Triple cyclic codes over \mathbb{Z}_{2}

Hojjat Mostafanasab

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 94B05, 94B15; Secondary 11T71, 13M99.
Keywords and phrases: Binary linear codes, triple cyclic codes, dual codes.

Abstract

Let r, s, t be three positive integers and \mathcal{C} be a binary linear code of lenght $r+s+t$. We say that \mathcal{C} is a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2} if the set of coordinates can be partitioned into three parts that any cyclic shift of the coordinates of the parts leaves invariant the code. These codes can be considered as $\mathbb{Z}_{2}[x]$-submodules of $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{r}-1\right\rangle} \times \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{s}-1\right\rangle} \times \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{t}-1\right\rangle}$. We give the minimal generating sets of this kind of codes. Also, we determine the relationship between the generators of triple cyclic codes and their duals.

1 Introduction

Codes over finite rings have been studied since the early 1970s. Recently codes over rings have generated a lot of interest after a breakthrough paper by Hammons et al. [8]. Cyclic codes are amongst the most studied algebraic codes. Their structure is well known over finite fields [10].

In [1], Borges et. al. studied the algebraic structures of \mathbb{Z}_{2}-double cyclic codes as $\mathbb{Z}_{2}[x]$ submodules of $\mathcal{R}_{r, s}=\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{r}-1\right\rangle} \times \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{s}-1\right\rangle}$. They determined the generator polynomials of this family of codes and their duals. In fact, the double cyclic codes were generalized quasi-cyclic (GQC) codes with index 2 introduced in [11] and studied deeply by many other researchers [3, 2, 4, 5]. Also, Gao et. al. [6] investigated double cyclic codes over \mathbb{Z}_{4}.

In Section 2, we give the definition and \mathbb{Z}_{2}-module structure of triple cyclic codes. In Section 3 , we determine the generator polynomials and minimal generating sets of triple cyclic codes. In Section 4, we investigate the relationship between the generators of triple cyclic codes and their duals.

2 Triple cyclic codes over \mathbb{Z}_{2}

In this paper, suppose that r, s, t are three positive integers and \mathcal{C} is a binary linear code of lenght $n=r+s+t$. This code can be partitioned into three parts of r, s and t coordinates, respectively.
Definition 2.1. Let r, s, t be positive integers and \mathcal{C} a binary linear code of lenght $n=r+s+t$. We say that \mathcal{C} is a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2} if

$$
c=\left(c_{1,0}, c_{1,1}, \ldots, c_{1, r-2}, c_{1, r-1}\left|c_{2,0}, c_{2,1}, \ldots, c_{2, s-2}, c_{2, s-1}\right| c_{3,0}, c_{3,1}, \ldots, c_{3, t-2}, c_{3, t-1}\right) \in \mathcal{C}
$$

implies that
$\mathcal{T}(c)=\left(c_{1, r-1}, c_{1,0}, c_{1,1}, \ldots, c_{1, r-2}\left|c_{2, s-1}, c_{2,0}, c_{2,1}, \ldots, c_{2, s-2}\right| c_{3, t-1}, c_{3,0}, c_{3,1} \ldots, c_{3, t-2}\right) \in \mathcal{C}$.
Let \mathcal{C} be a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2}. Let \mathcal{C}_{r} be the canonical projection of \mathcal{C} on the first r coordinates, \mathcal{C}_{s} on the second s coordinates and \mathcal{C}_{t} on the last t coordinates. It is easy to see that $\mathcal{C}_{r}, \mathcal{C}_{s}$ and \mathcal{C}_{t} are binary cyclic codes of lenght r, s and t, respectively. A triple cyclic code \mathcal{C} is called separable if $\mathcal{C}=\mathcal{C}_{r} \times \mathcal{C}_{s} \times \mathcal{C}_{t}$.

Let $\mathcal{R}_{r, s, t}$ be the ring $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{r}-1\right\rangle} \times \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{s}-1\right\rangle} \times \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{t}-1\right\rangle}$. The map $\Psi: \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{s} \times \mathbb{Z}_{2}^{t} \rightarrow \mathcal{R}_{r, s, t}$ which maps ($u_{1,0}, u_{1,1}, \ldots, u_{1, r-1}\left|u_{2,0}, u_{2,1}, \ldots, u_{2, s-1}\right| u_{3,0}, u_{3,1}, \ldots, u_{3, t-1}$) to

$$
\left(u_{1,0}+u_{1,1} x+\cdots+u_{1, r-1} x^{r-1}\left|u_{2,0}+u_{2,1} x+\cdots+u_{2, s-1} x^{s-1}\right| u_{3,0}+u_{3,1} x+\cdots+u_{3, t-1} x^{t-1}\right)
$$

is an isomorphism of \mathbb{Z}_{2}-modules. We denote the image of a vector $\mathbf{u} \in \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{s} \times \mathbb{Z}_{2}^{t}$ by $u(x)$.

Definition 2.2. We define the multiplication $*: \mathbb{Z}_{2}[x] \times \mathcal{R}_{r, s, t} \rightarrow \mathcal{R}_{r, s, t}$ as

$$
\lambda(x) *\left(u_{1}(x)\left|u_{2}(x)\right| u_{3}(x)\right)=\left(\lambda(x) u_{1}(x)\left|\lambda(x) u_{2}(x)\right| \lambda(x) u_{3}(x)\right),
$$

where $\lambda(x) \in \mathbb{Z}_{2}[x]$ and $\left(u_{1}(x)\left|u_{2}(x)\right| u_{3}(x)\right) \in \mathcal{R}_{r, s, t}$.
The ring $\mathcal{R}_{r, s, t}$ with the external multiplication $*$ is a $\mathbb{Z}_{2}[x]$-module.
Let \mathcal{C} be a binary linear code of lenght n and let

$$
c=\left(c_{1,0}, c_{1,1}, \ldots, c_{1, r-1}\left|c_{2,0}, c_{2,1}, \ldots, c_{2, s-1}\right| c_{3,0}, c_{3,1}, \ldots, c_{3, t-1}\right)
$$

be a codeword in \mathcal{C}. Note that $x * c(x)$ is equal to
$\left(c_{1, r-1}+c_{1,0} x+\cdots+c_{1, r-2} x^{r-1}\left|c_{2, s-1}+c_{2,0} x+\cdots+c_{2, s-2} x^{s-1}\right| c_{3, t-1}+c_{3,0} x+\cdots+c_{3, t-2} x^{t-1}\right)$
in $\mathcal{R}_{r, s, t}$, which is the image of

$$
\left(c_{1, r-1}, c_{1,0}, \ldots, c_{1, r-2},\left|c_{2, s-1}, c_{2,0}, \ldots, c_{2, s-2},\right| c_{3, t-1}, c_{3,0}, \ldots, c_{3, t-2}\right)
$$

under Ψ. Therefore \mathcal{C} is a triple cyclic code if whenever $c(x) \in \mathcal{C}$, then $x * c(x) \in \mathcal{C}$ in $\mathcal{R}_{r, s, t}$.

3 Properties of triple cyclic codes over \mathbb{Z}_{2}

For a linear code \mathcal{C}, the minimum Hamming distance $d(\mathcal{C})$ is defined by

$$
d(\mathcal{C})=\min \{\operatorname{wt}(c) \mid 0 \neq c \in \mathcal{C}\}
$$

For a linear code \mathcal{C} with parity-check matrix H, any $d(\mathcal{C})-1$ columns of H are linearly independent and H has $d(\mathcal{C})$ columns that are linearly dependent.

Proposition 3.1. Let \mathcal{C} be a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2}.
(i) $d(\mathcal{C}) \geq \min \left\{d\left(\mathcal{C}_{r}\right), d\left(\mathcal{C}_{s}\right), d\left(\mathcal{C}_{t}\right)\right\}$.
(ii) If \mathcal{C} is separable, then $d(\mathcal{C})=\min \left\{d\left(\mathcal{C}_{r}\right), d\left(\mathcal{C}_{s}\right), d\left(\mathcal{C}_{t}\right)\right\}$.

Proof. (i) There exists a nonzero codeword $\left(c_{r}\left|c_{s}\right| c_{t}\right)$ of minimum distance in \mathcal{C} such that $d(\mathcal{C})=\operatorname{wt}\left(\left(c_{r}\left|c_{s}\right| c_{t}\right)\right)$. Without loss of generality we may assume that $c_{r} \neq 0$. Therefore

$$
d(\mathcal{C})=\operatorname{wt}\left(\left(c_{r}\left|c_{s}\right| c_{t}\right)\right) \geq \operatorname{wt}\left(c_{r}\right) \geq d\left(\mathcal{C}_{r}\right) \geq \min \left\{d\left(\mathcal{C}_{r}\right), d\left(\mathcal{C}_{s}\right), d\left(\mathcal{C}_{t}\right)\right\}
$$

(ii) Suppose that \mathcal{C} is separable. Assume that $\min \left\{d\left(\mathcal{C}_{r}\right), d\left(\mathcal{C}_{s}\right), d\left(\mathcal{C}_{t}\right)\right\}=d\left(\mathcal{C}_{r}\right)$. Let $0 \neq c_{r} \in \mathcal{C}_{r}$ be such that $d\left(\mathcal{C}_{r}\right)=\mathrm{wt}\left(c_{r}\right)$. On the other hand $\left(c_{r}|0| 0\right) \in \mathcal{C}$. So

$$
d(\mathcal{C}) \leq \operatorname{wt}\left(\left(c_{r}|0| 0\right)\right)=\operatorname{wt}\left(c_{r}\right)=d\left(\mathcal{C}_{r}\right)=\min \left\{d\left(\mathcal{C}_{r}\right), d\left(\mathcal{C}_{s}\right), d\left(\mathcal{C}_{t}\right)\right\}
$$

Hence, by part (i) the claim holds.
We know that $\mathcal{R}_{r, s, t}$ is a Noetherian $\mathbb{Z}_{2}[x]$-module, and so a triple cyclic code \mathcal{C} as a $\mathbb{Z}_{2}[x]$ submodule of $\mathcal{R}_{r, s, t}$ is finitely generated.

Theorem 3.2. Let \mathcal{C} be a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2}. Then

$$
\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)\right\rangle
$$

where $F_{1}(x), F_{2}(x), G_{1}(x), G_{2}(x), G_{3}(x) \in \mathbb{Z}_{2}[x]$ with $F_{1}(x)\left|x^{r}-1, F_{2}(x)\right| x^{s}-1$ and $G_{3}(x) \mid x^{t}-1$.
Proof. Let $\Phi: \mathcal{C} \rightarrow \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{t}-1\right\rangle}$ be the canonical projection of $\mathbb{Z}_{2}[x]$-modules defined by $\Phi\left(\left(c_{1}(x) \mid\right.\right.$ $\left.\left.c_{2}(x) \mid c_{3}(x)\right)\right)=c_{3}(x)$. Since $\operatorname{Im}(\Phi)$ is an ideal of $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{t}-1\right\rangle}$, then there exists $G_{3}(x) \in \mathbb{Z}_{2}[x]$ with $G_{3}(x) \mid x^{t}-1$ such that $\operatorname{Im}(\Phi)=\left\langle G_{3}(x)\right\rangle$. We know that

$$
\operatorname{Ker}(\Phi)=\left\{\left(c_{1}(x)\left|c_{2}(x)\right| 0\right) \in \mathcal{R}_{r, s, t} \mid\left(c_{1}(x)\left|c_{2}(x)\right| 0\right) \in \mathcal{C}\right\}
$$

Define $\mathcal{I}=\left\{\left(c_{1}(x) \mid c_{2}(x)\right) \in \mathcal{R}_{r, s} \mid\left(c_{1}(x)\left|c_{2}(x)\right| 0\right) \in \operatorname{Ker}(\Phi)\right\}$. It is easy to check that \mathcal{I} is an ideal of $\mathcal{R}_{r, s}$. So, $\mathcal{I}=\mathcal{I}_{1} \times \mathcal{I}_{2}$ for some ideal \mathcal{I}_{1} of $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{r}-1\right\rangle}$ and some ideal \mathcal{I}_{2} of $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{s}-1\right\rangle}$. Again, there are $F_{1}(x), F_{2}(x) \in \mathbb{Z}_{2}[x]$ with $F_{1}(x)\left|x^{r}-1, F_{2}(x)\right| x^{s}-1$ such that $\mathcal{I}_{1}=\left\langle F_{1}(x)\right\rangle$ and $\mathcal{I}_{2}=\left\langle F_{2}(x)\right\rangle$. Therefore $\mathcal{I}=\left\langle\left(F_{1}(x) \mid 0\right),\left(0 \mid F_{2}(x)\right)\right\rangle$. Now, we can easily see that $\operatorname{Ker}(\Phi)=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right)\right\rangle$. On the other hand, by the first isomorphism theorem, we have $\frac{\mathcal{C}}{\operatorname{Ker}(\Phi)} \simeq\left\langle G_{3}(x)\right\rangle$. Let $\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right) \in \mathcal{C}$ be such that $\Phi\left(\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)\right)=G_{3}(x)$. Consequently \mathcal{C} as a $\mathbb{Z}_{2}[x]$-submodule of $\mathcal{R}_{r, s, t}$ is generated by elements $\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right)$ and $\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)$.

Remark 3.3. Notice that if in a triple cyclic code $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(G_{1}(x) \mid\right.\right.$ $\left.\left.G_{2}(x) \mid G_{3}(x)\right)\right\rangle$ we have $G_{3}(x)=0$, then we may consider \mathcal{C} as a double cyclic code which was investigated in [1].

We recall that, the reciprocal polynomial $f^{*}(x)$ of a polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ is the polynomial $f^{*}(x)=a_{n}+a_{n-1} x+\cdots+a_{0} x^{n}=x^{n} f\left(\frac{1}{x}\right)$. Also, we denote the polynomial $\sum_{i=0}^{n-1} x^{i}$ by $\theta_{n}(x)$.

Proposition 3.4. Let $f(x), g(x)$ be two polynomials in $\mathbb{Z}_{2}[x]$ with $\operatorname{deg}(f(x)) \geq \operatorname{deg}(g(x))$. Then the following conditions hold:
(i) $\operatorname{deg}\left(f^{*}(x)\right) \leq \operatorname{deg}(f(x))$.
(ii) $\left(f^{*}\right)^{*}(x)=f(x)$.
(iii) $(f g)^{*}(x)=f^{*}(x) g^{*}(x)$.
(iv) $(f+g)^{*}(x)=f^{*}(x)+x^{\operatorname{deg}(f(x))-\operatorname{deg}(g(x))} g^{*}(x)$.
(v) $g(x) \mid f(x)$ if and only if $g^{*}(x) \mid f^{*}(x)$.
(vi) $\operatorname{gcd}(f(x), g(x))^{*}=\operatorname{gcd}\left(f^{*}(x), g^{*}(x)\right)$.
(vii) $\operatorname{lcm}(f(x), g(x))^{*}=\operatorname{lcm}\left(f^{*}(x), g^{*}(x)\right)$.

Proof. (i) and (ii) are easy.
For (iii) and (iv) see Lemma 4.3 of [7].
(v) By parts (ii) and (iii).
(vi) Since $g c d(f(x), g(x))$ divides both $f(x), g(x)$, then by part (v) it follows that $g c d(f(x), g(x))^{*}$ divides $f^{*}(x), g^{*}(x)$. Hence $\operatorname{gcd}(f(x), g(x))^{*} \mid \operatorname{gcd}\left(f^{*}(x), g^{*}(x)\right)$. On the other hand there are two polynomials $u(x), v(x) \in \mathbb{Z}_{2}[x]$ such that $g c d(f(x), g(x))=u(x) f(x)+v(x) g(x)$. Without loss of generality we may assume that $\operatorname{deg}(u(x) f(x)) \geq \operatorname{deg}(v(x) g(x))$. Set $l=$ $\operatorname{deg}(u(x) f(x))-\operatorname{deg}(v(x) g(x))$. Therefore $g c d(f(x), g(x))^{*}=u^{*}(x) f^{*}(x)+x^{l} v^{*}(x) g^{*}(x)$, by part (iv). So $g c d\left(f^{*}(x), g^{*}(x)\right) \mid \operatorname{gcd}(f(x), g(x))^{*}$. Consequently

$$
\operatorname{gcd}(f(x), g(x))^{*}=\operatorname{gcd}\left(f^{*}(x), g^{*}(x)\right)
$$

(vii) Use the equality $l c m(f(x), g(x)) g c d(f(x), g(x))=f(x) g(x)$ and parts (iii), (vi).

Lemma 3.5. Let $\mathbf{a}=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ and $\mathbf{b}=\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)$ be vectors in \mathbb{Z}_{2}^{n} with associated polynomials $a(x)$ and $b(x)$. Then \mathbf{a} is orthogonal to \mathbf{b} and all its cyclic shifts if and only if $a(x) b^{*}(x)=0 \bmod \left(x^{n}-1\right)$.

Proof. See Lemma 4.4.8 of [9].
Corollary 3.6. Let \mathcal{C} be a binary cyclic code of lenght n with the dual code \mathcal{C}^{\perp}. Then

$$
\mathcal{C}^{\perp}=\left\{\mathbf{a} \in \mathbb{Z}_{2}^{n} \mid a(x) b^{*}(x)=0 \bmod \left(x^{n}-1\right) \text { for every } \mathbf{b} \in \mathcal{C}\right\}
$$

From now on we assume that $m=\operatorname{lcm}(r, s, t)$.
Remark 3.7. Regarding Proposition 4.2 of [1] we have that

$$
x^{m}-1=\theta_{\frac{m}{r}}\left(x^{r}\right)\left(x^{r}-1\right)=\theta_{\frac{m}{s}}\left(x^{s}\right)\left(x^{s}-1\right)=\theta_{\frac{m}{t}}\left(x^{t}\right)\left(x^{t}-1\right)
$$

Definition 3.8. Let $u(x)=\left(u_{1}(x)\left|u_{2}(x)\right| u_{3}(x)\right)$ and $v(x)=\left(v_{1}(x)\left|v_{2}(x)\right| v_{3}(x)\right)$ be two elements of $\mathcal{R}_{r, s, t}$. We define the map $\circ: \mathcal{R}_{r, s, t} \times \mathcal{R}_{r, s, t} \rightarrow \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{m}-1\right\rangle}$ with

$$
\begin{aligned}
\circ(u(x), v(x)) & =u_{1}(x) \theta_{\frac{m}{r}}\left(x^{r}\right) x^{m-1-\operatorname{deg}\left(v_{1}(x)\right)} v_{1}^{*}(x)+u_{2}(x) \theta_{\frac{m}{s}}\left(x^{s}\right) x^{m-1-\operatorname{deg}\left(v_{2}(x)\right)} v_{2}^{*}(x) \\
& +u_{3}(x) \theta_{\frac{m}{t}}\left(x^{t}\right) x^{m-1-\operatorname{deg}\left(v_{3}(x)\right)} v_{3}^{*}(x) \quad \bmod \left(x^{m}-1\right) .
\end{aligned}
$$

The map \circ is a bilinear map between $\mathbb{Z}_{2}[x]$-modules.
Proposition 3.9. Let \mathbf{u}, \mathbf{v} be two elements of $\mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{s} \times \mathbb{Z}_{2}^{t}$. Then

$$
u(x) \circ v(x)=0 \bmod \left(x^{m}-1\right)
$$

if and only if \mathbf{u} is orthogonal to \mathbf{v} and all its shifts.
Proof. Consider the following representations for \mathbf{u}, \mathbf{v} :

$$
\begin{aligned}
\mathbf{u} & =\left(u_{1,0}, u_{1,1}, \ldots, u_{1, r-1}\left|u_{2,0}, u_{2,1}, \ldots, u_{2, s-1}\right| u_{3,0}, u_{3,1}, \ldots, u_{3, t-1}\right) \\
\mathbf{v} & =\left(v_{1,0}, v_{1,1}, \ldots, v_{1, r-1}\left|v_{2,0}, v_{2,1}, \ldots, v_{2, s-1}\right| v_{3,0}, v_{3,1}, \ldots, v_{3, t-1}\right)
\end{aligned}
$$

Assume that

$$
\mathbf{v}^{(i)}=\left(v_{1,0-i}, v_{1,1-i}, \ldots, v_{1, r-1-i}\left|v_{2,0-i}, v_{2,1-i}, \ldots, v_{2, s-1-i}\right| v_{3,0-i}, v_{3,1-i}, \ldots, v_{3, t-1-i}\right)
$$

is the i-th cyclic shift of \mathbf{v}, where $0 \leq i \leq m-1$. Notice that $\mathbf{u} \cdot \mathbf{v}^{(i)}=0$ if and only if

$$
\sum_{j=0}^{r-1} u_{1, j} v_{1, j-i}+\sum_{k=0}^{s-1} u_{2, k} v_{2, k-i}+\sum_{l=0}^{t-1} u_{3, l} v_{3, l-i}=0
$$

Set $S_{i}:=\sum_{j=0}^{r-1} u_{1, j} v_{1, j-i}+\sum_{k=0}^{s-1} u_{2, k} v_{2, k-i}+\sum_{l=0}^{t-1} u_{3, l} v_{3, l-i}$. Similar to the computations used in the proof of [6, Lemma 3] we have that

$$
\begin{aligned}
u(x) \circ v(x) & =\theta_{\frac{m}{r}}\left(x^{r}\right) \sum_{h=0}^{r-1} \sum_{j=0}^{r-1} u_{1, j} v_{1, j-h} x^{m-1-h}+\theta_{\frac{m}{s}}\left(x^{s}\right) \sum_{p=0}^{s-1} \sum_{k=0}^{s-1} u_{2, k} v_{2, k-p} x^{m-1-p} \\
& +\theta_{\frac{m}{t}}\left(x^{t}\right) \sum_{q=0}^{t-1} \sum_{l=0}^{t-1} u_{3, l} v_{3, l-q} x^{m-1-q}=\sum_{i=0}^{m-1} S_{i} x^{m-1-i} \quad \bmod \left(x^{m}-1\right)
\end{aligned}
$$

Consequently $u(x) \circ v(x)=0 \bmod \left(x^{m}-1\right)$ if and only if $S_{i}=0$ for every $0 \leq i \leq m-1$.
Proposition 3.10. Let $u(x)=\left(u_{1}(x)\left|u_{2}(x)\right| u_{3}(x)\right)$ and $v(x)=\left(v_{1}(x)\left|v_{2}(x)\right| v_{3}(x)\right)$ be two elements of $\mathcal{R}_{r, s, t}$ such that $u_{2}(x)=0$ or $v_{2}(x)=0$, and $u_{3}(x)=0$ or $v_{3}(x)=0$. Then $u(x) \circ v(x)=0 \bmod \left(x^{m}-1\right)$ if and only if $u_{1}(x) v_{1}^{*}(x)=0 \bmod \left(x^{r}-1\right)$.

Proof. (\Rightarrow) Similar to that of [1, Lemma 4.5].
(\Leftarrow) Suppose that $u_{1}(x) v_{1}^{*}(x)=0 \bmod \left(x^{r}-1\right)$. Then, there exists $\lambda(x) \in \mathbb{Z}_{2}[x]$ such that $u_{1}(x) v_{1}^{*}(x)=\lambda(x)\left(x^{r}-1\right)$, and so

$$
u(x) \circ v(x)=u_{1}(x) \theta_{\frac{m}{r}}\left(x^{r}\right) x^{m-1-\operatorname{deg}\left(v_{1}(x)\right)} v_{1}^{*}(x)=x^{m-1-\operatorname{deg}\left(v_{1}(x)\right)} \lambda(x) \theta_{\frac{m}{r}}\left(x^{r}\right)\left(x^{r}-1\right) .
$$

Therefore, by Remark 3.7 we have that $u(x) \circ v(x)=x^{m-1-\operatorname{deg}\left(v_{1}(x)\right)} \lambda(x)\left(x^{m}-1\right)$, which is 0 $\bmod \left(x^{m}-1\right)$.

Similar to Proposition 3.10 we can state the next two propositions.
Proposition 3.11. Let $u(x)=\left(u_{1}(x)\left|u_{2}(x)\right| u_{3}(x)\right)$ and $v(x)=\left(v_{1}(x)\left|v_{2}(x)\right| v_{3}(x)\right)$ be two elements of $\mathcal{R}_{r, s, t}$ such that $u_{1}(x)=0$ or $v_{1}(x)=0$, and $u_{3}(x)=0$ or $v_{3}(x)=0$. Then $u(x) \circ v(x)=0 \bmod \left(x^{m}-1\right)$ if and only if $u_{2}(x) v_{2}^{*}(x)=0 \bmod \left(x^{s}-1\right)$.

Proposition 3.12. Let $u(x)=\left(u_{1}(x)\left|u_{2}(x)\right| u_{3}(x)\right)$ and $v(x)=\left(v_{1}(x)\left|v_{2}(x)\right| v_{3}(x)\right)$ be two elements of $\mathcal{R}_{r, s, t}$ such that $u_{1}(x)=0$ or $v_{1}(x)=0$, and $u_{2}(x)=0$ or $v_{2}(x)=0$. Then $u(x) \circ v(x)=0 \bmod \left(x^{m}-1\right)$ if and only if $u_{3}(x) v_{3}^{*}(x)=0 \bmod \left(x^{t}-1\right)$.

Proposition 3.13. Let $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)\right\rangle$ be a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2}. Then
(i) $F_{1}(x) \left\lvert\, \frac{x^{t}-1}{G_{3}(x)} G_{1}(x)\right.$ and $F_{2}(x) \left\lvert\, \frac{x^{t}-1}{G_{3}(x)} G_{2}(x)\right.$.
(ii) $F_{1}(x) F_{2}(x) \left\lvert\, \frac{x^{t}-1}{G_{3}(x)} \operatorname{gcd}\left(F_{1}(x) F_{2}(x), F_{1}(x) G_{2}(x), F_{2}(x) G_{1}(x)\right)\right.$.
(iii) $\mathcal{C}_{r}=\left\langle\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right)\right\rangle, \mathcal{C}_{s}=\left\langle\operatorname{gcd}\left(F_{2}(x), G_{2}(x)\right)\right\rangle$ and $\mathcal{C}_{t}=\left\langle G_{3}(x)\right\rangle$.
(iv) $\left(\mathcal{C}_{r}\right)^{\perp}=\left\langle\frac{x^{r}-1}{\operatorname{gcd}\left(F_{1}^{*}(x), G_{1}^{*}(x)\right)}\right\rangle,\left(\mathcal{C}_{s}\right)^{\perp}=\left\langle\frac{x^{s}-1}{\operatorname{gcd}\left(F_{2}^{*}(x), G_{2}^{*}(x)\right)}\right\rangle$ and $\left(\mathcal{C}_{t}\right)^{\perp}=\left\langle\frac{x^{t}-1}{G_{3}^{*}(x)}\right\rangle$.

Proof. (i) Consider the projection homomorphism of $\mathbb{Z}_{2}[x]$-modules

$$
\begin{gathered}
\Phi: \mathcal{C} \rightarrow \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{t}-1\right\rangle} \\
\left(c_{1}(x)\left|c_{2}(x)\right| c_{3}(x)\right) \mapsto c_{3}(x)
\end{gathered}
$$

In view of the proof of Theorem 3.2, $\operatorname{Ker}(\Phi)=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right)\right\rangle$. On the other hand, we have that

$$
\begin{aligned}
& \frac{x^{t}-1}{G_{3}(x)} *\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)=\left(\frac{x^{t}-1}{G_{3}(x)} G_{1}(x)\left|\frac{x^{t}-1}{G_{3}(x)} G_{2}(x)\right| 0\right) \\
& \in \operatorname{Ker}(\pi)=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right)\right\rangle .
\end{aligned}
$$

Consequently $F_{1}(x) \left\lvert\, \frac{x^{t}-1}{G_{3}(x)} G_{1}(x)\right.$ and $F_{2}(x) \left\lvert\, \frac{x^{t}-1}{G_{3}(x)} G_{2}(x)\right.$.
(ii) By part (i).
(iii) We show that $\mathcal{C}_{r}=\left\langle g c d\left(F_{1}(x), G_{1}(x)\right)\right\rangle$. Let $u(x) \in \mathcal{C}_{r}$. Then there exist $v(x) \in \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{s}-1\right\rangle}$ and $w(x) \in \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{t}-1\right\rangle}$ such that $(u(x)|v(x)| w(x)) \in \mathcal{C}$. Thus there are $\lambda(x), \mu(x), \nu(x) \in \mathbb{Z}_{2}[x]$ such that
$(u(x)|v(x)| w(x))=\lambda(x)\left(F_{1}(x)|0| 0\right)+\mu(x)\left(0\left|F_{2}(x)\right| 0\right)+\nu(x)\left(G_{1}(x), G_{2}(x), G_{3}(x)\right)$.
Hence $u(x)=\lambda(x) F_{1}(x)+\nu(x) G_{1}(x)$. Then $\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right)$ divides $u(x)$. So $u(x) \in$ $\left\langle\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right)\right\rangle$. Thus $\mathcal{C}_{r} \subseteq\left\langle\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right)\right\rangle$. On the other hand there exist $\eta(x), \gamma(x) \in$ $\mathbb{Z}_{2}[x]$ such that $\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right)=\eta(x) F_{1}(x)+\gamma(x) G_{1}(x)$. Then

$$
\left(g c d\left(F_{1}(x), G_{1}(x)\right)\left|\gamma G_{2}(x)\right| \gamma G_{3}(x)\right)=\eta(x)\left(F_{1}(x)|0| 0\right)+\gamma(x)\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right) \in \mathcal{C}
$$

Therefore $\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right) \in \mathcal{C}_{r}$, which shows that $\mathcal{C}_{r}=\left\langle\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right)\right\rangle$. (iv) By part (iii) and [9, Theorem 4.2.7].

As a direct consequence of parts (iii),(iv) of Proposition 3.13 we have the following result.
Corollary 3.14. Let $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)\right\rangle$ be a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2}. Then

$$
\begin{gathered}
\left|\mathcal{C}_{r}\right|=2^{r-\operatorname{deg}\left(\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right)\right)}, \quad\left|\mathcal{C}_{s}\right|=2^{s-\operatorname{deg}\left(\operatorname{gcd}\left(F_{2}(x), G_{2}(x)\right)\right)}, \quad\left|\mathcal{C}_{t}\right|=2^{t-\operatorname{deg}\left(G_{3}(x)\right)} \\
\left|\left(\mathcal{C}_{r}\right)^{\perp}\right|=2^{\operatorname{deg}\left(\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right)\right)}, \quad\left|\left(\mathcal{C}_{s}\right)^{\perp}\right|=2^{\operatorname{deg}\left(\operatorname{gcd}\left(F_{2}(x), G_{2}(x)\right)\right)}, \quad\left|\left(\mathcal{C}_{t}\right)^{\perp}\right|=2^{\operatorname{deg}\left(G_{3}(x)\right)}
\end{gathered}
$$

Let S be a subset of $\mathcal{R}_{r, s, t}$. The \mathbb{Z}_{2}-submodule of $\mathcal{R}_{r, s, t}$ generated by S is denoted by $\langle S\rangle_{\mathbb{Z}_{2}}$.

Theorem 3.15. Let $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)\right\rangle$ be a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2}. Define the sets

$$
\begin{aligned}
& S_{1}=\bigcup_{i=0}^{r-\operatorname{deg}\left(F_{1}(x)\right)-1}\left\{x^{i} *\left(F_{1}(x)|0| 0\right)\right\} \\
& S_{2}=\bigcup_{i=0}^{s-\operatorname{deg}\left(F_{2}(x)\right)-1}\left\{x^{i} *\left(0\left|F_{2}(x)\right| 0\right)\right\}, \\
& S_{3}=\bigcup_{i=0}^{t-\operatorname{deg}\left(G_{3}(x)\right)-1}\left\{x^{i} *\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)\right\} .
\end{aligned}
$$

Then the following conditions hold:
(i) $\left\langle S_{1}\right\rangle_{\mathbb{Z}_{2}}=\left\langle\left(F_{1}(x)|0| 0\right)\right\rangle$.
(ii) $\left\langle S_{2}\right\rangle_{\mathbb{Z}_{2}}=\left\langle\left(0\left|F_{2}(x)\right| 0\right)\right\rangle$.
(iii) $\left\langle S_{1} \cup S_{2} \cup S_{3}\right\rangle_{\mathbb{Z}_{2}} \supseteq\left\langle\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)\right\rangle$.
(iv) $S_{1} \cup S_{2} \cup S_{3}$ forms a minimal generating set for \mathcal{C} as a \mathbb{Z}_{2}-submodule of $\mathcal{R}_{r, s, t}$.
(v) $|\mathcal{C}|=2^{d}$ where $d=r+s+t-\operatorname{deg}\left(F_{1}(x)\right)-\operatorname{deg}\left(F_{2}(x)\right)-\operatorname{deg}\left(G_{3}(x)\right)$.

Proof. (i) It is obvious that $\left\langle S_{1}\right\rangle_{\mathbb{Z}_{2}} \subseteq\left\langle\left(F_{1}(x)|0| 0\right)\right\rangle$. Let $p_{1}(x) \in \mathbb{Z}_{2}[x]$. We show that $p_{1}(x) *\left(F_{1}(x)|0| 0\right) \in\left\langle S_{1}\right\rangle_{\mathbb{Z}_{2}}$. If $\operatorname{deg}\left(p_{1}(x)\right) \leq r-\operatorname{deg}\left(F_{1}(x)\right)-1$, then we are done. Otherwise, there exist polynomials $q_{1}(x), r_{1}(x) \in \mathbb{Z}_{2}[x]$ such that $p_{1}(x)=\frac{x^{r}-1}{F_{1}(x)} q_{1}(x)+r_{1}(x)$ where $r_{1}(x)=0$ or $\operatorname{deg}\left(r_{1}(x)\right) \leq r-\operatorname{deg}\left(F_{1}(x)\right)-1$. Therefore

$$
\begin{aligned}
p_{1}(x) *\left(F_{1}(x)|0| 0\right) & =\frac{x^{r}-1}{F_{1}(x)} q_{1}(x) *\left(F_{1}(x)|0| 0\right)+r_{1}(x) *\left(F_{1}(x)|0| 0\right) \\
& =q_{1}(x) *\left(\frac{x^{r}-1}{F_{1}(x)} F_{1}(x)|0| 0\right)+r_{1}(x) *\left(F_{1}(x)|0| 0\right) \\
& =r_{1}(x) *\left(F_{1}(x)|0| 0\right) \in\left\langle S_{1}\right\rangle_{\mathbb{Z}_{2}} .
\end{aligned}
$$

So $\left\langle\left(F_{1}(x)|0| 0\right)\right\rangle \subseteq\left\langle S_{1}\right\rangle_{\mathbb{Z}_{2}}$ and the equality holds.
(ii) Similar to the proof of part (i).
(iii) Get a polynomial $p_{2}(x) \in \mathbb{Z}_{2}[x]$. We prove that $p_{2}(x) *\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right) \in\left\langle S_{1} \cup\right.$ $\left.S_{2} \cup S_{3}\right\rangle_{\mathbb{Z}_{2}}$. If $\operatorname{deg}\left(p_{2}(x)\right) \leq t-\operatorname{deg}\left(G_{3}(x)\right)-1$, then $p_{2}(x) *\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right) \in\left\langle S_{3}\right\rangle_{\mathbb{Z}_{2}}$. Otherwise, there exist $q_{2}(x), r_{2}(x) \in \mathbb{Z}_{2}[x]$ such that $p_{2}(x)=\frac{x^{t}-1}{G_{3}(x)} q_{2}(x)+r_{2}(x)$ where $r_{2}(x)=$ 0 or $\operatorname{deg}\left(r_{2}(x)\right) \leq t-\operatorname{deg}\left(G_{3}(x)\right)-1$. Hence

$$
\begin{aligned}
p_{2}(x) *\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right) & =\frac{x^{t}-1}{G_{3}(x)} q_{2}(x) *\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right) \\
& +r_{2}(x) *\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right) \\
& =q_{2}(x) *\left(\frac{x^{t}-1}{G_{3}(x)} G_{1}(x)\left|\frac{x^{t}-1}{G_{3}(x)} G_{2}(x)\right| 0\right) \\
& +r_{2}(x) *\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right) .
\end{aligned}
$$

Clearly $r_{2}(x) *\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right) \in\left\langle S_{3}\right\rangle_{\mathbb{Z}_{2}}$. By Proposition 3.13(i), $F_{1}(x) \left\lvert\, \frac{x^{t}-1}{G_{3}(x)} G_{1}(x)\right.$ and $F_{2}(x) \left\lvert\, \frac{x^{t}-1}{G_{3}(x)} G_{2}(x)\right.$. So, parts (i) and (ii) imply that

$$
q_{2}(x) *\left(\frac{x^{t}-1}{G_{3}(x)} G_{1}(x)\left|\frac{x^{t}-1}{G_{3}(x)} G_{2}(x)\right| 0\right) \in\left\langle S_{1} \cup S_{2}\right\rangle_{\mathbb{Z}_{2}}
$$

Consequently the claim holds.
(iv) By the previous parts.
(v) By part (iv).

Corollary 3.16. Let \mathcal{C} be a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2}.
(i) If $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right)\right\rangle$ where $F_{1}(x) \in \mathbb{Z}_{2}[x]$ with $F_{1}(x) \mid x^{r}-1$, then every codeword $c(x)$ of \mathcal{C} is in the form of $c(x)=p(x) *\left(F_{1}(x)|0| 0\right)$ where $p(x)$ is a polynomial in $\mathbb{Z}_{2}[x]$ with $\operatorname{deg}(p(x))=r-\operatorname{deg}\left(F_{1}(x)\right)-1$.
(ii) If $\mathcal{C}=\left\langle\left(0\left|F_{2}(x)\right| 0\right)\right\rangle$ where $F_{2}(x) \in \mathbb{Z}_{2}[x]$ with $F_{2}(x) \mid x^{s}-1$, then every codeword $c(x)$ of \mathcal{C} is in the form of $c(x)=p(x) *\left(0\left|F_{2}(x)\right| 0\right)$ where $p(x)$ is a polynomial in $\mathbb{Z}_{2}[x]$ with $\operatorname{deg}(p(x))=s-\operatorname{deg}\left(F_{2}(x)\right)-1$.
(iii) If $\mathcal{C}=\left\langle\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)\right\rangle$ where $G_{1}(x), G_{2}(x), G_{3}(x) \in \mathbb{Z}_{2}[x]$ with $G_{3}(x) \mid x^{t}-1$, then every codeword $c(x)$ of \mathcal{C} is in the form of $c(x)=p(x) *\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)$ where $p(x)$ is a polynomial in $\mathbb{Z}_{2}[x]$ with $\operatorname{deg}(p(x))=t-\operatorname{deg}\left(G_{3}(x)\right)-1$.
(iv) If $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right)\right\rangle$ where $F_{1}(x), F_{2}(x) \in \mathbb{Z}_{2}[x]$ with $F_{1}(x) \mid x^{r}-1$, $F_{2}(x) \mid x^{s}-1$, then every codeword $c(x)$ of \mathcal{C} is in the form of

$$
c(x)=p_{1}(x) *\left(F_{1}(x)|0| 0\right)+p_{2}(x) *\left(0\left|F_{2}(x)\right| 0\right)
$$

where $p_{1}(x)$ and $p_{2}(x)$ are polynomials in $\mathbb{Z}_{2}[x]$ with

$$
\operatorname{deg}\left(p_{1}(x)\right)=r-\operatorname{deg}\left(F_{1}(x)\right)-1 \text { and } \operatorname{deg}\left(p_{2}(x)\right)=s-\operatorname{deg}\left(F_{2}(x)\right)-1 .
$$

(v) If $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)\right\rangle$ where $F_{1}(x), G_{1}(x), G_{2}(x)$, $G_{3}(x) \in \mathbb{Z}_{2}[x]$ with $F_{1}(x) \mid x^{r}-1$ and $G_{3}(x) \mid x^{t}-1$, then every codeword $c(x)$ of \mathcal{C} is in the form of

$$
c(x)=p_{1}(x) *\left(F_{1}(x)|0| 0\right)+p_{2}(x) *\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)
$$

where $p_{1}(x)$ and $p_{2}(x)$ are polynomials in $\mathbb{Z}_{2}[x]$ with

$$
\operatorname{deg}\left(p_{1}(x)\right)=r-\operatorname{deg}\left(F_{1}(x)\right)-1 \text { and } \operatorname{deg}\left(p_{2}(x)\right)=t-\operatorname{deg}\left(G_{3}(x)\right)-1
$$

(vi) If $\mathcal{C}=\left\langle\left(0\left|F_{2}(x)\right| 0\right),\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)\right\rangle$ where $F_{2}(x), G_{1}(x), G_{2}(x)$, $G_{3}(x) \in \mathbb{Z}_{2}[x]$ with $F_{2}(x) \mid x^{s}-1$ and $G_{3}(x) \mid x^{t}-1$, then every codeword $c(x)$ of \mathcal{C} is in the form of

$$
c(x)=p_{1}(x) *\left(0\left|F_{2}(x)\right| 0\right)+p_{2}(x) *\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)
$$

where $p_{1}(x)$ and $p_{2}(x)$ are polynomials in $\mathbb{Z}_{2}[x]$ with

$$
\operatorname{deg}\left(p_{1}(x)\right)=s-\operatorname{deg}\left(F_{2}(x)\right)-1 \text { and } \operatorname{deg}\left(p_{2}(x)\right)=t-\operatorname{deg}\left(G_{3}(x)\right)-1
$$

(vii) If $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)\right\rangle$ where $F_{1}(x), F_{2}(x)$, $G_{1}(x), G_{2}(x), G_{3}(x) \in \mathbb{Z}_{2}[x]$ with $F_{1}(x)\left|x^{r}-1, F_{2}(x)\right| x^{s}-1$ and $G_{3}(x) \mid x^{t}-1$, then every codeword $c(x)$ of \mathcal{C} is in the form of

$$
c(x)=p_{1}(x) *\left(F_{1}(x)|0| 0\right)+p_{2}(x) *\left(0\left|F_{2}(x)\right| 0\right)+p_{3}(x) *\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)
$$

where $p_{1}(x), p_{2}(x)$ and $p_{3}(x)$ are polynomials in $\mathbb{Z}_{2}[x]$ with $\operatorname{deg}\left(p_{1}(x)\right)=r-\operatorname{deg}\left(F_{1}(x)\right)-$ $1, \operatorname{deg}\left(p_{2}(x)\right)=s-\operatorname{deg}\left(F_{2}(x)\right)-1$ and $\operatorname{deg}\left(p_{3}(x)\right)=t-\operatorname{deg}\left(G_{3}(x)\right)-1$.
Proposition 3.17. Let $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)\right\rangle$ be a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2}. Then $F_{1}(x) \mid G_{1}(x)$ if and only if $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),(0 \mid\right.$ $\left.\left.F_{2}(x) \mid 0\right),\left(0\left|G_{2}(x)\right| G_{3}(x)\right)\right\rangle$, i.e, we may assume that $G_{1}(x)=0$.
Proof. The "if" part is evident.
Suppose that $F_{1}(x) \mid G_{1}(x)$. Then, there exists a polynomial $\lambda(x)$ in $\mathbb{Z}_{2}[x]$ such that $G_{1}(x)=$ $\lambda(x) F_{1}(x)$. Set $\mathcal{C}^{\prime}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(0\left|G_{2}(x)\right| G_{3}(x)\right)\right\rangle$. Notice that

$$
\left(0\left|G_{2}(x)\right| G_{3}(x)\right)=\lambda(x)\left(F_{1}(x)|0| 0\right)+\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)
$$

Hence $\mathcal{C}^{\prime} \subseteq \mathcal{C}$. On the other hand

$$
\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)=\lambda(x)\left(F_{1}(x)|0| 0\right)+\left(0\left|G_{2}(x)\right| G_{3}(x)\right)
$$

So $\mathcal{C} \subseteq \mathcal{C}^{\prime}$.

Similar to the previous proposition we have the next result.
Proposition 3.18. Let $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)\right\rangle$ be a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2}. Then $F_{2}(x) \mid G_{2}(x)$ if and only if $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),(0 \mid\right.$ $\left.\left.F_{2}(x) \mid 0\right),\left(G_{1}(x)|0| G_{3}(x)\right)\right\rangle$, i.e, we may assume that $G_{2}(x)=0$.
Proposition 3.19. Let $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)\right\rangle$ be a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2}. The following conditions are equivalent:
(i) \mathcal{C} is separable;
(ii) $F_{1}(x) \mid G_{1}(x)$ and $F_{2}(x) \mid G_{2}(x)$;
(iii) $\mathcal{C}_{r}=\left\langle F_{1}(x)\right\rangle$ and $\mathcal{C}_{s}=\left\langle F_{2}(x)\right\rangle$;
(iv) $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(0|0| G_{3}(x)\right)\right\rangle$, i.e, we may assume that $G_{1}(x)=0$ and $G_{2}(x)=0$.

Proof. (i) \Rightarrow (ii) Assume that \mathcal{C} is separable. Then

$$
\mathcal{C}=\mathcal{C}_{r} \times \mathcal{C}_{s} \times \mathcal{C}_{t}=\left\langle g c d\left(F_{1}(x), G_{1}(x)\right)\right\rangle \times\left\langle\operatorname{gcd}\left(F_{2}(x), G_{2}(x)\right)\right\rangle \times\left\langle G_{3}(x)\right\rangle
$$

by Proposition 3.13(iii). Since $\left(\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right)|0| 0\right) \in \mathcal{C}$, then we can deduce that $\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right)=\lambda(x) F_{1}(x)$ for some $\lambda(x) \in \mathbb{Z}_{2}[x]$. Therefore $F_{1}(x) \mid G_{1}(x)$. Also, it is easy to verify that $F_{2}(x) \mid G_{2}(x)$.
(ii) \Leftrightarrow (iii) is straightforward.
(ii) \Rightarrow (iv) Suppose that $F_{1}(x) \mid G_{1}(x)$ and $F_{2}(x) \mid G_{2}(x)$. Then, there exist two polynomials $\lambda_{1}(x), \lambda_{2}(x)$ in $\mathbb{Z}_{2}[x]$ such that $G_{1}(x)=\lambda_{1}(x) F_{1}(x)$ and $G_{2}(x)=\lambda_{2}(x) F_{2}(x)$. So, by the equality

$$
\left(0|0| G_{3}(x)\right)=\lambda_{1}(x)\left(F_{1}(x)|0| 0\right)+\lambda_{2}(x)\left(0\left|F_{2}(x)\right| 0\right)+\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)
$$

the result follows.
(iv) \Rightarrow (i) Assume that $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(0|0| G_{3}(x)\right)\right\rangle$. Hence $\mathcal{C}=$ $\left\langle F_{1}(x)\right\rangle \times\left\langle F_{2}(x)\right\rangle \times\left\langle G_{3}(x)\right\rangle=\mathcal{C}_{r} \times \mathcal{C}_{s} \times \mathcal{C}_{t}$. Then \mathcal{C} is separable.
Proposition 3.20. Let $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)\right\rangle$ be a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2}. The following conditions hold:
(i) It can be assumed that $\operatorname{deg}\left(G_{1}(x)\right) \leq \operatorname{deg}\left(F_{1}(x)\right)$ and $\operatorname{deg}\left(G_{2}(x)\right) \leq \operatorname{deg}\left(F_{2}(x)\right)$.
(ii) $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(F_{1}(x)+G_{1}(x)\left|F_{2}(x)+G_{2}(x)\right| G_{3}(x)\right)\right\rangle$.
(iii) If $G_{3}(x)=0$, then $\mathcal{C} \subseteq\left\langle\left(\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right)|0| 0\right),\left(0\left|\operatorname{gcd}\left(F_{2}(x), G_{2}(x)\right)\right| 0\right)\right\rangle$.
(iv) If $G_{1}(x)=G_{3}(x)=0$, then $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|\operatorname{gcd}\left(F_{2}(x), G_{2}(x)\right)\right| 0\right)\right\rangle$.
(v) If $G_{2}(x)=G_{3}(x)=0$, then $\mathcal{C}=\left\langle\left(\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right)\right\rangle$.

Proof. (i) Suppose that $\operatorname{deg}\left(G_{1}(x)\right)>\operatorname{deg}\left(F_{1}(x)\right)$ and set

$$
\mathcal{C}^{\prime}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(G_{1}(x)+x^{l} F_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)\right\rangle
$$

where $l=\operatorname{deg}\left(G_{1}(x)\right)-\operatorname{deg}\left(F_{1}(x)\right)$. Notice that $\operatorname{deg}\left(G_{1}(x)+x^{l} F_{1}(x)\right)<\operatorname{deg}\left(G_{1}(x)\right)$. Since

$$
\left(G_{1}(x)+x^{l} F_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)=x^{l} *\left(F_{1}(x)|0| 0\right)+\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right) \in \mathcal{C}
$$

then $\mathcal{C}^{\prime} \subseteq \mathcal{C}$. On the other hand,

$$
\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)=\left(G_{1}(x)+x^{l} F_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)-x^{l} *\left(F_{1}(x)|0| 0\right)
$$

Hence $\mathcal{C}^{\prime}=\mathcal{C}$. So we would be able to reduce the degree of $G_{1}(x)$ in \mathcal{C} to reach the claim. An argument like above can be stated for $\operatorname{deg}\left(G_{2}(x)\right) \leq \operatorname{deg}\left(F_{2}(x)\right)$. (ii),(iii),(iv) and (v) are easy.

Example 3.21. Let $\mathcal{C}=\left\langle\left(1+x^{2}|0| 0\right),\left(0\left|x+x^{5}\right| 0\right),\left(x^{3}+x^{4}+x^{5}\left|x^{2}+x^{6}\right| G_{3}(x)\right)\right\rangle$ be a triple cyclic code over \mathbb{Z}_{2}. Regarding the proof of Proposition 3.20,

$$
\begin{aligned}
\mathcal{C} & =\left\langle\left(1+x^{2}|0| 0\right),\left(0\left|x+x^{5}\right| 0\right),\left(x^{3}+x^{4}+x^{5}+x^{3}\left(1+x^{2}\right)\left|x^{2}+x^{6}+x\left(x+x^{5}\right)\right| G_{3}(x)\right)\right\rangle \\
& =\left\langle\left(1+x^{2}|0| 0\right),\left(0\left|x+x^{5}\right| 0\right),\left(x^{4}|0| G_{3}(x)\right)\right\rangle \\
& =\left\langle\left(1+x^{2}|0| 0\right),\left(0\left|x+x^{5}\right| 0\right),\left(x^{4}+x^{2}\left(1+x^{2}\right)|0| G_{3}(x)\right)\right\rangle \\
& =\left\langle\left(1+x^{2}|0| 0\right),\left(0\left|x+x^{5}\right| 0\right),\left(x^{2}|0| G_{3}(x)\right)\right\rangle .
\end{aligned}
$$

4 Dual codes of triple cyclic codes over \mathbb{Z}_{2}

Proposition 4.1. \mathcal{C} is a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2} if and only if \mathcal{C}^{\perp} is a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2}. Moreover,

$$
\mathcal{C}^{\perp}=\left\{\mathbf{u} \in \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{2}^{s} \times \mathbb{Z}_{2}^{t} \mid u(x) \circ c(x)=0 \bmod \left(x^{m}-1\right) \text { for every } \mathbf{c} \in \mathcal{C}\right\}
$$

Proof. (\Rightarrow) Suppose that \mathcal{C} is a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2}. Assume that

$$
\mathbf{c}^{\prime}=\left(c_{1,0}^{\prime}, c_{1,1}^{\prime}, \ldots, c_{1, r-1}^{\prime}\left|c_{2,0}^{\prime}, c_{2,1}, \ldots, c_{2, s-1}^{\prime}\right| c_{3,0}^{\prime}, c_{3,1}^{\prime}, \ldots, c_{3, t-1}^{\prime}\right)
$$

is a codeword of \mathcal{C}^{\perp}. It is sufficient to show that $\mathcal{T}\left(\mathbf{c}^{\prime}\right) \in \mathcal{C}^{\perp}$. Let

$$
\mathbf{c}=\left(c_{1,0}, c_{1,1}, \ldots, c_{1, r-1}\left|c_{2,0}, c_{2,1}, \ldots, c_{2, s-1}\right| c_{3,0}, c_{3,1}, \ldots, c_{3, t-1}\right)
$$

be an arbitrary codeword of \mathcal{C}. Set $m:=\operatorname{lcm}(r, s, t)$. Obviously we have $\mathcal{T}^{m}(\mathbf{c})=\mathbf{c}$. Hence

$$
\mathcal{T}^{m-1}(\mathbf{c})=\left(c_{1,1}, c_{1,2}, \ldots, c_{1, r-1}, c_{1,0}\left|c_{2,1}, c_{2,2}, \ldots, c_{2, s-1}, c_{2,0}\right| c_{3_{3}, 1}, c_{3,2}, \ldots, c_{3, t-1}, c_{3,0}\right) \in \mathcal{C}
$$

Therefore $\mathbf{c}^{\prime} \cdot \mathcal{T}^{m-1}(\mathbf{c})=0$, because $\mathbf{c}^{\prime} \in \mathcal{C}^{\perp}$. So

$$
\begin{aligned}
0 & =\mathbf{c}^{\prime} \cdot \mathcal{T}^{m-1}(\mathbf{c}) \\
& =c_{1,0}^{\prime} c_{1,1}+\cdots+c_{1, r-2}^{\prime} c_{1, r-1}+c_{1, r-1}^{\prime} c_{1,0}+c_{2,0}^{\prime} c_{2,1}+\cdots+c_{2, s-2}^{\prime} c_{2, s-1}+c_{2, s-1}^{\prime} c_{2,0} \\
& +c_{3,0}^{\prime} c_{3,1}+\cdots+c_{3, t-2}^{\prime} c_{3, t-1}+c_{3, t-1}^{\prime} c_{3,0} \\
& =c_{1,0} c_{1, r-1}^{\prime}+c_{1,1} c_{1,0}^{\prime}+\cdots+c_{1, r-1}^{\prime} c_{1, r-2}^{\prime}+c_{2,0}^{\prime} c_{2, s-1}^{\prime}+c_{2,1} c_{2,0}^{\prime}+\cdots+c_{2, s-1} c_{2, s-2}^{\prime} \\
& +c_{3,0}^{\prime} c_{c, t-1}^{\prime}+c_{3,1} c_{3,0}^{\prime}+\cdots+c_{3, t-1} c_{3, t-2}^{\prime} \\
& =\mathbf{c} \cdot \mathcal{T}\left(\mathbf{c}^{\prime}\right) .
\end{aligned}
$$

Thus $\mathcal{T}\left(\mathbf{c}^{\prime}\right) \in \mathcal{C}^{\perp}$. Consequently \mathcal{C}^{\perp} is a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2}.
(\Leftarrow) By the fact that for every linear code $\mathcal{C},\left(\mathcal{C}^{\perp}\right)^{\perp}=\mathcal{C}$.
For the second statement use Proposition 3.9.
Proposition 4.2. Let \mathcal{C} be a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2}. Then
(i) $\left(\mathcal{C}_{r}\right)^{\perp}=\left\{\mathbf{a} \in \mathbb{Z}_{2}^{r} \mid(\mathbf{a}|0| 0) \in \mathcal{C}^{\perp}\right\}=\left\{\left.a(x) \in \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{r}-1\right\rangle} \right\rvert\,(a(x)|0| 0) \in \mathcal{C}^{\perp}\right\}$, and so $\left(\mathcal{C}_{r}\right)^{\perp} \subseteq\left(\mathcal{C}^{\perp}\right)_{r}$.
(ii) $\left(\mathcal{C}_{s}\right)^{\perp}=\left\{\mathbf{b} \in \mathbb{Z}_{2}^{s} \mid(0|\mathbf{b}| 0) \in \mathcal{C}^{\perp}\right\}=\left\{\left.b(x) \in \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{s}-1\right\rangle} \right\rvert\,(0|b(x)| 0) \in \mathcal{C}^{\perp}\right\}$, and so $\left(\mathcal{C}_{s}\right)^{\perp} \subseteq\left(\mathcal{C}^{\perp}\right)_{s}$.
(iii) $\left(\mathcal{C}_{t}\right)^{\perp}=\left\{\mathbf{c} \in \mathbb{Z}_{2}^{t} \mid(0|0| \mathbf{c}) \in \mathcal{C}^{\perp}\right\}=\left\{\left.c(x) \in \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{t}-1\right\rangle} \right\rvert\,(0|0| c(x)) \in \mathcal{C}^{\perp}\right\}$, and so $\left(\mathcal{C}_{t}\right)^{\perp} \subseteq\left(\mathcal{C}^{\perp}\right)_{t}$.
Proof. Straightforward.
Proposition 4.3. Let $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)\right\rangle$ be a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2}. Then
(i) $\left(\frac{\left.x^{r}-1\right)^{2}}{F_{1}^{*}(x) G_{1}^{*}(x)}|0| 0\right),\left(0\left|\frac{\left(x^{s}-1\right)^{2}}{F_{2}^{*}(x) G_{2}^{*}(x)}\right| 0\right),\left(0|0| \frac{x^{t}-1}{G_{3}^{*}(x)}\right) \in \mathcal{C}^{\perp}$.
(ii) $\left(\mathcal{C}_{r}\right)^{\perp} \subseteq\left(\mathcal{C}^{\perp}\right)_{r} \subseteq\left\langle\frac{x^{r}-1}{F_{1}^{*}(x)}\right\rangle$ and $\left(\mathcal{C}_{s}\right)^{\perp} \subseteq\left(\mathcal{C}^{\perp}\right)_{s} \subseteq\left\langle\frac{x^{s}-1}{F_{2}^{*}(x)}\right\rangle$.
(iii) If $F_{1}(x) \mid G_{1}(x)$, then $\left(\mathcal{C}^{\perp}\right)_{r}=\left(\mathcal{C}_{r}\right)^{\perp}=\left\langle\frac{x^{r}-1}{F_{1}^{*}(x)}\right\rangle$ and so $\left|\left(\mathcal{C}^{\perp}\right)_{r}\right|=2^{\text {deg }\left(F_{1}(x)\right)}$.
(iv) If $F_{2}(x) \mid G_{2}(x)$, then $\left(\mathcal{C}^{\perp}\right)_{s}=\left(\mathcal{C}_{s}\right)^{\perp}=\left\langle\frac{x^{s}-1}{F_{2}^{*}(x)}\right\rangle$ and so $\left|\left(\mathcal{C}^{\perp}\right)_{s}\right|=2^{\operatorname{deg}\left(F_{2}(x)\right)}$.
(v) If $F_{1}(x) \mid G_{1}(x)$ and $F_{2}(x) \mid G_{2}(x)$, then $\mathcal{C}^{\perp}=\left\langle\frac{x^{r}-1}{F_{1}^{*}(x)}\right\rangle \times\left\langle\frac{x^{s}-1}{F_{2}^{*}(x)}\right\rangle \times\left\langle\frac{x^{t}-1}{G_{3}^{*}(x)}\right\rangle$ and $\left|\mathcal{C}^{\perp}\right|=$ $2^{\operatorname{deg}\left(F_{1}(x)\right)+\operatorname{deg}\left(F_{2}(x)\right)+\operatorname{deg}\left(G_{3}(x)\right)}$. Moreover, $\left(\mathcal{C}^{\perp}\right)_{t}=\left(\mathcal{C}_{t}\right)^{\perp}=\left\langle\frac{x^{t}-1}{G_{3}^{*}(x)}\right\rangle$ and so $\left|\left(\mathcal{C}^{\perp}\right)_{t}\right|=$ $2^{\operatorname{deg}\left(G_{3}(x)\right)}$.

Proof. (i) We only show that $\left(\frac{\left(x^{r}-1\right)^{2}}{F_{1}^{*}(x) G_{1}^{*}(x)}|0| 0\right) \in \mathcal{C}^{\perp}$. Notice that $\frac{\left(x^{r}-1\right)^{2}}{F_{1}^{*}(x) G_{1}^{*}(x)} F_{1}^{*}(x)=\left(x^{r}-\right.$ 1) $\frac{\left(x^{r}-1\right)}{G_{1}^{*}(x)}=0 \bmod \left(x^{r}-1\right)$. Now, Proposition 3.10 implies that $\left(\frac{\left(x^{r}-1\right)^{2}}{F_{1}^{*}(x) G_{1}^{*}(x)}|0| 0\right) \circ\left(F_{1}(x) \mid\right.$ $0 \mid 0)=0 \bmod \left(x^{m}-1\right)$. Similarly we can show that $\left(\frac{\left(x^{r}-1\right)^{2}}{F_{1}^{*}(x) G_{1}^{*}(x)}|0| 0\right) \circ\left(G_{1}(x)\left|G_{2}(x)\right|\right.$ $\left.G_{3}(x)\right)=0 \bmod \left(x^{m}-1\right)$. Clearly $\left(\frac{\left(x^{r}-1\right)^{2}}{F_{1}^{*}(x) G_{1}^{*}(x)}|0| 0\right) \circ\left(0\left|F_{2}(x)\right| 0\right)=0 \bmod \left(x^{m}-1\right)$. So the result follows.
(ii) We prove that $\left(\mathcal{C}^{\perp}\right)_{r} \subseteq\left\langle\frac{x^{r}-1}{F_{1}^{*}(x)}\right\rangle$. Let $f(x) \in\left(\mathcal{C}^{\perp}\right)_{r}$. Then there exist $g(x) \in \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{s}-1\right\rangle}$ and $h(x) \in \frac{\mathbb{Z}_{2}[x]}{\left\langle x^{t}-1\right\rangle}$ such that $(f(x)|g(x)| h(x)) \in \mathcal{C}^{\perp}$. Hence $(f(x)|g(x)| h(x)) \circ\left(F_{1}(x)|0|\right.$ $0)=0 \bmod \left(x^{m}-1\right)$. So $f(x) F_{1}^{*}(x)=0 \bmod \left(x^{r}-1\right)$, see Proposition 3.10. Thus, there exists a $\lambda(x) \in \mathbb{Z}_{2}[x]$ such that $f(x)=\lambda(x) \frac{x^{r}-1}{F_{1}^{*}(x)}$. Consequently $f(x) \subseteq\left\langle\frac{x^{r}-1}{F_{1}^{*}(x)}\right\rangle$ and we are done. Similarly it can be shown that $\left(\mathcal{C}^{\perp}\right)_{s} \subseteq\left\langle\frac{x^{s}-1}{F_{2}^{*}(x)}\right\rangle$.
(iii) Suppose that $F_{1}(x) \mid G_{1}(x)$, then by Proposition 3.17 we may assume that $G_{1}(x)=0$. Hence $\left(\frac{x^{r}-1}{F_{1}^{*}(x)}|0| 0\right) \in \mathcal{C}^{\perp}$, and so $\left\langle\frac{x^{r}-1}{F_{1}^{*}(x)}\right\rangle \subseteq\left(\mathcal{C}_{r}\right)^{\perp}$, by Proposition 4.2(i). Now, by part (ii) we have that $\left(\mathcal{C}^{\perp}\right)_{r}=\left(\mathcal{C}_{r}\right)^{\perp}=\left\langle\frac{x^{r}-1}{F_{1}^{*}(x)}\right\rangle$.
(iv) An argument similar to the proof of part (iii) can be stated.
(v) Use Proposition 3.19.

Proposition 4.4. Let $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right)\right\rangle$ be a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2} with the dual code $\mathcal{C}^{\perp}=\left\langle\left(\widehat{F_{1}}(x)|0| 0\right),\left(0\left|\widehat{F_{2}}(x)\right|\right.\right.$ $\left.0),\left(\widehat{G_{1}}(x)\left|\widehat{G_{2}}(x)\right| \widehat{G_{3}}(x)\right)\right\rangle$. Then
(i) $\left(\mathcal{C}_{r}\right)^{\perp}=\left\langle\widehat{F}_{1}(x)\right\rangle, \widehat{F_{1}}(x)=\frac{x^{r}-1}{\operatorname{gcd}\left(F_{1}^{*}(x), G_{1}^{*}(x)\right)}$ and $\operatorname{deg}\left(\widehat{F_{1}}(x)\right)=r-\operatorname{deg}\left(g c d\left(F_{1}(x), G_{1}(x)\right)\right)$.
(ii) $\left(\mathcal{C}_{s}\right)^{\perp}=\left\langle\widehat{F_{2}}(x)\right\rangle, \widehat{F_{2}}(x)=\frac{x^{s}-1}{\operatorname{gcd}\left(F_{2}^{*}(x), G_{2}^{*}(x)\right)}$ and $\operatorname{deg}\left(\widehat{F_{2}}(x)\right)=s-\operatorname{deg}\left(g c d\left(F_{2}(x), G_{2}(x)\right)\right)$.
(iii) $\widehat{F_{1}}(x) \left\lvert\, \frac{\left(x^{r}-1\right)^{2}}{F_{1}^{*}(x) G_{1}^{*}(x)}\right.$ and $\widehat{F_{2}}(x) \left\lvert\, \frac{\left(x^{s}-1\right)^{2}}{F_{2}^{*}(x) G_{2}^{*}(x)}\right.$.
(iv) $\left(\mathcal{C}_{t}\right)^{\perp} \subseteq\left\langle\widehat{G}_{3}(x)\right\rangle$ and so $\widehat{G_{3}}(x) \left\lvert\, \frac{x^{t}-1}{G_{3}^{*}(x)}\right.$.
(v) If $F_{1}(x) \mid G_{1}(x)$ and $F_{2}(x) \mid G_{2}(x)$, then $\widehat{G_{3}}(x)=\frac{x^{t}-1}{G_{3}^{*}(x)}$ and so $\operatorname{deg}\left(\widehat{G_{3}}(x)\right)=t-$ $\operatorname{deg}\left(G_{3}(x)\right)$.
(vi) $\widehat{G_{1}}(x)=\nu(x) \frac{\left(x^{r}-1\right)}{F_{1}^{*}(x)}$ for some $\nu(x) \in \mathbb{Z}_{2}[x]$ with

$$
\operatorname{deg}(\nu(x)) \leq \operatorname{deg}\left(F_{1}(x)\right)-\operatorname{deg}\left(g c d\left(F_{1}(x), G_{1}(x)\right)\right)
$$

(vii) $\widehat{G_{2}}(x)=\rho(x) \frac{\left(x^{s}-1\right)}{F_{2}^{*}(x)}$ for some $\rho(x) \in \mathbb{Z}_{2}[x]$ with

$$
\operatorname{deg}(\rho(x)) \leq \operatorname{deg}\left(F_{2}(x)\right)-\operatorname{deg}\left(g c d\left(F_{2}(x), G_{2}(x)\right)\right)
$$

(viii) $\widehat{G_{3}}(x)=\sigma(x) \frac{\left(x^{t}-1\right) \operatorname{gcd}\left(F_{1}^{*}(x) F_{2}^{*}(x), F_{1}^{*}(x) G_{2}^{*}(x), F_{2}^{*}(x) G_{1}^{*}(x)\right)}{F_{1}^{*}(x) F_{2}^{*}(x) G_{3}^{*}(x)}$ for some $\sigma(x) \in \mathbb{Z}_{2}[x]$.

Proof. (i) Let $a(x) \in\left(\mathcal{C}_{r}\right)^{\perp}$. Then by Proposition 4.2(i), $(a(x)|0| 0) \in \mathcal{C}^{\perp}$. Hence, clearly $a(x) \in\left\langle\widehat{F_{1}}(x)\right\rangle$. So $\left(\mathcal{C}_{r}\right)^{\perp} \subseteq\left\langle\widehat{F_{1}}(x)\right\rangle$. Since $\left(\widehat{F_{1}}(x)|0| 0\right) \in \mathcal{C}^{\perp}$, again by Proposition $4.2(\mathrm{i})$, $\widehat{F_{1}}(x) \in\left(\mathcal{C}_{r}\right)^{\perp}$. Thus $\left(\mathcal{C}_{r}\right)^{\perp}=\left\langle\widehat{F_{1}}(x)\right\rangle$. Now, see part (iv) of Proposition 3.13
(ii) Similar to part (i).
(iii) By Proposition 4.2, Proposition 4.3(i) and the previous parts.
(iv) Similar to part (i).
(v) Notice that $\left(\mathcal{C}^{\perp}\right)_{t}=\left\langle\widehat{G_{3}}(x)\right\rangle$. Now, use Proposition 4.3(v).
(vi) Since $\left(\widehat{G_{1}}(x)\left|\widehat{G_{2}}(x)\right| \widehat{G_{3}}(x)\right) \in \mathcal{C}^{\perp}$, then from

$$
\left(\widehat{G_{1}}(x)\left|\widehat{G_{2}}(x)\right| \widehat{G_{3}}(x)\right) \circ\left(F_{1}(x)|0| 0\right)=0 \quad \bmod \left(x^{m}-1\right)
$$

it follows that $\widehat{G_{1}}(x) F_{1}^{*}(x)=0 \bmod \left(x^{r}-1\right)$. Hence there exists a $\nu(x) \in \mathbb{Z}_{2}[x]$ such that $\widehat{G_{1}}(x)=\nu(x) \frac{\left(x^{r}-1\right)}{F_{1}^{*}(x)}$. For the second claim, use part (i) and Proposition 3.20(i).
(vii) Similart to part (vi).
(viii) Set $\mathbf{g}(x):=\operatorname{gcd}\left(F_{1}(x) F_{2}(x), F_{1}(x) G_{2}(x), F_{2}(x) G_{1}(x)\right)$. Notice that

$$
\begin{aligned}
\frac{F_{1}(x) F_{2}(x)}{\mathbf{g}(x)}\left(G_{1}(x)\left|G_{2}(x)\right| G_{3}(x)\right) & -\frac{F_{2}(x) G_{1}(x)}{\mathbf{g}(x)}\left(F_{1}(x)|0| 0\right)-\frac{F_{1}(x) G_{2}(x)}{\mathbf{g}(x)}\left(0\left|F_{2}(x)\right| 0\right) \\
& =\left(0|0| \frac{F_{1}(x) F_{2}(x) G_{3}(x)}{\mathbf{g}(x)}\right) \in \mathcal{C}
\end{aligned}
$$

Since $\left(\widehat{G_{1}}(x)\left|\widehat{G_{2}}(x)\right| \widehat{G_{3}}(x)\right) \in \mathcal{C}^{\perp}$, then

$$
\left(\widehat{G_{1}}(x)\left|\widehat{G_{2}}(x)\right| \widehat{G_{3}}(x)\right) \circ\left(0|0| \frac{F_{1}(x) F_{2}(x) G_{3}(x)}{\mathbf{g}(x)}\right)=0 \quad \bmod \left(x^{m}-1\right)
$$

Hence $\widehat{G_{3}}(x) \frac{F_{1}^{*}(x) F_{2}^{*}(x) G_{3}^{*}(x)}{\operatorname{gcd}\left(F_{1}^{*}(x) F_{2}^{*}(x), F_{1}^{*}(x) G_{2}^{*}(x), F_{2}^{*}(x) G_{1}^{*}(x)\right)}=0 \bmod \left(x^{t}-1\right)$. Consequently there exists a $\sigma(x) \in \mathbb{Z}_{2}[x]$ such that $\widehat{G_{3}}(x)=\sigma(x) \frac{\left(x^{t}-1\right) \operatorname{gcd}\left(F_{1}^{*}(x) F_{2}^{*}(x), F_{1}^{*}(x) G_{2}^{*}(x), F_{2}^{*}(x) G_{1}^{*}(x)\right)}{F_{1}^{*}(x) F_{2}^{*}(x) G_{3}^{*}(x)}$.

The proof of the next proposition is similar to that of Proposition 3.3 of [1].
Proposition 4.5. Let $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(G_{1}(x)|0| G_{3}(x)\right)\right\rangle$ be a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2}. Then \mathcal{C} is permutation equivalent to a code with the generator matrix in the form of

$$
G=\left(\begin{array}{ccc|cc|ccc}
I_{r-\operatorname{deg}\left(F_{1}(x)\right)} & A_{1} & A_{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & I_{s-\operatorname{deg}\left(F_{2}(x)\right)} & C & 0 & 0 & 0 \\
0 & B_{\kappa} & B & 0 & 0 & D_{1} & I_{\kappa} & 0 \\
0 & 0 & 0 & 0 & 0 & D_{2} & D_{3} & I_{t-\operatorname{deg}\left(G_{3}(x)\right)-\kappa}
\end{array}\right)
$$

in which B_{κ} is a full rank square matrix of size $\kappa \times \kappa$, where

$$
\kappa=\operatorname{deg}\left(F_{1}(x)\right)-\operatorname{deg}\left(\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right)\right)
$$

Proposition 4.6. Let $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(G_{1}(x)|0| G_{3}(x)\right)\right\rangle$ be a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2}. Then

$$
\left|\left(\mathcal{C}^{\perp}\right)_{r}\right|=2^{\operatorname{deg}\left(F_{1}(x)\right)}, \quad\left|\left(\mathcal{C}^{\perp}\right)_{s}\right|=2^{\operatorname{deg}\left(F_{2}(x)\right)}, \quad\left|\left(\mathcal{C}^{\perp}\right)_{t}\right|=2^{\operatorname{deg}\left(G_{3}(x)\right)+\kappa}
$$

where $\kappa=\operatorname{deg}\left(F_{1}(x)\right)-\operatorname{deg}\left(\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right)\right)$.
Proof. The values of the cardinalities can be obtained from the projections on the first r, second s and the last t coordinates of the parity-check matrix of \mathcal{C}.

Proposition 4.7. Let $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(G_{1}(x)|0| G_{3}(x)\right)\right\rangle$ be a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2} with the dual code $\mathcal{C}^{\perp}=\left\langle\left(\widehat{F_{1}}(x)|0| 0\right),\left(0\left|\widehat{F_{2}}(x)\right| 0\right),\left(\widehat{G_{1}}(x) \mid\right.\right.$ $\left.\left.\widehat{G_{2}}(x) \mid \widehat{G_{3}}(x)\right)\right\rangle$. Then $\operatorname{deg}\left(\widehat{G_{3}}(x)\right)=t-\operatorname{deg}\left(G_{3}(x)\right)-\operatorname{deg}\left(F_{1}(x)\right)+\operatorname{deg}\left(\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right)\right)$ and $\widehat{G_{3}}(x)=\frac{\left(x^{t}-1\right) \operatorname{gcd}\left(F_{1}^{*}(x), G_{1}^{*}(x)\right)}{F_{1}^{*}(x) G_{3}^{*}(x)}$.

Proof. First, note that $\left(\mathcal{C}^{\perp}\right)_{t}=\left\langle\widehat{G_{3}}(x)\right\rangle$. So $\left|\left(\mathcal{C}^{\perp}\right)_{t}\right|=2^{t-\operatorname{deg}\left(\widehat{G_{3}}(x)\right)}$. On the other hand $\left|\left(\mathcal{C}^{\perp}\right)_{t}\right|=2^{\operatorname{deg}\left(G_{3}(x)\right)+\operatorname{deg}\left(F_{1}(x)\right)-\operatorname{deg}\left(\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right)\right)}$, Proposition 4.6. Therefore

$$
\operatorname{deg}\left(\widehat{G_{3}}(x)\right)=t-\operatorname{deg}\left(G_{3}(x)\right)-\operatorname{deg}\left(F_{1}(x)\right)+\operatorname{deg}\left(\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right)\right)
$$

Since $G_{2}(x)=0$, then $\widehat{G_{3}}(x)=\sigma(x) \frac{\left(x^{t}-1\right) \operatorname{gcd}\left(F_{1}^{*}(x), G_{1}^{*}(x)\right)}{F_{1}^{*}(x) G_{3}^{*}(x)}$ for some $\sigma(x) \in \mathbb{Z}_{2}[x]$, by Proposition 4.4 (viii). It is easy to see that $\operatorname{deg}(\sigma(x))=0$, and so $\sigma(x)=1$.

Proposition 4.8. Let $\mathcal{C}=\left\langle\left(F_{1}(x)|0| 0\right),\left(0\left|F_{2}(x)\right| 0\right),\left(G_{1}(x)|0| G_{3}(x)\right)\right\rangle$ be a triple cyclic code of lenght (r, s, t) over \mathbb{Z}_{2} with the dual code

$$
\mathcal{C}^{\perp}=\left\langle\left(\widehat{F_{1}}(x)|0| 0\right),\left(0\left|\widehat{F_{2}}(x)\right| 0\right),\left(\widehat{G_{1}}(x)\left|\widehat{G_{2}}(x)\right| \widehat{G_{3}}(x)\right)\right\rangle .
$$

Let $\widehat{G_{1}}(x)=\nu(x) \frac{\left(x^{r}-1\right)}{F_{1}^{*}(x)}$ and $\zeta(x)=\frac{G_{1}(x)}{\operatorname{gcd}\left(F_{1}(x), G_{1}(x)\right)}$. Then
(i) $\nu(x) x^{m-\operatorname{deg}\left(G_{1}(x)\right)-1} \zeta^{*}(x)+x^{m-\operatorname{deg}\left(G_{3}(x)\right)-1}=0 \bmod \frac{F_{1}^{*}(x)}{\operatorname{gcd}\left(F_{1}^{*}(x), G_{1}^{*}(x)\right)}$.
(ii) $\nu(x)=x^{m-\operatorname{deg}\left(G_{3}(x)\right)+\operatorname{deg}\left(G_{1}(x)\right)}\left(\zeta^{*}(x)\right)^{-1} \bmod \frac{F_{*}^{*}(x)}{\operatorname{gcd}\left(F_{1}^{*}(x), G_{1}^{*}(x)\right)}$.

Proof. The proof is similar to that of Proposition 4.18 and Corollary 4.19 of [1].

References

[1] J. Borges, C. Fernández-Córdoba and R. Ten-Valls, \mathbb{Z}_{2}-double cyclic codes, arXiv preprint, arXiv: 1410.5604v1 (2014).
[2] Y. Cao, Generalized quasi-cyclic codes over Galois rings: structural properties and enumeration, Appl. Algebra Eng. Commun. Comput. 22, 219-233 (2011).
[3] Y. Cao, Structural properties and enumeration of 1-generator generalized quasi-cyclic codes, Des. Codes Crypto. 60, 67-79 (2011).
[4] M. Esmaeili and S. Yari, Generalized quasi-cyclic codes: structural properties and codes construction. Appl. Algebra Eng. Commun. Comput. 20, 159-173 (2009).
[5] J. Gao, F.-W. Fu, L. Shen and W. Ren, Some results on Generalized quasi-cyclic codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}$. IEICE Trans. Fund. 97, 1005-1011 (2014).
[6] J. Gao, M. Shi, T. Wu and F. W. Fu, On double cyclic codes over \mathbb{Z}_{4}, Finite Fields Their Appl. 39, 233-250 (2016).
[7] K. Guenda and T. A. Gulliver, Construction of cyclic codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$ for DNA computing. Appl. Algebra Eng. Commun. Comput. 24 (6), 445-459 (2013).
[8] A. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Slone and P. Sole, The \mathbb{Z}_{4} linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inf. Theory 40 (4), 301-319 (1994).
[9] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge (2003).
[10] F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting codes, North Holland (1977).
[11] I. Siap and N. Kulhan, The structure of generalized quasi-cyclic codes, Appl. Math. E-Notes 5, 24-30 (2005).

Author information

Hojjat Mostafanasab, Department of Mathematics and Applications, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran.
E-mail: h.mostafanasab@gmail.com
Received: May 4, 2016.
Accepted: December 20, 2016.

