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Abstract In this article, two prominent conjugate gradient (CG) parameters were hybridized
to proposed an efficient solver for symmetric nonlinear equations without computing exact gradi-
ent and Jacobian with a very low memory requirement. The global convergence of the proposed
method was also established under some mild conditions with nonmonotone line search. Nu-
merical results show that the method is efficient for large-scale problems.

1 Introduction
Let us consider the systems of symmetric nonlinear equations
F(z) =0, (1.1)

where F' : R™ — R"™ is a nonlinear mapping. Often, the mapping, F' is assumed to satisfying the
following assumptions:
Al. There exists an z* € R" s.t F(z*) =0
A2. F'is a continuously differentiable mapping in a neighborhood of z*
A3. F'(z*) is invertible
A4. The Jacobian F" (z) is symmetric.
where the symmetry means that the Jacobian J(z) := FZ(z) is symmetric; that is, J(z) =
J(z)T. This class of special equations come from many practical problems such as an uncon-
strained optimization problem, a saddle point problem, Karush-Kuhn-Tucker (KKT) of equality
constrained optimization problem, the discritized two-point boundary value problem, the dis-
critized elliptic boundary value problem, and etc. Equation (1.1) is the first-order necessary
condition for the unconstrained optimization problem where F' is the gradient mapping of some
function f : R — R,

minf(z), zeR". (1.2)

A large number of efficient solvers for large-scale symmetric nonlinear equations have been
proposed, analyzed, and tested by different researchers. Among them are [4, 2, 10]. Still the
matrix storage and solving of n-linear system are required in the BFGS type methods presented
in the literature. The recent designed nonmonotone spectral gradient algorithm [1] falls within
the frame work of matrix-free.
The conjugate gradient methods for symmetric nonlinear equations has received a good attension
and take an appropriate progress. However, Li and Wang [5] proposed a modified Flectcher-
Reeves conjugate gradient method which is based on the work of Zhang et al. [3], and the results
illustrate that their proposed conjugate gradient method is promising. In line with this develop-
ment, further studies on conjugate gradient are [7, 8, 11, 9, 13]. Extensive numerical experiments
showed that each over mentioned method performs quite well. Therefore, motivated by [7] this
article is aim at developing a derivative-free conjugate gradient method for solving symmetric
nonlinear equations without computing the Jacobian matrix with less number of iterations and
CPU time.

this paper is organized as follows: Next section presents the details of the proposed method.
Convergence results are presented in Section 3. Some numerical results are reported in Section
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4. Finally, conclusions are made in Section 5.

2 Efficient Hybrid Conjugate Gradient Method
Recall that, in [13] we used the term

F + apFy) — F)
o= (zk O;kk ) k @.1)

to approximate the gradient V f(zy), which avoids computing exact gradient. Also recall that,
the method in [7] generates the sequence 41 = x + agdy, where the search direction dy, is
given by

d — —Vi(zy) if k=0 2.2)
T -V @) + BERP Ay — 0PRPyy if k> 1 '
where gy, is defined by (2.1), yr. = F(x) + vk) — Fr» 76 = Fr — Fx_1 and
Vi) e prp  Vf(zr) di
B = BPRP — gPrP — Y \k) Gkt 2.3)
S IVf(r-n)l? " IV (i)l
[|.| is the Euclidean norm.
From now on, problem (1.1) is assume to be symmetric and f(z) is defined by
1 2
fla) = SlIF@P. Q4

Then the problem (1.1) is equivalent to the global optimization problem (1.2). However, when
f(z) is given by (2.4):

Vf(xk) = J(Ik)TF(.%‘k) = J(.%‘k)F(fL’k) (25)

which requires the computions of both the Jacobian and the gradient of f. Recall that, from
T T
[6], they defined 3/° = Vi er) vkt ang oS = Vi@e)"dk 1 ow we defined efficient hybrid

) ) dl yk—i dl ye—
direction as:

—Vf(zx if k=0,
dy, = flew) . f o , (2.6)
=V fxk) + B di—y — 0 yp—r  if k>1,
where
He _ Vf(@r) Yk and  9F* — V f(r) " di—1 _
P max{dl_ e, IV f (1) P} P max{dl k1, |V f(zr-1) ]2}
2.7)
Replacing the terms V f(z,) in(2.6)and (2.7) by (2.1), therfore 5}* becomes
T T
]1:1* _ 9 Yk—1 and 95* _ 9 dr—1 (2.8)

— max{d{_y-1, lgr-1]?}’ max{di ye—1; [lge—1 [}

Moreover, the direction d;, given by (2.6) may not be a descent direction of (2.4), then the
standard wolfe and Armijo line searches can not be used to compute the stepsize directly. There-

fore, the nonmonotone line search used in [11, 12, 13] is the best choice to compute the stepsize
ag. Letw; > 0,w; >0, r € (0, 1) be constants and {n; } be a given positive sequence such that

> i < oo 2.9)
k=0

Let a, = max {1,7"} that satisfy

f(og + ardy) — f(or) < —wi||agF (1) |* — wal|lakdi] [* + nif (25). (2.10)
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Algorithm 1

Step 1 : Given zg, o > 0, w € (0,1), r € (0,1) and a positive sequence 7, satisfying (2.9),
then compute dy = —go and set & = 0.

Step 2 : Test a stopping criterion. If yes, then stop; otherwise continue with Step 3.

Step 3 : Compute oy, by the line search (2.10).

Step 4 : Compute x| = ) + apdg.

Step 5 : Compute the search direction by (2.6).

Step 6 : Consider £ = k + 1 and go to step 2.

3 Convergence Result

This section presents global convergence results of an efficient hybrid CG method. To begin
with, defined the level set

Q= {z|f(z) < e"f(x0)}, (3.1
where 7) satisfies
an <n<oo 3.2)
k=0

Lemma 3.1. [4] Let the sequence {x}} be generated by algorithm 1. Then the sequence {||Fy||}
converges and xeQ for all k > 0.

Proof. For all k, from (2.10) we have ||Fyp1]| < (1 + m)2||Fkll < (1 + m)||Fyll. Since n
satisfies (2.9), we conclude that {||F} ||| converges. Moreover, we have for all k&

1
[ Frptll < (14 m)2 || Fill

k
<TI0 +m)? || Rl
=0
e+l
k 2
< [|Foll Zl+m
=0
kil
k 2
<Al |14 30 ]
=0

n —2 n k+1
<||Fo|| | 1+ —— <||Fo|| | 1 + ——
<| o||<+k+1) <18l (1+05)

< || Foll,

where 7 is a constant satisfying (2.9). This implies that z;, € Q.

In order to get the global convergence of DFCG algorithm, we need the following assumptions.
(1) The level set Q defined by (3.1) is bounded

(ii) In some neighbourhood N of Q, the Jacobian of F' is symmetric, bounded and positive
definite. Namely, there exists a constant L. > 0 such that

[J(z) = J(W)I| < Ll|z —yll, Vz,y € N. (3.3)
Li and Fukushima in [4] showed that, there exists positive constants M7, M, and L such that

|F(x)l] < My, ||J(2)]] < Ma,  VaeN, (34)
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IVf(x) =V < Lille—yll, [[J(@)|| <M, Vz,yeN. (3.5

Lemma 3.2. Let the properties of (1.1) above hold. Then we have

lim |Jagdi|| = lim ||sg|| =0, (3.6)
k— oo k — oo
and
k— oo

Proof. by (2.9) and (2.10) we have for all £ > 0,

wi |l F (z1)||* 4 wallowdi||* < fai) — flzra) + e f(zn), (3.8)

by summing the above k inequality, then we obtain:

> willaF(zx)|[* + wallandyl | < (1) = f(m) + Y mif (zr). 3.9)
=0 =0

So, from (3.5) and the fact that {n;} satisfies (2.9) the result follows.
The following result shows that algorithm 1 is globally convergent.

Theorem 3.3. Let the properties of (1.1) hold. Then the sequence {x}} be generated by algo-
rithm 1 converges globally, that is,

liminf ||V f(z)|| = 0. (3.10)
k— oo

Proof. We prove this theorem by contradiction. Suppose that (3.10) is not true, then there exists
a positive constant 7 such that

IVf(zi)ll > 7, VE>O0. (3.11)
Since V f(zy) = JxFg, (3.11) implies that there exists a positive constant 7 satisfying
Bl > 7, ¥k >0. (3.12)

Case (i): limsup,, _, . oy > 0. then by (3.6), we have liminfy, _, o || F%|| = 0. This and
Lemma (3.1) show that limy, _, o ||Fx|| = 0, which contradicts with (3.11).
Case (ii): limsup,, _, . ai = 0. Since oy, > 0,this case implies that

lim aj = 0. (3.13)

k— oo

by definition of g, in (2.1) and the symmetry of the Jacobian, we have

Fy,
— JEFl|
Qg1

llgr = V f ()]

1
= II/ J(wp + tag—1Fi) — Ji)dtFy||
0

< LM?ay_1, (3.14)

where we use (3.4) and (3.5) in the last inequality. (2.9), (2.10) and (3.11) show that there exists
a constant » > 0 such that
llgr|| > 72, Vk > 0. (3.15)

By (2.1) and (3.4), we get

1
||gk|| = H/ J(xk —i—tak,le)detH < MM,, Vk=>O0. (3.16)
0
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From (3.16) and (3.5), we obtain

llyell = llgr — gr—1ll
<llge = V@)l + g1 = VI (@n-)|| + IV f(xr) = VI (zp1)]

< LM} (g1 + ag—2) + Li|sk—1]|. (3.17)

This together with (3.13) and (3.6) shows that limy, _, « ||yx|| = 0. Again from the definition of
our B* we obtain

817 < loc] < M ] —0
= max{||di_ [[lyx—1y lge—117} ~ max{LM7 (w1 + ax—2) + Lil[sp-1], Mi M2}
(3.18)
which implies there exists a constant p € (0, 1) such that for sufficiently large &
18] < p. (3.19)

Without lost of generality, we assume that the above inequalities holds for all £ > 0. Clearly
its not difficult to see that 0,51 * is bounded, also from (3.19) and (3.17) we can conclude that
the sequence {dj} is bounded. Since limy _, o, oy = 0, then a}c = 2k does not satisfy (2.10),
namely

Flan + apdi) > flzr) — willag F(zp)|? — wollagdil * + i f (2x), (3.20)
which implies that

f o + agd) = f(zx)

~ > —wi|lag, F(zx) |2 — wallodil 321
k

By the mean-value theorem, there exists d;, € (0, 1) such that

fan + ogdy) — f(an)
aj,

= Vf(zr + Opodi) T dy. (3.22)

Since {1} C Q is bounded, without loss of generality, we assume z;, — x*. By (2.1) and
(2.8), we have
lim dp = — lim g+ lim B7*dj_ — lim 0 y,_; = -V f(z*), (3.23)
k — oo k— oo k— oo k— o0

where we use (3.18), (2.10) and the fact that the sequence {dj } is bounded.
On the other hand, we have

Jim V(g + Snapdi) = Vf(x*). (3.24)
. — 00
Hence, from (3.21)-(3.24), we obtain

—0,V f(x*) IV f(z*) >0, (3.25)

which means ||V f(2*)|| = 0. This contradicts with (3.11). The proof is completed.

4 Numerical results

In this section, we compared the performance of our method with the Convergence properties of
an iterative method for solving symmetric nonlinear equations [7]. For the both th algorithms
the following parameters are set to w; = wy = 107%, ag = 0.01, r = 0.2 and 1, = ﬁ

The codes for both methods were written in Matlab 7.4 R2010a and run on a personal com-
puter 1.8 GHz CPU processor and 4 GB RAM memory. We stopped the iteration if the toatal
number of iterations exceeds 2000 or ||Fy,|| < 10™*. "-" to represents failure due to; (i) Memory

requirement (ii) Number of iteration exceed 2000 (iii) If ||Fy|| is not a number. The methods
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Table 1. Problem 1

Algorithm CPIM
Dimension Guess iter Time iter Time
500 xy 47 1904618 59 2.720469
I, 44 1.906971 58 2.611969
x3 29 0.357841 55 0.821003
xq 26 0.325717 58 0.852849
1000 ) 30 3.892519 59 8.44528
ry 46 5.123549 57 7.371416
x3 45 5.079378 57 6.675981
rq4 23 2.681203 59 6.413456
10000 xy 47 4232075 58 531.2987
xy 34 296.6762 57 565.5779
x3 27 1952569 57 516.8368
rq4 62 6243007 58 548.0929

Table 2. Problem 2

Algorithm CPIM
Dimension Guess iter Time iter Time
500 ] 11 0.114407 44 0.162467
i) - - - -
3 13 0.04339 20 0.078566
T4 13 0.043487 44 0.1407
1000 ] 14 0.073205 48 0.229995
i) - - - -
3 16 0.0836 27 0.123703
T4 14 0.069656 48 0.225926
10000 T 16 0.545201 62 2.045299
o - - - -
3 14 0.502932 11 0.607766
xq 16 0499957 61 1.984683
100000 T 11 3.803612 4 2.188995
o - - - -
x3 8 2.838421 - -
xqe 11 3.159931 - -
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Table 3. Problem 3

Algorithm CPIM
Dimension Guess iter Time iter Time
1000 ] 20 0.197767 24 0.244292
Ty 16 0.146626 23 0.208834
x3 - - - -
T4 16 0.171042 - -
10000 ] 12 2585215 33 4.466799
xy 20 2.409224 9 1.592982
x3 - - - -
xq4 30 6.443075 - -

were tested on some Benchmark test problems with different initial points. Problem 1 and 2 are
from [13] while the remaining one is an artifitial problem.

Problem 1

F(z) = x+ (sinzy — 1,..., sinz, — 1)T

Problem 2. The discretized Chandrasehar’s H-equation:

Fi(x) =2 — (1 - 55 200, M’L’TT}L)_I, fori=1,2,...,n,

wthee [0,1) and p = %, for 1 <14 < n. (In our experiment we take ¢ = 0.9).

Problem 3.The Singular function:
Fi(z)= %x? + %x%
Fi(z)=—3a? + tad 4+ 122, i=23,...,n—1
F(z) = —%a2 + %23

The tables listed numerical results, where "Iter" and "Time" stand for the total number of
all iterations and the CPU time in seconds, respectively;||F%|| is the norm of the residual at the
stopping point.The numerical results indicate that the proposed Algorithm compared to IPRP
has minimum number of iteration and CPU time respectively. Also z; = (1,1,...,n), z, =
0,0,...,0), 23 =(1,4,3,.... D) anday = (1 - 1,1 -5, 1 - %,... . 1—-1)

1293 ' n/t

5 Conclusion

In this paper, an efficient hybrid conjugate gradient method for solving large-scale symmetric
nonlinear equations is derived. It is a fully derivative-free iterative method which possesses
global convergence under some reasonable conditions. Numerical comparisons using a set of
large-scale test problems show that the proposed method is promising.
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