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Abstract LetX be a completely regular Hasudorff space, and consider the ring of continuous

functions C(X). A z-�lter F onX is called primal if the set of all elements of Z(X) that are not
prime to F forms a z-�lter on X: here an element Z ∈ Z(X) is called prime to F if Z ∪Z ′ ∈ F
implies that Z ′ ∈ F . In this paper we consider the primal z-�lters on X , and then we discuss

on the relations between this class of z-�lters on X and the class of primal ideals of C(X). We

also de�ne the concept weakly prime and weakly primal z-�lters on X and show that there is a

one-to-one correspondence between the weakly prime (resp. weakly primal) z-�lters on X and

the weakly prime (resp. weakly primal) ideals of C(X).

1 introduction

Prime z-�lters play a central role in the study of the rings of continuous functions. Of course, a

prime z-�lter F on a completely regular Hausdorff space X is z-�lter F on X with the property

that

Z,Z ′ ∈ Z(X), Z ∪ Z ′ ∈ F ⇒ Z ∈ F or Z ′ ∈ F .

There are several ways to generalize the notion of a prime z-�lters. We could either restrict

or enlarge where Z and/or Z ′ lie or restrict or enlarge where Z ∪Z ′ lies. In this paper we will be
mostly interested in generalizations obtained by restricting where Z ∪ Z ′ lies.

Let R be a commutative ring, I an ideal of R and J a subset of R. We denote by (I :R J)
the set of all elements r ∈ R with ra ∈ I for every a ∈ J . Then the annihilator of J , denoted
by AnnR(J) is just (0 :R J). An element a ∈ R is called a zero-divisor of R provided that

Ann(a) ̸= 0. We denote by Z(R), the set of all zero-divisors of R.
We recall from [4] that an element a ∈ R is called prime to I if ra ∈ I (where r ∈ R) implies

that r ∈ I , that is (I :R a) = I . Denote by S(I) the set of elements of R that are not prime to I ,
that is

S(I) = {a ∈ R|ra ∈ I for some r ∈ R \ I}.

Then I is said to be primal if S(I) forms an ideal of R; this ideal is always a prime ideal,

called the adjoint prime ideal P of I . In this case we also say that I is a P -primal ideal of R
([4]). It is easy to see that I is a P -primal ideal of R if and only if Z(R/I) = P/I . Then ring R
is called coprimal if the zero ideal of R is primal.

The concept of weakly primal ideals in a commutative ring R studied in [2]. An element

a ∈ R is called weakly prime to the ideal I if 0 ̸= ra ∈ I (r ∈ R) implies r ∈ I . Clearly 0 is

always weakly prime to I . Denote by W (I) the set of all elements of R which are not weakly

prime to I , that is

W (I) = {a ∈ R|0 ̸= ra ∈ I for some r ∈ R \ I}.

I is called weakly primal provided that the set P := W (I) ∪ {0} forms an ideal of R. Then
the ideal is a weakly prime ideal of R, called the weakly prime adjoint ideal of R. We also say

that I is P -weakly primal ideal. Of Course a proper ideal P of R is said to be weakly prime if

0 ̸= ab ∈ R implies either a ∈ P or b ∈ P [1].
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Throughout this paper X is a completely regular Hausdorff space. Let C(X) be the ring of

all real-valued continuous functions on X. We list here some standard facts, terminology and

notation for reference. The set of all positive integers is denoted by N . In any ring C(X), the
constant function whose value is r is designated by r. For any f ∈ C(X), we write Z(f) for the
set

{x ∈ X : f(x) = o}

Z(f) is called a zero-set in X . For C ′ ⊆ C(X), we write Z[C ′] to designate the family of

zero-sets in C ′, that is

Z[C ′] = {Z(f) : f ∈ C ′}.

On the other hand, the family Z[C(X)] of all zero-sets in X will also be denoted, for sim-

plicity, by Z(X).

We shall occasionally refer to the ring C(X) itself as an improper ideal. Thus, the word ideal,

unmodi�ed, will always mean proper ideal. For any ideal I in C(X) and f ∈ C(X), the residue
class of f modulo I is written I(f). The ideal I is called a z-ideal if Z(f) ∈ Z[I] implies that

f ∈ I . By a prime z-�lter, we shall mean a z-�lter F on X with the property that whenever the

union of two zero-sets belongs to F , then at least one of them belongs to F . For any unde�ned

terms here the reader may consult [6].

The structure of the family of prime ideals in C(X) has been extensively studied in [10, 11,

12]. In this paper we �rst study the basic properties of the family of primal ideals of the ring

C(X). We de�ne primal, weakly prime and weakly primal z-�lters on X . Then we show that

there exists a one-to-one correspondence between the set of all primal z-ideals (resp. weakly

prime, weakly primal) of C(X) and the set of all primal (resp. weakly prime, weakly primal)

z-�lters on X.

2 Primal ideals in C(X)

In this section we discuss on primal ideals of C(X) and consider the relations between primal

ideals of C(X) and primal z-�lters on X.

De�nition 2.1. Let F be a z-�lter on X . An element Z in Z(X) is called z-prime to F provided

that Z ∪ Z ′ ∈ F (Z ′ ∈ Z(X)) implies that Z ′ ∈ F .

Lemma 2.2. Let F be a z-�lter on X and denote by T (F) the set of all elements of Z(X) that
are not z-prime to F , that is

T (F) = {Z ∈ Z(X)|Z ∪ Z ′ ∈ F for some Z ′ ∈ Z(X) \ F}.

Then:

(1) F ⊆ T (F), and

(2) If T (F) forms a z-�lter on X, then it is a prime z-�lter.

Proof. (1) For every Z(f) ∈ F , the relations

Z(f) ∪ Z(1) ∈ F with Z(1) = ∅ /∈ F

imply that Z(f) is not z-prime to F . Hence Z(f) ∈ T (F) and so F ⊆ T (F).

(2) Assume that Z(f) ∪ Z(g) ∈ T (F) but Z(f) /∈ T (F). There exists Z(h) ∈ Z(X)\F such

that Z(f) ∪ Z(g) ∪ Z(h) ∈ F . As Z(f) is z-prime to F , we get Z(g) ∪ Z(h) ∈ F with

Z(h) ∈ Z(X)\F , that is Z(g) is not z-prime to F . So Z(g) ∈ T (F). Therefore T (F) is a
prime z-�lter.
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De�nition 2.3. A z-�lter F on X is called a primal z-�lter if T (F) forms a z-�lter on X. In this

case, by Lemma 2.2, the z-�lter G := T (F) is a prime z-�lter, called the adjoint prime z-�lter of
F . We will also say that F is a G-primal z-�lter.

Theorem 2.4. (1) Let I and P be z-ideals of C(X). If I is a P -primal of C(X), then Z[I] is a
primal z-�lter on X .

(2) If F is a primal z-�lter on X , then Z←[F ] is a primal z-ideal of C(X).

Proof. (1) We know that P is a prime ideal of C(X). So, by [6, Theorem P. 29], Z[P ] is
a prime z-�lter on X. Assume that Z(f) ∈ Z(X) is not z-prime to Z[I]. There exists

Z(g) ∈ Z(X)\Z[I] such that Z(f) ∪ Z(g) ∈ Z[I]. So Z(fg) ∈ Z[I] and I z-ideal gives
fg ∈ I . This implies that g ∈ C(X)\I with fg ∈ I , that is f is not prime to I . So

f ∈ P and so Z(f) ∈ Z[P ]. Now assume that Z(h) ∈ Z[P ]. As P is a z-ideal, h ∈ P .

Therefore hk ∈ I for some k ∈ C(X)\I . It follows that Z(h) ∪ Z(k) ∈ Z[I] where
Z(k) ∈ Z(X)\Z[I]. Thus Z(h) is not z-prime to Z[I]. We have already shown that Z[P ]
consists exactly of elements of Z(X) that are not z-prime to Z[I]. This shows that Z[I] is
a Z[P ]-primal z-�lter.

(2) Clearly Z←[F ] is a z-ideal of C(X). Assume that F is G-primal. By Lemma 2.2 and [6,

Theorem p.29], Z←[G] is a prime z-ideal of C(X). It is enough to show that Z←[G] =
T (Z←[F ]). If f ∈ C(X) is not prime to Z←[F ], then fg ∈ Z←[F ] for some g ∈
C(X)\Z←[F ]. This implies that Z(f) ∪ Z(g) ∈ F with Z(g) /∈ F , that is Z(f) is not
z-prime to F . Therefore Z(f) ∈ G and so f ∈ Z←[G]. Conversely, assume that h ∈ Z←[G].
Then as Z(h) is not z-prime to F , there exists Z(k) ∈ Z(X)\F with Z(h) ∪ Z(k) ∈ F . It

follows that hk ∈ Z←[F ] with k ∈ C(X)\Z←[F ], that is h is not prime to Z←[F ].

Lemma 2.5. Every prime z-�lter is primal.

Proof. Let F be a prime Z-�lter. Then Z←[F ] is a prime z-ideal of C(X) by [6, Theorem p.

29]. But in any commutative ring, every prime ideal is primal. Hence Z←[F ] is a primal z-ideal
of C(X). Now the result follows from Theorem 2.4.

An annihilator condition on a commutative ring R is property (A). R is said to have property

(A) if every �nitely generated ideal I contained in Z(R) has a nonzero annihilator ([7]). Y.

Quentel introduced property (A) in [14], calling it condition (C). Faith in [4] studied rings with

property (A) and called such rings McCoy. An example of a McCoy ring is a Noetherian ring.

However, the property (A) fails for some non-Noetherian rings [9, p. 63]. To avoid the ambiguity

we call such rings F -McCoy.

Recently the concept of rings with property (A) has been generalized to noncommutative

rings [8]. Let R be an associative ring with identity. We write Zl(R) and Zr(R) for the set of all
left zero-divisors of R and the set of all right zero-divisors of R, respectively. Then the ring R
has right (left) Property (A) if for every �nitely generated two-sided ideal I ⊆ Zl(R) (Zr(R)),
there exists nonzero a ∈ R (b ∈ R) such that Ia = 0 (bI = 0). A ring R is said to have Property

(A) if R has right and left Property (A).

Nielsen in [13] de�ned another class of rings and called it McCoy. This paper is on the basis

of some recent papers devoted to this new class of rings. Let R be an associative ring with 1 (not

necessarily commutative). R is said to be right McCoy when the equation f(x)g(x) = 0 over

R[x], where f(x), g(x) ̸= 0, implies there exists a nonzero r ∈ R with f(x)r = 0. Left McCoy

rings are de�ned similarly. If a ring is both left and right McCoy then R is called a McCoy ring.

This class of McCoy rings includes properly the class of Armendariz rings introduced in [15],

which is extensively studied in the last years.

Let R be a commutative ring with identity. Then concepts "F-McCoy ring" and "McCoy

ring" are different concepts. In fact neither implies the other. For example, if R is a reduced

ring, then it is McCoy by [13, Theorem 2]. But we know that there are reduced rings which are

not F-McCoy. Also if we let Z4 to be the ring of integers modulo 4, then, by [8, Theorem 2.1],

M2(Z4), the set of all 2× 2 matrices over Z4, has Property (A) but it is not right McCoy by [16].

The commutative ring R is called strongly coprimal (resp. Super coprimal) if for arbitrary

a, b ∈ Z(R) (resp. �nite subset E of Z(R)) the annihilator of {a, b} (resp. annihilator of E) in
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R is non-zero. Clearly, R is a strongly coprimal if and only if R is both a coprimal and a F -

McCoy ring. In the following Theorem, we give some conditions under which C(X) is strongly
coprimal (resp. super coprimal) [17].

Theorem 2.6. (1) The ring C(X) is strongly primal if and only if intZ(f1)∩ intZ(f2) ̸= ∅ for

every f1 and f2 in Z(C(X)).

(2) The ring C(X) is super primal if and only if intZ(f1) ∩ intZ(f2) ∩ ... ∩ intZ(fn) ̸= ∅ for

every f1, f2, ..., fn in Z(C(X)).

Proof. (1) Assume thatC(X) is strongly primal. Then, for every f1, f2 ∈ Z(C(X)),Ann{f1, f2} ̸=
0. So there exists a nonzero element g ∈ C(X) with gf1 = gf2 = 0. In this case, for ev-

ery x ∈ X , if g(x) ̸= 0 we have f1(x) = f2(x) = 0, that is coZ(g) ⊆ Z(f1) ∩ Z(f2).
Therefore intZ(f1)∩ intZ(f2) ̸= ∅. Now Suppose that intZ(f1)∩ intZ(f2) ̸= ∅ for every
f1, f2 ∈ Z(C(X)). Set Y = intZ(f1)∩intZ(f2) and de�ne the map g : X → R as follows:

g(x) =

{
1, x ∈ Y ;

0, x ∈ X − Y .

Then g is a continuous function. So 0 ̸= C(X), and for every x ∈ X, g(x)f1(x) = 0 ,

g(x)f2(x) = 0, that is gf1 = 0 = gf2. Consequently Ann({f1, f2} ̸= 0. Thus C(X) is
strongly primal.

(2) The proof of this part is completely to that of part (1).

3 Weakly prime and Weakly primal ideals

The concept of weakly prime and weakly primal ideals in a commutative ring introduced in

[1, 2]. In this section we de�ne the weakly prime and weakly primal z-�lters on X and then we

investigate the relations among these classes of z-�lters, weakly prime and weakly primal ideals.

De�nition 3.1. Assume thatF is a z-�lter onX. F is said to be a weakly prime z-�lter whenever,
for Z,Z ′ ∈ Z(X), X ̸= Z ∪ Z ′ ∈ F implies that either Z ∈ F or Z ′ ∈ F .

Lemma 3.2. Every prime z-�lter is weakly prime.

Theorem 3.3. (1) If P is a weakly prime z-ideal in C(X), then Z[P ] is a weakly prime z-�lter
on X .

(2) If F is a weakly prime z-�lter on X, then Z←[F ] is a weakly prime z-ideal of C(X).

Proof. (1) Let P be a weakly prime z-ideal in C(X). Clearly Z[P ] is a z-�lter on X . Assume

that X ̸= Z(f) ∪ Z(g) ∈ Z[P ] for some Z(f), Z(g) ∈ Z(X). Then Z(0) ̸= Z(fg) =
Z(f) ∪ Z(g) ∈ Z[P ]. Since P is a z-ideal, we have 0 ̸= fg ∈ P . Therefore either f ∈ P
or g ∈ P since P is assumed to be weakly prime. It follows that either Z(f) ∈ Z[P ] or
Z(g) ∈ Z[P ], that is Z[P ] is a weakly prime z-�lter.

(2) Assume that F is a weakly prime z-�lter on X . In this case P = Z←[F ] is a z-ideal of
C(X). Suppose that f, g ∈ C(X) are such that 0 ̸= fg ∈ P . Then, X ̸= Z(f) ∪ Z(g) =
Z(fg) ∈ Z[Z←[F ]] = F . Since F is weakly prime, either Z(f) ∈ F or Z(g) ∈ F . Thus

either f ∈ P or g ∈ P , and this implies that P is a weakly prime z-ideal of C(X).

De�nition 3.4. Assume that F is a z-�lter on X. An element Z in Z(X) is called z-weakly
prime to F provided that X ̸= Z ∪ Z ′ ∈ F (Z ′ ∈ Z(X)) implies that Z ′ ∈ F .

Remark 3.5. Let F be a z-�lter on X. Then:

(1) X (i.e. Z(0)) is always z-weakly prime to F

(2) If Z ∈ Z(X) is z-prime ro F , then it is z-weakly prime to F .
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Lemma 3.6. Let F be a z-�lter on X and denote by W (F) the set of all elements of Z(X) that
are not z-weakly prime to F . Then:

(1) F ⊆ W (F) ∪ {X}, and

(2) If W (F) ∪ {X} forms a z-�lter on X , then it is a weakly prime z-�lter.

Proof. (1) For every Z(f) ∈ F − {X} we have:

X ̸= Z(f) = Z(f) ∪ Z(1) ∈ F

with Z(1) = ∅ /∈ F . This implies that Z(f) is not z-weakly prime to F . Hence Z(f) ∈
W (F). Therefore F ⊆ W (F) ∪ {X}.

(2) Let Z(f), Z(g) ∈ Z(X) be such that X ̸= Z(f)∪Z(g) ∈ W (F)∪ {X}. Suppose also that
Z(f) /∈ W (F) ∪ {X}, that is Z(f) is z-weakly prime to F . There exists Z(h) ∈ Z(X)\F
such that X ̸= Z(f) ∪ Z(g) ∪ Z(h) ∈ F . Now Z(f) is z-weakly prime to F implies that

X ̸= Z(g) ∪ Z(h) ∈ F with Z(h) ∈ Z(X)\F , that is Z(g) is not z-weakly prime to F .

hence Z(g) ∈ W (F) ∪ {X}, that is W (F) ∪ {X} is a weakly prime z-�lter on X .

De�nition 3.7. Assume that F is a z-�lter on X . F is called a weakly primal z-�lter on X if

W (F) ∪ {X} forms a z-�lter on X. In this case, by Lemma 3.6, the z-�lter G := W (F) ∪ {X}
is a weakly prime z-�lter, called the adjoint weakly prime z-�lter of F . In this case we sat that

F is a G-weakly primal z-�lter.

Theorem 3.8. Every weakly prime z-�lter on X is weakly primal.

Proof. Assume that F is a weakly prime z-�lter on X . Then F ⊆ W (F) ∪ {X} by Lemma 3.6.

Now pick an element Z(f) ∈ W (F) ∪ {X}. If Z(f) = X, then Z(f) ∈ F . So assume that

Z(f) ̸= X . Then Z(f) is z-weakly prime to F . So there exists Z(g) ∈ Z(X) − F with X ̸=
Z(f)∪Z(g) ∈ F . Since F is a weakly prime z-�lter we get Z(f) ∈ F , that isW (F)∪{X} ⊆ F .

Hence F = W (F) ∪ {X}, and this implies that F is an F-weakly primal z-�lter.

Theorem 3.9. (1) Let I be a P -weakly primal ideal of C(X), where I and P are both z-ideals.
Then Z[I] is a primal z-�lter on X with the weakly prime adjoint z-�lter Z[P ].

(2) If F is a G-weakly primal z-�lter on X , then Z←[F ] is a weakly primal z-ideal of C(X)
with the weakly prime adjoint ideal Z←[F ].

Proof. The proof is completely similar to that of Theorem 2.4 and we omit it.
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