1-\beta) p(z) \tag{3.5}\\
(1-\lambda)\left(\frac{w}{g(w)}\right)^{\mu}+\lambda\left(\frac{w}{g(w)}\right)^{\mu+1} & =\beta+(1-\beta) q(w) \tag{3.6}
\end{align*}
$$

where $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ and $q(w)=1+q_{1} w+q_{2} w^{2}+\cdots$ in \mathcal{P}. Now on equating the coefficients in (3.5) and (3.6), we have

$$
\begin{equation*}
(\lambda-\mu) a_{2}=(1-\beta) p_{1} \tag{3.7}
\end{equation*}
$$

$$
\begin{gather*}
(2 \lambda-\mu) a_{3}-\frac{(2 \lambda-\mu)(\mu+1)}{2} a_{2}^{2}=(1-\beta) p_{2} \tag{3.8}\\
-(\lambda-\mu) a_{2}=(1-\beta) q_{1} \tag{3.9}
\end{gather*}
$$

and

$$
\begin{equation*}
-(2 \lambda-\mu) a_{3}+\frac{(3-\mu)(2 \lambda-\mu)}{2} a_{2}^{2}=(1-\beta) q_{2} \tag{3.10}
\end{equation*}
$$

From (3.7) and (3.9), we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
2(\lambda-\mu)^{2} a_{2}^{2}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{3.12}
\end{equation*}
$$

From (3.8) and (3.10), we get

$$
\begin{equation*}
[(1-\mu)(2 \lambda-\mu)] a_{2}^{2}=\left(p_{2}+q_{2}\right)(1-\beta) \tag{3.13}
\end{equation*}
$$

From (3.12) and (3.13), we get

$$
\begin{equation*}
\left|a_{2}\right|^{2} \leq \frac{(1-\beta)^{2}\left(\left|p_{2}\right|^{2}+\left|q_{2}\right|^{2}\right)}{2(\lambda-\mu)^{2}} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2}\right|^{2} \leq \frac{(1-\beta)\left(\left|p_{2}\right|+\left|q_{2}\right|\right)}{(1-\mu)(2 \lambda-\mu)} \tag{3.15}
\end{equation*}
$$

Applying Lemma 1.2 for (3.14) and (3.15) , we get

$$
\left|a_{2}\right| \leq \frac{2(1-\beta)}{\lambda-\mu}
$$

and

$$
\left|a_{2}\right| \leq 2 \sqrt{\frac{1-\beta}{(1-\mu)(2 \lambda-\mu)}}
$$

which gives us desired estimate on $\left|a_{2}\right|$ as asserted in (3.3).
Next in order to find the bound on $\left|a_{3}\right|$, by subtracting (3.10) from (3.8), we get

$$
\begin{equation*}
2(2 \lambda-\mu) a_{3}-2(2 \lambda-\mu) a_{2}^{2}=(1-\beta)\left(p_{2}-q_{2}\right) \tag{3.16}
\end{equation*}
$$

It follows from (3.12) and (3.16)

$$
\begin{equation*}
a_{3}=\frac{(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2(\lambda-\mu)^{2}}+\frac{(1-\beta)\left(p_{2}-q_{2}\right)}{2(2 \lambda-\mu)} \tag{3.17}
\end{equation*}
$$

Applying Lemma 1.2 for (3.17), we get

$$
\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{(\lambda-\mu)^{2}}+\frac{2(1-\beta)}{2 \lambda-\mu}
$$

On the other hand, by using (3.13) and (3.16), we obtain

$$
\begin{equation*}
a_{3}=\frac{1-\beta}{2(2 \lambda-\mu)}\left[\frac{3-\mu}{1-\mu} p_{2}+\frac{1+\mu}{1-\mu} q_{2}\right], \tag{3.18}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\left|a_{3}\right|=\frac{4(1-\beta)}{(2 \lambda-\mu)(1-\mu)} \tag{3.19}
\end{equation*}
$$

This completes the proof of Theorem 3.2.

References

[1] Roshian M. Ali, See Keong Lee, V. Ravichandran and Shamani Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25, 344-351(2012).
[2] P.L. Duren, Univalent functions, Springer-Verlag, Berlin-New York, (1983).
[3] D. Brannan and W. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. (2)1, 431-443 (1969).
[4] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, in S.M. Mazhar, A. Hamoui, N.S Faour(Eds), Mathematical Analysis and its Applications, Kuwait, February 18-21, 1985, in: KFAS Proceeding Series, vol. 3, Pergamon Press(Elsivier Science Limited). Oxford, 53-60 (1988): see also Stdia Univ. Babes-Bolyai Math. 31(2), 70-77 (1986).
[5] D.A. Brannan and J. Clunie(Eds), Aspects of contemporary complex analysis (Proceedings of the NATO Advanced Study Institute held at the University or Durham, Durham; July1-20, 1979), Academic Press, New-York and London, 1980.
[6] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24, 1569-1573 (2011).
[7] M. Lewin, On a coefficient problem for bi-functions, Proc. Amer. Math. Soc. 18, 63-67 (1967).
[8] E. Netyanyahu, The minimal distance of the image boundary from origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32, 100-112 (1969).
[9] Ch. Pommerenke, Univalent functions, Vandenhock and Rupercht, Gottingen, (1975).
[10] Pravati Sahoo and Saumya Singh, Fekete-Szegő Problems for a special class of analytic functions, J. of Orissa Math. Soc. 27, (1 and 2), 53-60 (2008).
[11] Pravati Sahoo, Saumya Singh and Yucan Zhu, Some starlikeness conditions for the analytic functions and integral transform, Journal of Nonlinear Analysis and Applications, Vol. 2011, jnaa91, 10 pages (2011).
[12] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23, 1188-1192 (2010).
[13] T.S. Taha, Topics in univalent function theory, Ph.D thesis, University of London, 1981.
[14] Quing-Hua Xu,Ying-Chun Gui and H.M. Srivastava, Coefficient estimates for certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25, 990-994 (2012).
[15] Quing-Hua Xu, Hai-Gen Xiao and H.M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comp. 218, 11461-11465 (2012).

Author information

Pravati Sahoo and Saumya Singh, Department of Mathematics, Banaras Hindu University, Banaras, INDIA and
Department of Mathematics, O. P. Jindal University, Raigarh, INDIA.
E-mail: pravatis@yahoo.co.in
Received: December 21, 2015.
Accepted: October 3, 2016.

