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Abstract In this paper, three numerical methods based on the Spectral methods to consider
magneto-hydrodynamic (MHD) squeezing flow of a viscous incompressible fluid between two
parallel disks with suction or injection are introduced. It is assumed that upper disk is movable
in upward and downward directions while the lower disk is fixed but permeable. First, the
governing partial differential equations by using viable similarity transforms convert to a system
of nonlinear ordinary differential equations. Then, the system is solved by collocation method
by using polynomials of shifted Chebyshev, Euler, and Bessel. Influence of flow parameters is
discussed and to show the efficiency and capability of these methods, our results are compared
with each other and with other researchers. Numerical solutions are obtained by using few
numbers of collocation points.

1 Introduction

The magneto-hydrodynamic (MHD) squeeze flow between two parallel disks with suction or in-
jection at the porous disk has application in liquid metal lubricants in high-temperature bearings.
Several studies have been conducted in this regard after the pioneer works done by Stefan (1874)
[1] and Kuzma et al. (1964) [2]. Hamza (1989) [3] has studied a similar flow between two disks
in the presence of a magnetic field by using the homotopy perturbation method (HPM). Siddiqui
et al. (2008) [4] have studied the two-dimensional MHD squeezing flow between parallel plates
by using the HPM. Sajid et al. (2008) [5] have calculated a series solution for unsteady axisym-
metric flow and heat transfer over a radially stretching sheet by using the Homotopy analysis
method (HAM). Domairy and Aziz (2009) [6] have studied this problem for parallel disk similar
by using the HPM. Khuri and Sayfy (2009) [7] have presented a perturbation analysis study of
the flow of an electrically conducting power-law fluid in the presence of a uniform transverse
magnetic field over a stretching sheet. Joneidi et al. (2011) [8] have studied the mass transfer
effect on squeezing flow between parallel disks by using the HAM. Hayat et al. (2012) [9] have
studied the influence of heat transfer in the MHD squeezing Flow between parallel disks by using
the HAM. Shaban et al. (2013) [10] have studied analyzing magneto-hydrodynamic squeezing
flow between two parallel disks with suction or injection by using a hybrid method based on the
Tau method and the HAM. Ganji et al. (2014) [11] have studied the MHD squeeze flow between
two parallel disks with suction or injection by using the HAM and HPM. Khan et al. (2015)
[12] have studied heat transfer analysis for squeezing flow between parallel disks by using the
variational iteration method (VIM).

Now, we try to use Spectral methods based on three classes of basic functions (the polyno-
mials of the shifted Chebyshev, Euler, and Bessel) to solve this equation and show the power of
Spectral methods for solving this class of equations, and also comparing the results to calculate
an appropriate solution of the equation.

The organization of the paper is expressed as follows: The remainder of this section, math-
ematical formulation of the problem and some basic definitions and theorems are presented. In
section 2, the definitions and properties of the polynomials of the shifted Chebyshev, Euler, and
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Bessel are expressed. In Section 3, the work methods are explained. Results and discussions of
the proposed methods are shown in section 4. Finally, a conclusion is provided.

1.1 Mathematical formulation

Magneto-hydrodynamic squeezing flow between two parallel disks with suction or injection has
been mathematically formulated by some researchers, that the totality of this formulation is as
follows [5, 12]:

The magneto-hydrodynamic flow of a viscous incompressible fluid is considered in a system
consisting:

(i) Two parallel infinite disks distance h(t) = H(1− at)1/2 apart.

(ii) Magnetic field is applied normal to the disks to B0(1− at)1/2, and is assumed that there is
no induced magnetic field.

(iii) The constant temperatures at z = 0 and z = h(t) are Tw and Th, respectively.

(iv) Upper disk at z = h(t) is moving with velocity aH(1−at)−1/2

2 toward or away from the static
lower but permeable disk at z = 0.

(v) The cylindrical coordinate system (r, φ, z) is chosen.

(vi) Rotational symmetry of the flow ( ∂∂φ = 0) allows to take azimuthal component v of the
velocity V = (u, v, w) equal to zero.

Figure 1 shows the geometry of the problem. The governing equation for unsteady two-
dimensional flow and heat transfer of a viscous fluid can be written as [5]
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Auxiliary conditions are [9, 12]

u = 0, w =
dh

dt
at z = h(t)

u = 0, w = −w0 at z = 0

T = Tw at z = 0

u = Th at z = h(t).

u and w are the velocity components in r and z directions respectively, µ is dynamic viscosity, p̂
is the pressure and ρ is density. Further T denotes temperature, K0 is thermal conductivity, Cp
is specific heat, v is kinematic viscosity and w0 is suction/injection velocity.
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Using the following transformations [9, 12]

u =
ar

2(1− at)
f ′(η), w = − aH√

1− at
f ′(η),

B(t) =
B0√

1− at
, η =

z

H
√

1− at
, θ =

T − Th
Tw − Th

, (1.5)

into Eqs. (1.1)-(1.4) and eliminating pressure terms of the resulting equations, we obtain

f ′′′′ − S (ηf ′′′ + 3f ′′ − 2ff ′′)−M2f ′′ = 0, (1.6)

θ′′ + S Pr (2fθ′ − ηθ′) + Pr Ec(f ′′2 + 12δ2f ′2) = 0, (1.7)

with the boundary conditions

f(0) = A, f ′(0) = 0, θ(0) = 1,

f(1) =
1
2
, f ′(1) = 0, θ(1) = 0, (1.8)

where S denotes the squeeze number, A is suction/injection parameter, M is Hartman number,
Pr is Prandtl number, Ec is modified Eckert number, and δ denotes the dimensionless length
defined as
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aH2
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Skin friction coefficient and the Nusselt number are defined in terms of variables (1.5) as

H2

r2 RerCfr = f ′′(1), (1− at)1/2Nu = −θ′(1), (1.10)

Rer =
raH(1− at)1/2

2v
. (1.11)

Figure 1. Geometry of the problem.

1.2 Basical definitions

In this section, some basic definitions and theorems which are useful for our methods are intro-
duced [13].

Definition 1. For any real function f(x), x > 0, if there exists a real number p > µ, such that
f(x) = xpf1(x), where f1(x) ∈ C(0,∞), is said to be in space Cµ, µ ∈ <, and it is in the space
Cnµ if and only if fn ∈ Cµ, n ∈ N .
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Definition 2. Suppose that f(x), g(x) ∈ C(0, 1) and w(x) is a weight function, then

‖ f(x) ‖2
w =

∫ 1

0
f2(x)w(x)dx,

〈f(x), g(x)〉w =

∫ 1

0
f(x)g(x)w(x)dx.

Theorem 1. (Taylor’s formula) Suppose that f(x) ∈ C[0, 1] and Dkf(x) ∈ C[0, 1], where
k = 0, 1, ...,m. Then we have

f(x) =
m−1∑
i=0

xi

i!
Dif(0+) +

xm

m!
Dmf(ξ), (1.12)

with 0 < ξ 6 x, ∀x ∈ [0, 1]. And thus

|f(x)−
m−1∑
i=0

xi

i!
Dif(0+)| 6M

xm

m!
, (1.13)

where M > |Dmf(ξ)|.
Proof: See Ref. [14]. �

2 Polynomials of shifted Chebyshev, Euler and Bessel

In this section, polynomials of shifted Chebyshev, Euler, and Bessel are defined.

2.1 Definition of Shifted Chebyshev Polynomials (SCP)

The Chebyshev polynomials are frequently used in the polynomial approximation, Gauss-quadrature
integration, integral and differential equations and Spectral methods. For these reasons, many
researchers have used these polynomials in their research [15, 16, 17, 18].

By transformation t = 2x − 1 on the Chebyshev polynomials of the first kind, the shifted
Chebyshev orthogonal polynomials in interval [0, 1] are introduced, that be denoted by T ∗n(x) =
Tn(2x− 1) and they used to solve many differential equations [19, 20, 21, 22].

The T ∗n(x) can be obtained using the recursive relation as follows:

T ∗0 (x) = 1 , T ∗1 (x) = 2x− 1,

T ∗n+1(x) = (4x− 2) T ∗n(x)− T ∗n−1(x), n = 1, 2, · · · .

The analytical form of T ∗n(x) of degree n is given by

T ∗n(x) =
n∑
k=0

(−1)k
n22k(n+ k − 1)!
(n− k)!(2k)!

(1− x)k (2.1)

The weight function for the SCPs is w(x) = 1√
x−x2

, and are orthogonal in the interval (0, 1):∫ 1

0
T ∗n(x) T

∗
m(x)w(x)dx =

π

2
cnδmn, (2.2)

where δmn is Kronecker delta, c0 = 2, and cn = 1 for n ≥ 1.

2.2 Definition of Euler Polynomials (EP)

Euler polynomials are a class of special functions which are applied to solve the number of
problems in physics, engineering, mathematics, and etc. [23, 24, 25]. The analytical form and
recurrence relation of Euler polynomials of the first kind are defined as follows [26]:

En(x) =
1

n+ 1

n+1∑
k=1

(2− 2k+1)

(
n+ 1
k

)
Bkx

n+1−k, n = 0, 1, ... (2.3)
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n∑
k=0

(
n

k

)
Ek(x) +En(x) = 2xn, n = 1, 2, ... (2.4)

where x ∈ [0, 1], E0(x) = 1, and Bk = Bk(0) are the Bernoulli numbers for k = 0, 1, ..., n.
Euler polynomials can be expressed by the Bernoulli polynomials as[27]

En(x) =
n∑
k=0

−2
k + 1

(
n

k

)
Ek+1(0)Bn−k(x).

where En = 2nEn( 1
2), n ∈ N call Euler numbers. These two classes of the polynomials have

many similar properties [28, 29].

2.3 Definition of Bessel Polynomials (BP)

Bessel functions are first defined by the Daniel Bernoulli on heavy chains (1738) and then gen-
eralized by Friedrich Bessel. More general Bessel functions were studied by Leonhard Euler in
(1781) and in his study of the vibrating membrane in (1764) [30, 31].

Bessel differential equation of order n ∈ R is:

x2 d
2y

dx2 + x
dy

dx
+ (x2 − n2)y = 0, x ∈ (−∞,∞). (2.5)

One of the solutions of equation (2.5) by applying frobenius’ method as follows [32]:

Jn(x) =
∞∑
r=0

(−1)r

r!(n+ r)!
(
x

2
)2r+n, (2.6)

where series (2.6) is convergent for all x ∈ (−∞,∞).
Bessel functions and polynomials are used to solve the number of problems in physics, engi-

neering, mathematics, and etc. [33, 34, 35, 36].
Bessel polynomials have been introduced as follows [37]:

Bn(x) =

[m−n
2 ]∑

r=0

(−1)r

r!(n+ r)!
(
x

2
)2r+n, x ∈ [0, 1]. (2.7)

where n ∈ N, and m is the number of the basis of Bessel polynomials.

2.4 Approximation of functions

Suppose that φn(x) is one of the polynomials of T ∗n(x), En(x), or Bn(x).
Any function y(x) ∈ C[0, 1] can be expanded as follows:

y(x) =
∞∑
n=0

an φn(x).

But in the numerical methods, we have to use first m-terms of polynomials and approximate
y(x):

y(x) ≈ ym(x) =
m−1∑
n=0

an φn(x) = FTΦ(x), (2.8)

with

F = [a0, a1, ..., am−1]
T , (2.9)

Φ(x) = [φ0(x), φ1(x), ..., φm−1(x)]
T . (2.10)

The coefficients F can obtain by the inner product:

〈ym(x),ΦT (x)〉w = 〈FTΦ(x),ΦT (x)〉w,

thus

FT = 〈ym(x),ΦT (x)〉w 〈Φ(x),ΦT (x)〉−1
w .
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2.5 Convergence analysis

The following theorem shows that by increasing m, the approximation solution fm(x) is conver-
gent to f(x) exponentially.

Theorem 2. Suppose that Dkf(x) ∈ C[0, 1] for k = 0, 1, ...,m, and Em is the subspace gen-
erated by {φ0(x), φ1(x), ..., φm−1(x)}. If fm(x) = FTΦ(x) is the best approximation to f(x)
from Em, then the error bound is presented as follows

‖ f(x)− fm(x) ‖w6


√
πM

2mm!
√
m!

for SCPs

M
m!
√

2m+1
for EPs and BPs

(2.11)

where M > |Dmf(x)|, x ∈ [0, 1].
Proof. By theorom 1, we have y =

∑m−1
i=0

xi

i! D
if(0+) and

|f(x)− y(x)| 6M
xm

m!
.

Since the best approximation to f(x) from Em is FTΦ(x), and y(x) ∈ Em, thus

‖ f(x)− fm(x) ‖2
w 6 ‖ f(x)− y(x) ‖2

w

6
M2

m!2

∫ 1

0
x2m w(x) dx

where the weight function for SCPs is w(x) = 1√
x−x2

and for EPs and BPs is w(x) = 1, thus by

integration of the above equation, the Eq. (2.11) can be proved. �

3 Application of the Methods

Different numerical methods have been introduced for solving problems on various domains
such as Finite difference method [38], Finite element method [38], Meshfree methods [39, 40],
and Spectral methods [41, 42, 43].

In this section, the SCPs, EPs, and BPs collocation methods are applied to solve a system of
equations (1.6) and (1.7) and the boundary conditions (1.8).

Suppose that φn(x) is one of the polynomials of T ∗n(x), En(x), or Bn(x).
By the Eq. (2.8), we suppose that

f̂m(η) =
m−1∑
n=0

an φn(η) = FTΦ(η), (3.1)

θ̂m(η) =
m−1∑
n=0

bn φn(η) = CTΦ(η). (3.2)

For satisfying the boundary conditions (1.8):

fm(η) = A+ 0.5(3− 6A)η2 + (−1 + 2A)η3 + η2(η − 1)2 f̂m(η),

θm(η) = 1− η + η(η − 1) θ̂m(η).

To apply the collocation method, the residual functions are constructed by substituting fm(η)
and θm(η) in Eqs. (1.6) and (1.7):

Res1(η) = f ′′′′m − S (ηf ′′′m + 3f ′′m − 2fmf ′′m)−M2f ′′m,

Res2(η) = θ′′m + S Pr (2fmθ′m − ηθ′m) + Pr Ec(f ′′2m + 12δ2f ′2m).
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The equations for obtaining the coefficient {ai}m−1
i=0 and {bi}m−1

i=0 in the Eqs. (3.1) and (3.2)
arise from equalizing Res1(η) and Res2(η) to zero on m collocation points:

Res1(ηi) = 0, i = 0, 1, ...,m− 1,

Res2(ηi) = 0, i = 0, 1, ...,m− 1,

In this study, the roots of the SCPs are used in the interval [0, 1] as collocation points (i.e.
ηi = (1 + cos( (2i−1)π

2m ))/2, i = 0, 1, ...,m − 1). By solving the obtained set of equations,
the approximating functions fm(η) and θm(η) are obtained.

4 Results and Discussions

In this study, the problem of magneto-hydrodynamic squeezing flow of a viscous incompressible
fluid between two parallel disks with suction or injection by the SCPs, EPs, and BPs collocation
methods is considered. In this section, the effects of different flow parameters are discussed
such as the squeeze number, Hartmann number, Prandtl and Eckert numbers on the velocity and
temperature distributions in both cases of the suction and injection.

4.1 Suction case A > 0

The influence of porosity parameter A on the radial and axial velocity are displayed in Fig.
4(a). By the Fig. 4(a) can see that the axial velocity increases with increasing values of A, and
Boundary layer thickness is a decreasing function of A. Due to the permeability of upper disk
when suction plays a dominant role it allows the fluid to flow near the walls which result in a
thinner boundary layer. Effects of deformation parameter S are displayed in Fig. 4(c). S > 0
corresponds to the movement of the upper disk away from the lower static disk while S < 0
stands for its fall toward the lower disk. By the Fig. 4(c) can see that the absolute of f ′(η) in
interval of 0 < η ≤ 0.4 increases for increasing S, and decreases in interval of 0.4 < η ≤ 1.
Effects of Hartman parameter M are displayed in Fig. 4(e). By the Fig. 4(e) can see that the
absolute of f ′(η) in intervals of 0 < η ≤ 0.275 and 0.725 < η ≤ 1 increases for increasing M ,
and decreases in interval of 0.275 < η ≤ 0.725.

Figs. 5(a),5(c),5(e),6(a),6(c) have shown the effects of flow parameters (in suction case) on
the temperature profile. Fig. 5(a) shows θ(η) to be an increasing function of A, on the other
hand, the thermal boundary layer becomes thinner with raising A. Consequences of increasing
S are presented in Fig. 5(c) according to which temperature profile falls with surging S. The in-
fluence of the Pr number of the temperature distribution is displayed in Fig. 5(e) which declares
θ(η) to be directly variant with Pr. On the other hand, the thermal boundary layer is inversely
proportional to Pr, it is due to the fact that for higher Pr low thermal conductivity is observed
which results in the narrow thermal boundary layer. Higher values of Prandtl number are asso-
ciated with large viscosity oils while lowers Pr corresponds to low viscosity fluids. Figs. 6(a)
and 6(c) indicate that Eckert number Ec and dimensionless length δ have similar effects on the
temperature profile as Pr.

4.2 Injection case A < 0

Figs. 4(b),4(d),4(f),5(b),5(d),5(f),6(b),6(d) have shown the effects of physical parameters on
velocity and temperature distributions in the case of injection. It is observed that on velocity
profiles, effects of involved parameters are opposite to the ones discussed earlier in suction case.
Behavior of temperature distribution, however, remains invariant in both cases of the suction and
injection.

To demonstrate the effectiveness of the SCPs, EPs, and BPs collocation methods, the results
are compared with each other and the variational iteration method (VIM) [12].

Tables 1-4 shows the obtained values for f(η), f ′(η), θ(η), and θ′(η) by the SCPs, EPs,
and BPs collocation methods, and the comparison of them with VIM [12] for m = 15 and
S = 0.1, M = 0.2, A = 0.1, P r = 0.3, Ec = 0.2, and δ = 0.1.

Figures 2 shows the absolute errors between approximation solutions by the SCPs, EPs, and
BPs collocation methods for m = 15 and S = 0.1, M = 0.2, A = 0.1, P r = 0.3, Ec =
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0.2, and δ = 0.1 with Digits = 100, i.e (fSCP − fBP ), (fSCP − fEP ), (fEP − fBP ) and
(θSCP − θBP ), (θSCP − θEP ), (θEP − θBP ). As can be seen, the results are exactly the same
in three methods.

Figures 3 shows the residual errors for approximation solutions by the SCPs, EPs, and BPs
collocation methods with m = 15 and S = 0.1, M = 0.2, A = 0.1, P r = 0.3, Ec = 0.2, and
δ = 0.1. As can be seen, the results are exactly the same in three methods.

Tables 5 and 6 display the numerical values of Nusselt number and coefficient of skin friction
for different values of flow parameters. Absolute of skin friction is found to be a decreasing func-
tion of permeability parameter A. This observation is important due to its industrial implication
since the amount of energy required to squeeze the disk can be reduced by increasing values of
A. As discussed earlier the suction parameter A decreases the thermal boundary layer thickness
hence at the plates we have a higher rate of heat transfer.

(a) The absolute errors for f(η) (b) The absolute errors for θ(η)

Figure 2. Absolute errors between approximation solutions by the SCPs, EPs, and BPs colloca-
tion methods with m = 15, S = 0.1,M = 0.2, a = 0.1, P r = 0.3, Ec = 0.2, and δ = 0.1.

(a) The residual errors for f(η) (b) The residual errors for θ(η)

Figure 3. The residual errors for approximation solutions by the SCPs, EPs, and BPs collocation
methods with m = 15 and S = 0.1, M = 0.2, a = 0.1, P r = 0.3, Ec = 0.2, and δ = 0.1.

5 Conclusion

In this paper, we have considered the collocation method by using the shifted Chebyshev, Euler
and Bessel polynomials to study a magneto-hydrodynamic squeezing flow between two parallel
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Table 1. Obtained values of f(η) by the SCPs, EPs, and BPs collocation methods with m = 15
x SCP Method BP Method EP Method Res(t)

0.1 0.1112594199742449443801739990951 0.1112594199742449443801739990951 0.1112594199742449443801739990951 2.8e-14
0.2 0.1417529425323034414594712474825 0.1417529425323034414594712474825 0.1417529425323034414594712474825 6.4e-15
0.3 0.1866042798820684377819976558221 0.1866042798820684377819976558221 0.1866042798820684377819976558221 3.1e-15
0.4 0.2409902610073590370420103222866 0.2409902610073590370420103222866 0.2409902610073590370420103222866 3.4e-15
0.5 0.3001238125437028492142124241721 0.3001238125437028492142124241721 0.3001238125437028492142124241721 2.8e-40
0.6 0.3592379984380741012442491023144 0.3592379984380741012442491023144 0.3592379984380741012442491023144 3.9e-15
0.7 0.4135705926304397350867905556475 0.4135705926304397350867905556475 0.4135705926304397350867905556475 3.0e-15
0.8 0.4583486799668451075952847991579 0.4583486799668451075952847991579 0.4583486799668451075952847991579 6.3e-15
0.9 0.4887727833631479295339672908867 0.4887727833631479295339672908867 0.4887727833631479295339672908867 2.7e-14

Table 2. Obtained values of f ′(η) by the SCPs, EPs, and BPs collocation methods with m = 15
and the comparison of them with the variational iteration method (VIM) [12]

x SCP Method BP Method EP Method VIM[12]

0.1 0.216945117087951199014817966776 0.216945117087951199014817966776 0.216945117087951199014817966776 ———
0.2 0.384801280290557318104914501993 0.384801280290557318104914501993 0.384801280290557318104914501993 0.384801
0.3 0.504189671461316244328348817498 0.504189671461316244328348817498 0.504189671461316244328348817498 ———
0.4 0.575554143054331140256127880760 0.575554143054331140256127880760 0.575554143054331140256127880760 0.575554
0.5 0.599174553522456296304445305255 0.599174553522456296304445305255 0.599174553522456296304445305255 ———
0.6 0.575174675564395436411845094392 0.575174675564395436411845094392 0.575174675564395436411845094392 0.575174
0.7 0.503524982928277574212379692958 0.503524982928277574212379692958 0.503524982928277574212379692958 ———
0.8 0.384040432902588459379779642740 0.384040432902588459379779642740 0.384040432902588459379779642740 0.384040
0.9 0.216373183738477512380691010520 0.216373183738477512380691010520 0.216373183738477512380691010520 ———

Table 3. Obtained values of θ(η) by the SCPs, EPs, and BPs collocation methods with m = 15
and the comparison of them with the variational iteration method (VIM) [12]

x SCP Method BP Method EP Method VIM[12] Res(t)

0.1 0.904177630060793299491172164 0.904177630060793299491172164 0.904177630060793299491172164 ——— 7.2e-16
0.2 0.806144282850332131149518438 0.806144282850332131149518438 0.806144282850332131149518438 0.806144 1.3e-16
0.3 0.706865303890395656919987319 0.706865303890395656919987319 0.706865303890395656919987319 ——— 5.1e-17
0.4 0.607022034290870021379068128 0.607022034290870021379068128 0.607022034290870021379068128 0.607022 4.0e-17
0.5 0.507022003350412439865868591 0.507022003350412439865868591 0.507022003350412439865868591 ——— 4.4e-40
0.6 0.407003862839112678343074305 0.407003862839112678343074305 0.407003862839112678343074305 0.407004 8.7e-18
0.7 0.306837646669244272048476401 0.306837646669244272048476401 0.306837646669244272048476401 ——— 6.6e-18
0.8 0.206120555470330403373570615 0.206120555470330403373570615 0.206120555470330403373570615 0.206121 4.3e-17
0.9 0.104168093326752655615459603 0.104168093326752655615459603 0.104168093326752655615459603 ——— 3.1e-16

Table 4. Obtained values of θ′(η) by the SCPs, EPs, and BPs collocation methods with m = 15
x SCP Method BP Method EP Method

0.1 -0.971131226355350358416045040018615 -0.971131226355350358416045040018615 -0.971131226355350358416045040018615
0.2 -0.987929516181390994738657121368478 -0.987929516181390994738657121368478 -0.987929516181390994738657121368478
0.3 -0.996516169595267256610700980398347 -0.996516169595267256610700980398347 -0.996516169595267256610700980398347
0.4 -0.999670815524978000556858643136115 -0.999670815524978000556858643136115 -0.999670815524978000556858643136115
0.5 -1.000098755574721734029007093085139 -1.000098755574721734029007093085139 -1.000098755574721734029007093085139
0.6 -1.000479966294319861056011425417832 -1.000479966294319861056011425417832 -1.000479966294319861056011425417832
0.7 -1.003514225288511059553590277203789 -1.003514225288511059553590277203789 -1.003514225288511059553590277203789
0.8 -1.011966103598836646338534316529345 -1.011966103598836646338534316529345 -1.011966103598836646338534316529345
0.9 -1.028713565856015132665483389478930 -1.028713565856015132665483389478930 -1.028713565856015132665483389478930

disks with suction or injection and the velocity and temperature distributions. In order to test
the applicability, accuracy, and efficiency of these methods, we have compared our results with
each other and the obtained values by Khan et al. [12], as shown, the accuracy is very good. The
following key points are useful:

(i) Numerical solutions are exactly the same in three methods, and them computing power is
greater than other methods, such as VIM, for this problem.

(ii) To calculate the approximation solutions of suitable from the velocity and temperature dis-
tributions, we do not need to use of many collocation points.

(iii) The behavior of all physical parameters is opposite on velocity profile in the cases of suction
and injection. On the other hand, the effect of parameters remains similar on temperature
profile in both cases of suction and injection.

(iv) Temperature θ(η) is directly proportional to the Prandtl number.

(v) These methods are the good experience and method for the other sciences.
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Table 5. Values of skin friction coefficient H
2

r2 RerCfr and the Nusselt number (1 − at)1/2Nu
for different values of A,S, and M by the SCPs, EPs, and BPs collocation methods, m = 15,
and the comparison of them with VIM.

A S M H2

r2 RerCfr VIM Pr Ec δ (1− at)1/2Nu VIM [12]

-0.1 0.1 0.2 -3.62305946165224495208 -3.62306 0.3 0.2 0.1 1.13169733124754295412 1.1317
0.0 -3.01553080658883492711 -3.01553 1.09056149128240299921 1.0906
0.1 -2.40947876984344076848 -2.40948 1.05680415677248143845 1.0568
0.2 -1.80490151977390173962 -1.80490 1.03039740554173366714 1.0304
0.1 0.01 -2.40238773483842290128 -2.40239 1.05814239736334546725 1.0581

0.2 -2.41735178309209312967 -2.41735 1.05531828028348476386 1.0553
0.3 -2.42521822337204163843 -2.42522 1.05383355199884105578 1.0538
0.1 0.01 -2.40788673402023191920 -2.40789 1.05680386400966663099 1.0568

0.1 -2.40828183504393844683 -2.40828 1.05680393466980411984 1.0568
0.2 -2.40947876984344076848 -2.40948 1.05680415677248143845 1.0568

Table 6. Values of Nusselt number (1 − at)1/2Nu for different values of Pr,Ec, and δ when
A = 0.1, S = 0.1, M = 0.2 by the SCPs, EPs, and BPs collocation methods with m = 15 and
the comparison of them with the VIM.

Pr Ec δ (1 − at)1/2Nu VIM [12]
0.0 0.2 0.1 1.00000000000000000000 1.00000
0.1 1.01893685003010788664 1.01894
0.2 1.03787156909761297343 1.03787
0.3 0.0 0.99859957004178043188 0.99860

0.2 1.05680415677248143845 1.05680
0.4 1.11500874350318244502 1.11501
0.3 0.0 1.08487154864359339485 1.08487

0.5 1.11074408599955706710 1.11074
1.0 1.18836169806744808387 1.18836
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(a) Effect of A on f ′(η). (b) Effect of A on f ′(η).

(c) Effect of S on f ′(η). (d) Effect of S on f ′(η).

(e) Effect of M on f ′(η). (f) Effect of M on f ′(η).

Figure 4. Effect of A, S, and M on f ′(η) for both the suction and injection cases
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(a) Effect of A on θ(η). (b) Effect of A on θ(η).

(c) Effect of S on θ(η). (d) Effect of S on θ(η).

(e) Effect of Pr on θ(η). (f) Effect of Pr on θ(η).

Figure 5. Effect of A, S, and Pr on θ(η) for both the suction and injection cases
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(a) Effect of Ec on θ(η). (b) Effect of Ec on θ(η).

(c) Effect of δ on θ(η). (d) Effect of δ on θ(η).

Figure 6. Effect of Ec and δ on θ(η) for both the suction and injection cases
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