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Abstract In this paper we study some growth properties of entire functions on the basis of

relative L∗-type and relative L∗-weak type of an entire function with respect to another entire

function.

1 Introduction, De�nitions and Notations

We denote by C the set of all �nite complex numbers. Let f be an entire function de-

�ned on C. The maximum modulus function corresponding to entire f is de�ned as Mf (r) =
max {|f (z)| : |z| = r} . To start our paper we just recall the following de�nitions:

De�nition 1.1. The order ρf and lower order λf of an entire function f are de�ned as

ρf = lim sup
r→∞

log[2] Mf (r)

log r
and λf = lim inf

r→∞

log[2] Mf (r)

log r
,

where log[k] x = log
(
log[k−1] x

)
for k = 1, 2, 3, .... and log[0] x = x.

De�nition 1.2. The type σf and lower type σf of an entire function f are de�ned as

σf = lim sup
r→∞

logMf (r)

rρf
and σf = lim inf

r→∞

logMf (r)

rρf
, 0 < ρf < ∞ .

Datta and Jha [4] introduced the de�nition of weak type of an entire function of �nite

positive lower order in the following way:

De�nition 1.3. [4] The weak type τf and the growth indicator τf of an entire function f of �nite

positive lower order λf are de�ned by

τf = lim sup
r→∞

logMf (r)

rλf
and τf = lim inf

r→∞

logMf (r)

rλf
, 0 < λf < ∞ .

Somasundaram and Thamizharasi [6] introduced the notions of L-order and L-type for

entire function where L ≡ L (r) is a positive continuous function increasing slowly i.e., L (ar) ∼
L (r) as r → ∞ for every positive constant `a'. The more generalised concept for L-order and L-
type for entire functions are L∗-order and L∗-type respectively. Their de�nitions are as follows:

De�nition 1.4. [6] The L∗-order ρL
∗

f and the L∗-lower order λL∗

f of an entire function f are

de�ned as

ρL
∗

f = lim sup
r→∞

log[2] Mf (r)

log
[
reL(r)

] and λL∗

f = lim inf
r→∞

log[2]Mf (r)

log
[
reL(r)

] .
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De�nition 1.5. [6] The L∗-type σL∗

f and L∗-lower type σL∗

f of an entire function f are de�ned

as

σL∗

f = lim sup
r→∞

logMf (r)[
reL(r)

]ρL∗
f

and σL∗

f = lim inf
r→∞

logMf (r)[
reL(r)

]ρL∗
f

, 0 < ρL
∗

f < ∞ .

In order to determine the relative growth of two entire functions of same non zero �nite

L∗-lower order one may de�ne the L∗-weak type in the following way:

De�nition 1.6. The L∗-weak type τL
∗

f of an entire function f is de�ned as follows:

τL
∗

f = lim inf
r→∞

logMf (r)[
reL(r)

]λL∗
f

, 0 < λL∗

f < ∞ .

Likewise the growth indicator τL
∗

f of an entire function f can be de�ned in the following manner:

τL
∗

f = lim sup
r→∞

logMf (r)[
reL(r)

]λL∗
f

, 0 < λL∗

f < ∞ .

If an entire function g is non-constant then Mg (r) is strictly increasing and continuous

and its inverse Mg
−1 : (|f (0)| ,∞) → (0,∞) exists and is such that lim

s→∞
M−1

g (s) = ∞. In the

line of Somasundaram and Thamizharasi [6] and Bernal [1], one may de�ne the relative L∗-order

of an entire function in the following manner :

De�nition 1.7. {[3], [5]} The relativeL∗-order ρL
∗

g (f) and relativeL∗-lower λL∗

g (f) of an entire
function f with respect to another entire function g are de�ned as

ρL
∗

g (f) = lim sup
r→∞

logM−1
g Mf (r)

log
[
reL(r)

] and λL∗

g (f) = lim inf
r→∞

logM−1
g Mf (r)

log
[
reL(r)

] .

In order to determine the relative growth of two entire functions having same non zero

�nite relative L∗-order with respect to another entire function, one may de�ne the concept of the

relative L∗-type and relative L∗-lower type in the following manner:

De�nition 1.8. The relative L∗-type σL∗

g (f) and relative L∗-lower type σL∗

g (f) of an entire

function f with respect to g are de�ned as follows:

σL∗

g (f) = lim sup
r→∞

M−1
g Mf (r)[

reL(r)
]ρL∗

g (f)
and σL∗

g (f) = lim inf
r→∞

M−1
g Mf (r)[

reL(r)
]ρL∗

g (f)
, 0 < ρL

∗

g (f) < ∞ .

Analogusly, in order to determine the relative growth of two entire functions having

same non zero �nite relative L∗-lower order with respect to another entire function, one can

de�ne the relative L∗-weak type in the following way:

De�nition 1.9. The relative L∗-weak type τL
∗

g (f) of an entire function f with respect to g of

�nite positive relative L∗-lower order λL∗

g (f) is de�ned as:

τL
∗

g (f) = lim inf
r→∞

M−1
g Mf (r)[

reL(r)
]λL∗

g (f)
, 0 < λL∗

g (f) < ∞.

Similarly, the growth indicator τL
∗

g (f) of an entire function f with respect to another entire

function g can be de�ned in the following manner:

τL
∗

g (f) = lim sup
r→∞

M−1
g Mf (r)[

reL(r)
]λL∗

g (f)
, 0 < λL∗

g (f) < ∞.

In the paper we study some relative growth properties of entire functions with respect

to another entire function on the basis of relative L∗-type and relative L∗-weak type. We do

not explain the standard de�nitions and notations in the theory of entire functions as those are

available in [7].
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2 Lemma

In this section we present a lemma due to Datta et al. [2]:

Lemma 2.1. [2] Let f and g be any two entire functions such that 0 ≤ λL∗

f ≤ ρL
∗

f < ∞ and

0 ≤ λg ≤ ρg < ∞. Then

λL∗

f

ρg
≤ λL∗

g (f) ≤ min

{
λL∗

f

λg
,
ρL

∗

f

ρg

}
≤ max

{
λL∗

f

λg
,
ρL

∗

f

ρg

}
≤ ρL

∗

g (f) ≤
ρL

∗

f

λg
.

3 Theorems

In this section we state the main results of the paper.

Theorem 3.1. Let f and g be any two entire functions such that 0 ≤ ρL
∗

f < ∞ and 0 ≤ λg ≤
ρg < ∞. Then

max


[
σL∗

f

τg

] 1

λg

,

[
σL∗

f

τg

] 1

λg

 ≤ σL∗

g (f) ≤

[
σL∗

f

σg

] 1

ρg

.

Proof. From the de�nitions of σL∗

f and σL∗

f , we have for all suf�ciently large values of r that

Mf (r) ≤ exp

[(
σL∗

f + ε
) [

reL(r)
]ρL∗

f

]
, (3.1)

Mf (r) ≥ exp

[(
σL∗

f − ε
) [

reL(r)
]ρL∗

f

]
(3.2)

and also for a sequence of values of r tending to in�nity, we get that

Mf (r) ≥ exp

[(
σL∗

f − ε
) [

reL(r)
]ρL∗

f

]
, (3.3)

Mf (r) ≤ exp

[(
σL∗

f + ε
) [

reL(r)
]ρL∗

f

]
. (3.4)

Similarly from the de�nitions of σg and σg, it follows for all suf�ciently large values of r that

Mg (r) ≤ exp [(σg + ε) · rρg ]

i.e., r ≤ M−1

g [exp [(σg + ε) · rρg ]]

i.e., M−1

g (r) ≥

[(
log r

(σg + ε)

) 1

ρg

]
and (3.5)

M−1

g (r) ≤

[(
log r

(σg − ε)

) 1

ρg

]
. (3.6)

Also for a sequence of values of r tending to in�nity, we obtain that

M−1

g (r) ≤

[(
log r

(σg − ε)

) 1

ρg

]
and (3.7)

M−1

g (r) ≥

[(
log r

(σg + ε)

) 1

ρg

]
. (3.8)
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From the de�nitions of τL
∗

f and τL
∗

f , we have for all suf�ciently large values of r that

Mf (r) ≤ exp

[(
τL

∗

f + ε
) [

reL(r)
]λL∗

f

]
, (3.9)

Mf (r) ≥ exp

[(
τL

∗

f − ε
) [

reL(r)
]λL∗

f

]
(3.10)

and also for a sequence of values of r tending to in�nity, we get that

Mf (r) ≥ exp

[(
τL

∗

f − ε
) [

reL(r)
]λL∗

f

]
, (3.11)

Mf (r) ≤ exp

[(
τL

∗

f + ε
) [

reL(r)
]λL∗

f

]
. (3.12)

Similarly from the de�nitions of τg and τg, it follows for all suf�ciently large values of r that

Mg (r) ≤ exp
[
(τg + ε) · rλg

]
i.e., r ≤ M−1

g

[
exp

[
(τg + ε) · rλg

]]
i.e., M−1

g (r) ≥

[(
log r

(τg + ε)

) 1

λg

]
and (3.13)

M−1

g (r) ≤

[(
log r

(τg − ε)

) 1

λg

]
. (3.14)

Also for a sequence of values of r tending to in�nity, we obtain that

M−1

g (r) ≤

[(
log r

(τg − ε)

) 1

λg

]
and (3.15)

M−1

g (r) ≥

[(
log r

(τg + ε)

) 1

λg

]
. (3.16)

Now from (3.3) and in view of (3.13), we get for a sequence of values of r tending to in�nity

that

M−1

g Mf (r) ≥ M−1

g

[
exp

[(
σL∗

f − ε
) [

reL(r)
]ρL∗

f

]]

i.e., M−1

g Mf (r) ≥


 log exp

[(
σL∗

f − ε
) [

reL(r)
]ρL∗

f

]
(τg + ε)


1

λg



i.e., M−1

g Mf (r) ≥


(
σL∗

f − ε
)

(τg + ε)


1

λg

·
[
reL(r)

] ρL
∗

f
λg

.

Since in view of Lemma 2.1,
ρL

∗
f

λg
≥ ρL

∗

g (f) and as ε (> 0) is arbitrary, therefore it follows from

above that

lim sup
r→∞

M−1
g Mf (r)[

reL(r)
]ρL∗

g (f)
≥

[
σL∗

f

τg

] 1

λg

i.e., σL∗

g (f) ≥

[
σL∗

f

τg

] 1

λg

. (3.17)
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Similarly from (3.2) and in view of (3.16), it follows for a sequence of values of r tending to

in�nity that

M−1

g Mf (r) ≥ M−1

g

[
exp

[(
σL∗

f − ε
) [

reL(r)
]ρL∗

f

]]

i.e., M−1

g Mf (r) ≥


 log exp

[(
σL∗

f − ε
) [

reL(r)
]ρL∗

f

]
(τg + ε)


1

λg



i.e., M−1

g Mf (r) ≥


(
σL∗

f − ε
)

(τg + ε)


1

λg

·
[
reL(r)

] ρL
∗

f
λg

.

Since in view of Lemma 2.1, it follows that
ρL

∗
f

λg
≥ ρL

∗

g (f) . Also ε (> 0) is arbitrary, so we get

from above that

lim sup
r→∞

M−1
g Mf (r)[

reL(r)
]ρL∗

g (f)
≥

[
σL∗

f

τg

] 1

λg

i.e., σL∗

g (f) ≥

[
σL∗

f

τg

] 1

λg

. (3.18)

Again in view of (3.6), we have from (3.1) for all suf�ciently large values of r that

M−1

g Mf (r) ≤ M−1

g

[
exp

[(
σL∗

f + ε
) [

reL(r)
]ρL∗

f

]]

i.e.,M−1

g Mf (r) ≤


 log exp

[(
σL∗

f + ε
) [

reL(r)
]ρL∗

f

]
(σg − ε)


1

ρg



i.e., M−1

g Mf (r) ≤


(
σL∗

f + ε
)

(σg − ε)


1

ρg

·
[
reL(r)

] ρL
∗

f
ρg

. (3.19)

As in view of Lemma 2.1, it follows that
ρL∗
f

ρg
≤ ρL

∗

g (f) . Since ε (> 0) is arbitrary, we get from

(3.19) that

lim sup
r→∞

M−1
g Mf (r)[

reL(r)
]ρL∗

g (f)
≤

[
σL∗

f

σg

] 1

ρg

i.e., σL∗

g (f) ≤

[
σL∗

f

σg

] 1

ρg

. (3.20)

Thus the theorem follows from (3.17), (3.18) and (3.20).

The conclusion of the following corollary can be carried out from (3.6) and (3.9); (3.9)
and (3.14) respectively after applying the same technique of Theorem 3.1 and with the help of

Lemma 2.1. Therefore its proof is omitted.
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Corollary 3.2. Let f and g be any two entire functions such that 0 ≤ λL∗

f < ∞ and 0 ≤ λg ≤
ρg < ∞. Then

σL∗

g (f) ≤ min


[
τL

∗

f

τg

] 1

λg

,

[
τL

∗

f

σg

] 1

ρg

 .

Similarly in the line of Theorem 3.1 and with the help of Lemma 2.1, one may easily

carried out the following theorem from pairwise inequalities numbers (3.10) and (3.13) ; (3.7)
and (3.9); (3.6) and (3.12) respectively and therefore its proofs is omitted:

Theorem 3.3. Let f and g be any two entire functions such that 0 ≤ λL∗

f ≤ ρL
∗

f < ∞ and

0 ≤ λg ≤ ρg < ∞. Then[
τL

∗

f

τg

] 1

λg

≤ τL
∗

g (f) ≤ min


[
τL

∗

f

σg

] 1

ρg

,

[
τL

∗

f

σg

] 1

ρg

 .

Corollary 3.4. Let f and g be any two entire functions such that 0 ≤ ρL
∗

f < ∞ and 0 ≤ λg ≤
ρg < ∞. Then

τL
∗

g (f) ≥ max


[
σL∗

f

σg

] 1

ρg

,

[
σL∗

f

τg

] 1

λg

 .

With the help of Lemma 2.1, the conclusion of the above corollary can be carry out from

(3.2) , (3.5) and (3.2) , (3.13) respectively after applying the same technique of Theorem 3.1 and

therefore its proof is omitted.

Theorem 3.5. Let f and g be any two entire functions such that 0 ≤ ρL
∗

f < ∞ and 0 ≤ λg ≤
ρg < ∞. Then [

σL∗

f

τg

] 1

λg

≤ σL∗

g (f) ≤ min


[
σL∗

f

σg

] 1

ρg

,

[
σL∗

f

σg

] 1

ρg

 .

Proof. From (3.2) and in view of (3.13), we get for all suf�ciently large values of r that

M−1

g Mf (r) ≥ M−1

g

[
exp

[(
σL∗

f − ε
) [

reL(r)
]ρL∗

f

]]

i.e., M−1

g Mf (r) ≥


 log exp

[(
σL∗

f − ε
) [

reL(r)
]ρL∗

f

]
(τg + ε)


1

λg



i.e., M−1

g Mf (r) ≥


(
σL∗

f − ε
)

(τg + ε)


1

λg

·
[
reL(r)

] ρL
∗

f
λg

.

Now in view of Lemma 2.1, it follows that
ρL∗
f

λg
≥ ρL

∗

g (f) . Since ε (> 0) is arbitrary, we get

from above that

lim inf
r→∞

M−1
g Mf (r)[

reL(r)
]ρL∗

g (f)
≥

[
σL∗

f

τg

] 1

λg

i.e., σL∗

g (f) ≥

[
σL∗

f

τg

] 1

λg

. (3.21)
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Further in view of (3.7) , we get from (3.1) for a sequence of values of r tending to in�nity that

M−1

g Mf (r) ≤ M−1

g

[
exp

[(
σL∗

f + ε
) [

reL(r)
]ρL∗

f

]]

i.e., M−1

g Mf (r) ≤


 log exp

[(
σL∗

f + ε
) [

reL(r)
]ρL∗

f

]
(σg − ε)


1

ρg



i.e., M−1

g Mf (r) ≤


(
σL∗

f + ε
)

(σg − ε)


1

ρg

·
[
reL(r)

] ρL
∗

f
ρg

. (3.22)

Again as in view of Lemma 2.1,
ρL∗
f

ρg
≤ ρL

∗

g (f) and ε (> 0) is arbitrary, therefore we get from

(3.22) that

lim inf
r→∞

M−1
g Mf (r)[

reL(r)
]ρL∗

g (f)
≤

[
σL∗

f

σg

] 1

ρg

i.e., σL∗

g (f) ≤

[
σL∗

f

σg

] 1

ρg

. (3.23)

Likewise from (3.4) and in view of (3.6), it follows for a sequence of values of r tending to

in�nity that

M−1

g Mf (r) ≤ M−1

g

[
exp

[(
σL∗

f + ε
) [

reL(r)
]ρL∗

f

]]

i.e., M−1

g Mf (r) ≤


 log exp

[(
σL∗

f + ε
) [

reL(r)
]ρL∗

f

]
(σg − ε)


1

ρg



i.e., M−1

g Mf (r) ≤


(
σL∗

f + ε
)

(σg − ε)


1

ρg

·
[
reL(r)

] ρL
∗

f
ρg

. (3.24)

Analogously, we get from (3.24) that

lim inf
r→∞

M−1
g Mf (r)[

reL(r)
]ρL∗

g (f)
≤

[
σL∗

f

σg

] 1

ρg

i.e., σL∗

g (f) ≤

[
σL∗

f

σg

] 1

ρg

, (3.25)

since in view of Lemma 2.1,
ρL∗
f

ρg
≤ ρL

∗

g (f) and ε (> 0) is arbitrary.

Thus the theorem follows from (3.21), (3.23) and (3.25).

Corollary 3.6. Let f and g be any two entire functions such that 0 ≤ λL∗

f < ∞ and 0 ≤ λg ≤
ρg < ∞. Then

σL∗

g (f) ≤ min


[
τL

∗

f

τg

] 1

λg

,

[
τL

∗

f

τg

] 1

λg

,

[
τL

∗

f

σg

] 1

ρg

,

[
τL

∗

f

σg

] 1

ρg

 .
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The conclusion of the above corollary can be carried out from pairwise inequalities no

(3.6) and (3.12) ; (3.7) and (3.9) ; (3.12) and (3.14); (3.9) and (3.15) respectively after applying
the same technique of Theorem 3.5 and with the help of Lemma 2.1. Therefore its proof is

omitted.

Similarly in the line of Theorem 3.1 and with the help of Lemma 2.1, one may easily

carried out the following theorem from pairwise inequalities no (3.11) and (3.13) ; (3.10) and
(3.16); (3.6) and (3.9) respectively and therefore its proofs is omitted:

Theorem 3.7. Let f and g be any two entire functions such that 0 ≤ λL∗

f < ∞ and 0 ≤ λg ≤
ρg < ∞. Then

max


[
τL

∗

f

τg

] 1

λg

,

[
τL

∗

f

τg

] 1

λg

 ≤ τL
∗

g (f) ≤

[
τL

∗

f

σg

] 1

ρg

.

Corollary 3.8. Let f and g be any two entire functions such that 0 ≤ λL∗

f ≤ ρL
∗

f < ∞ and

0 ≤ λg ≤ ρg < ∞. Then

τL
∗

g (f) ≥ max


[
σL∗

f

σg

] 1

ρg

,

[
σL∗

f

σg

] 1

ρg

,

[
σL∗

f

τg

] 1

λg

,

[
σL∗

f

τg

] 1

λg

 .

The conclusion of the above corollary can be carried out from pairwise inequalities no

(3.3) and (3.5) ; (3.2) and (3.8) ; (3.3) and (3.13); (3.2) and (3.16) respectively after applying

the same technique of Theorem 3.5 and with the help of Lemma 2.1. Therefore its proof is

omitted.
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