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Abstract In this paper, partial diamond-Fh dynamic derivative and double diamond-Fh in-
tegral calculus for two-variable functions are introduced on time scales. Also, two-dimensional
Hermite-Hadamard-type integral inequalities for the generalized class of co-ordinated Fh-convex
functions on time scales are established. The applicability of our results ranges from Optimiza-
tion problems to Calculus of Variations and to Economics.

1 Introduction

A set K ⊆ R is said to be convex if ∀ x, y ∈ K, λ ∈ [0, 1], we have

(1− λ)x+ λy ∈ K.

A function f : K → R is said to be convex in the classical sense if ∀ x, y ∈ K, λ ∈ [0, 1], we
have

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

The inequality

(b− a)f
(
a+ b

2

)
≤
∫ b

a

f(x)dx ≤ (b− a)f(a) + f(b)

2
, a, b ∈ R, a < b, (1.1)

holds for any convex function f defined on R. It was first suggested by Hermite in 1881. But
this result was nowhere mentioned in literature and was not widely known as Hermite’s re-
sult. A leading expert on the history and theory of convex functions, Beckenbach [3], wrote that
the inequality (1.1) was proven by Hadamard in 1893. In general, (1.1) is now known as the
Hermite-Hadamard inequality. It has several generalizations and extensions for single, double
and multivariable-time scales and other related integral inequalities for convex functions and
different classes of convex functions on classical intervals with recent extensions to time scales
theory, see for example, [8], [11], [13], [14], [18].

The concept of the theory of time scales was initiated by Stefen Hilger [16] in order to unify
and extend the theory of difference and differential calculus consistently. In this theory, the
delta and nabla calculus for single and two-variable functions are introduced (see [5], [6], [14],
[22]). A linear combination of these delta and nabla dynamics-the diamond-α calculus on time
scales-was developed by Sheng et al. [23]. Since the advent of this notion, several authors have
extended many classical mathematical inequalities to time scales via the diamond-α dynamic
calculus for univariate, bivariate and multivariate functions. For more information, see [8], [17],
[19], [21], [24].

The concepts of the delta and nabla calculus on time scales with applications to Economics,
Optimization and the Calculus of Variations have been introduced and employed in different
directions. For details, interested readers are referred to [1], [3], [4], [5], [7], [9], [10], [11], [14],
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[15]. Among these applications, Bohner [4] presented the time scale version of the simplest
variational problem of finding the function y = u(t) ∈ C1[a, b], a weak extremum minimized by
the functional

J [u] =

∫ b

a

L(t, uσ(t), u∆(t))∆(t), (1.2)

satisfying the Dirichlet boundary conditions u(a) = A, u(b) = B, provided the Lagrangian
L(t, u, u∆) is a class C2 function with respect to all its arguments t, u, u∆. An Economic appli-
cation of the calculus of Variations, using (1.2) can be found in Guzowska et al. [15] while the
nabla version of the variational problem (1.2) can also be found in the paper by Atici et al. [2].

It is worthy to note that a two-variable delta calculus of variations on time scales was initiated
by Ahlbrandt and Morian [1], where an Euler Lagrange equation for double integral variational
problems on time scales was obtained in case of rectangular regions of integration. Meanwhile,
Bohner and Guseinov [7] reformulated Ahlbrandt and Morian’s [1] variational problem, for the
case of ω-type region of integration.

In 2008, Dinu [8] employed the diamond-α calculus of Sheng et al. [23] to establish a full
variant of the classical Hermite-Hadamard inequality (1.1) involving single variable function for
the class of convex functions on time scales.

Nwaeze [17], employed Theorem 3.9 of Dinu [8] for a univariate function on time scales to
prove the following Hadamard’s type result, via the combined diamond-α dynamics, extending
(1.1), for functions defined on a rectangle, that are convex on the coordinates. The result of
Nwaeze [17] reads as follows:

Theorem 1.1. [17] Let a, b, x ∈ T1, c, d, y ∈ T2, with a < b, c < d and f : [a, b]× [c, d]→ R be
such that the partial mappings fy : [a, b] → R, fy(u) := f(u, y) and fx : [c, d] → R, fx(v) :=
f(x, v) defined for all y ∈ [c, d] and x ∈ [a, b], are continuous and convex. Then the following
inequalities hold

1
2

[
1
b−a

∫ b
a
f(x, sα) �α x+ 1

d−c
∫ d
c
f(tα, y) �α y

]
≤ 1

(b−a)(d−c)
∫ b
a

∫ d
c
f(x, y) �α x �α y

≤ 1
2(b−a)(d−c)

∫ b
a
[(d− sα)f(x, c) + (sα − c)f(x, d)] �α x

+ 1
2(b−a)(d−c)

∫ d
c
[(b− tα)f(a, y) + (tα − a)f(b, y)] �α y, (1.3)

where tα = 1
b−a

∫ b
a
t �α t, and sα = 1

d−c
∫ d
c
s �α s.

Recently, the authors [10] introduced a more generalized class of convex function on time
scales and a more general, combined dynamic calculus, referred to as the diamond-Fh calculus,
which includes the delta, nabla and diamond-α calculi of [2], [6] and [23].

Definition 1.2. [10]. Let T be a time scale and let h : JT ⊂ T → R be a non zero non negative
function with the property that h(t) > 0 for all t ≥ 0, where JT is a Fh-convex subset of the real
T. A function f : T → R is said to be diamond-Fh differentiable on Tkk(derived set from T) in
the sense of ∆ and ∇, if f�Fh (t) exists for all t ∈ Tkk, and the diamond-Fh derivative is given by

f�Fh (t) =

(
λ

h(λ)

)s
f∆(t)+

(
1− λ

h(1− λ)

)s
f∇(t), where s ∈ [0, 1], and 0 ≤ λ ≤ 1. (1.4)

If f is defined in t ∈ Tkk for any ε > 0, there is a neighbourhood U of m and n ∈ U , with
µmn = σ(m)− n and νmn = ρ(m)− n such that∣∣∣∣( λ

h(λ)

)s
[f(σ(m))− f(n)]νmn +

(
1− λ

h(1− λ)

)s
[f(ρ(m))− f(n)]µmn − f�Fh (t)µmnνmn

∣∣∣∣∣
< ε|µmnνmn|,

where s ∈ [0, 1] and λ ∈ [0, 1].

Remark 1.3. (i) f�Fh (t) reduces to the diamond-α derivative of Sheng et al. [23] for Fh =
α, s = 1 and h(λ) = 1. Thus every diamond-α differentiable function on T is diamond-Fh
differentiable but the converse is not true (see [13]).
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(ii) If f is diamond-Fh differentiable for 0 ≤ s ≤ 1, and 0 ≤ λ ≤ 1, then f is both ∆ and ∇
differentiable.

(iii) For Fh = 1, s = 1 and h(λ) = 1, the diamond-Fh derivative reduces to the standard ∆

derivative or the standard∇ derivative for Fh = 0, s = 1 and h(λ) = 1 while it representes
a ’weighted dynamic derivative’ for Fh ∈ (0, 1), s = 1 and h(λ) = 1 (see [3], [5]).

(iv) The combined dynamic derivative (1.4) gives a centralized derivative formula on any uni-
formly discrete time scale T when Fh = 1

2 , s = 1 and h(λ) = 1. This feature is particularly
useful in many computational applications (see [23]).

(v) When T = R, then f∆(t) = f∇(t) = f ′(t) and f�Fh (t) becomes the total differential
operator (Ordinary derivative)(see [20]).

Definition 1.4. [10] Let T be a time scale and let h : JT ⊂ T → R be a non zero non negative
function with the property that h(t) > 0 for all t ≥ 0, where JT is a Fh-convex subset of the real
T. The diamond-Fh integral of a function f : T→ R from a to b, where a, b ∈ T is given by∫ b

a

f(t) �Fh t =
(

λ

h(λ)

)s ∫ b

a

f(t)∆t+

(
1− λ

h(1− λ)

)s ∫ b

a

f(t)∇t, s ∈ [0, 1], 0 ≤ λ ≤ 1,

(1.5)
provided that f has a ∆ and ∇ integral on [a, b]T or IT.

Remark 1.5. (i) The equality (1.5) reduces to the diamond-α integral of Sheng et al. [23], if
Fh = α;h(λ) = 1, s = 1 and λ = 1. Thus, every diamond-α integrable function on T is
diamond-Fh integrable but the converse is not true, see [13].

(ii) If f is diamond-Fh integrable for 0 ≤ s ≤ 1, and 0 ≤ λ ≤ 1, then f is both ∆ and ∇
integrable.

Recently, Fagbemigun et al. [13] employed the concept of Definitions 1.2 and 1.4 to prove
the following Hadamard’s type result, among others, for a univariate function involving the class
of Fh-convex functions of the authors [10], to obtain several generalizations of the Hermite-
Hadamard inequality (1.1) on time scales.

Theorem 1.6. [13] Let h : JT ⊂ T → R be a non zero non negative function with the property
that h(t) > 0 for all t ≥ 0, where JT is a Fh-convex subset of the real T and f : IT → R be a
continuous Fh-convex function, a, b, t ∈ IT, with a < b. Then

2s
(
h( 1

2)
)s
f
(
a+b

2

)
≤ 1

b−a
∫ b
a
f(x) �Fh x

≤ f(a)
∫ 1

0

(
λ
h(λ)

)s
∆λ+ f(b)

∫ 1
0

(
1−λ
h(1−λ)

)s
∇λ. (1.6)

Remark 1.7. (i) By choosing x = λa + (1 − λ)b, s = 1, Fh = α and h(·) = 1 in (1.6), we
recover the second inequality of Theorem 3.9 of Dinu [8].

(ii) When T = R, h( 1
2) = 1

2 and s = 1 in inequality (1.6), the first part of the Hermite-
Hadamard inequality (1.1) on classical intervals is recovered.

(iii) The nabla integral version of the first part of Theorem 1.6 is obtained if we choose Fh = 0.

Interestingly, in a more recent paper of Fagbemigun et al. [11], these concepts of the gener-
alized class of Fh-convex functions with a more general, combined diamond-Fh calculus have
been extended to establish double integral inequalities of Hermite-Hadamard-type for functions
defined on time-scaled linear spaces, while solutions of the problems of the calculus of variations
and varying dynamic optimization problems in Economics were obtained with the aid of these
concepts in more recent papers of Fagbemigun et al. [12], [13].

It is the purpose of this paper to establish two-dimensional Hermite-Hadamard-type integral
inequalities for coordinated Fh-convex functions on time scales. An application of our results to
Economic models is also discussed.
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2 Preliminaries

In the sequel, we shall first discuss the following new concepts and definitions.
Let T1 and T2 be two time scales with T1 × T2 = {(x, y) : x ∈ T1, y ∈ T2} which is a

complete metric space with the metric d defined by

d((x, y), (x
′
, y
′
)) = ((x− x

′
)2 + (y − y

′
)2)

1
2 , ∀ (x, y), (x

′
, y
′
) ∈ T1 × T2.

Let σi, ρi, (i = 1, 2) denote respectively the forward jump operator, backward jump operator,
and the diamond-Fh dynamic differentiation operator on Ti.

Definition 2.1. Let f be a real-valued function on T1 × T2, h : JT ⊂ T → R a nonzero non
negative function with the property that h(t) > 0 for all t ≥ 0, where JT is a Fh-convex subset
of the real T. f is said to have a partial �(Fh)1

derivative ∂f(t1,t2)
�(Fh)1

t1
(wrt t1), at (t1, t2) ∈ T1 × T2, if

for each ε > 0, there exists a neighbourhood Ut1 of t1 such that∣∣∣( λ
h(λ)

)s
1
[f(σ1(t1), t2)− f(m, t2, )]µt1m

+

(
1− λ

h(1− λ)

)s
1
[f(ρ1(t1), t2)− f(m, t2)]νt1m− f�(Fh)1 (t1, t2)µt1mνt1m

∣∣∣∣∣ < ε|µt1mνt1m|

(2.1)
for s ∈ [0, 1], 0 ≤ λ ≤ 1 and for all m ∈ Ut1, where Ut1m = σ1(t1)−m, νt1m = ρ1(t1)−m.

Definition 2.2. Let f be a real-valued function on T1 × T2 and h : JT ⊂ T → R an increasing
function with the property that h(t) > 0 for all t ≥ 0, where JT is a Fh-convex subset of the real
T. f is said to have a "partial �(Fh)2

derivative" ∂f(t1,t2)
�(Fh)2

t2
(wrt t2), at (t1, t2) ∈ T1 × T2, if for each

ε > 0, there exists a neighbourhood Ut2 of t2 such that∣∣∣( λ
h(λ)

)s
2
[f(t1, σ2(t2)− f(t1, m)]µt2m

+

(
1− λ

h(1− λ)

)s
2
[f(t1, ρ2(t2)− f(t1, m)]νt2m− f�(Fh)2 (t1, t2)µt2mνt2m

∣∣∣∣∣ < ε|µt2mνt2m|,

(2.2)
for s ∈ [0, 1], 0 ≤ λ ≤ 1 and for all n ∈ Ut2, where Ut2m = σ2(t2)−m, νt2m = ρ2(t2)−m.

These derivatives can also be denoted by f�(Fh)1 (t1, t2) and f�(Fh)2 (t1, t2) respectively.
Before we define the double diamond-Fh dynamic integral, we shall employ the following

remark of [6].

Remark 2.3. [6] Let f be a real-valued function on T1 × T2. If the ∆ and ∇ integrals of f exist
on T1 × T2, then the following types of integrals can be defined:

(i) ∆∆-integral over R0 = [a, b) × [c, d), which is introduced by using partitions consisting of
subrectangles of the form [α, β)× [γ, ∂);

(ii) ∇∇-integral over R1 = (a, b]× (c, d], which is introduced by using partitions consisting of
subrectangles of the form (α, β]× (γ, ∂];

(iii) ∆∇-integral over R2 = [a, b)× (c, d], which is introduced by using partitions consisting of
subrectangles of the form [α, β)× (γ, ∂];

(iv) ∇∆-integral over R3 = (a, b]× [c, d), which is introduced by using partitions consisting of
subrectangles of the form (α, β]× [γ, ∂).

Now let Ū(f) and L̄(f) denote the upper and lower Darboux ∆-integral of f from a to b ;
U(f) and L(f) denote the upper and lower Darboux ∇-integral of f from a to b respectively.
Given the construction of U(f) and L(f), which follows from the properties of supremum and
infimum, we give the following new definition.
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Definition 2.4. Let f be a real-valued function on T1 × T2, h : JT ⊂ T → R a nonzero non
negative function with the property that h(t) > 0 for all t ≥ 0, where JT is a Fh-convex subset
of the real T. If f is ∆-integrable on R0 = [a, b)× [c, d) and∇-integrable on R1 = (a, b]× (c, d],
then it is �Fh-integrable on R = [a, b]× [c, d] and∫

R
f(t, k) �(Fh)1

t �(Fh)2
k =

(
λ
h(λ)

)s ∫ ∫
R0 f(t, k)∆1t∆2k

+
(

1−λ
h(1−λ)

)s ∫ ∫
R1 f(t, k)∇1t∇2k, (2.3)

for all s ∈ [0, 1], 0 ≤ λ ≤ 1 and t, k ∈ JT.

Since Ū(f) ≥ L̄(f) and U(f) ≥ L(f), we may state the following Theorem.

Theorem 2.5. Let f be a real-valued function on T1 × T2, h : JT ⊂ T → R a nonzero non
negative function with the property that h(t) > 0 for all t ≥ 0, where JT is a Fh-convex subset
of the real T. If f be �Fh-integrable on R = [a, b] × [c, d], provided its ∆ and ∇ integrals exist,
then

(i) If Fh = 1, f is ∆∆-integrable on R0 = [a, b)× [c, d);

(ii) If Fh = 0, f is ∇∇-integrable on R1 = (a, b]× (c, d];

(iii) If Fh = 1
2 , f is ∆∆-integrable and ∇∇-integrable on R0 and R1

(iv) If Fh = α, f is double �α-integrable on R = [a, b]× [c, d].

With the introduction of these new concepts, Fagbemigun et al.’s [13] single diamond-Fh
integral variational calculus is now extended to double diamond-Fh integral variational calculus
on time scales as follows.

Let R = [a, b]× [c, d] define a rectangle on T1×T2, h : JT ⊂ T1×T2 → R be a nonzero non
negative function with the property that h(t) > 0 for all t ≥ 0. Consider the functional defined
by

J(�Fh )1(�Fh )2
[u] =

(
λ

h(λ)

)s
J∆1∆2 [u] +

(
1− λ

h(1− λ)

)s
J∇1∇2 [u], (2.4)

for all s, λ ∈ [0, 1], where

J∆1∆2 [u] =

∫ d

c

∫ b

a

L(x, y, u((σ1(x), σ2(y)), u
∆1(x, σ2(y)), u

∆2(σ1(x), y))∆1x,∆2y

and

J∇1∇2 [u] =

∫ d

c

∫ b

a

L(x, y, u((ρ1(x), ρ2(y)), u
∇1(x, ρ2(y)), u

∇2(ρ1(x), y))∇1x,∇2y,

L(x, y, u, p, q) is a continuous functional, together with its partial delta and nabla derivatives of
the first and second order with respect to x, y and partial usual derivatives of the first and second
order with respect to its arguments u, p, q in the domain D(J) of variation of the independent
variables.

3 Main Results

Consider the bi-dimensional time scale interval I2
T : [a, b]IT × [c, d]IT in T2 with a < b, c < d.

Definition 3.1. Let h : JT ⊂ T → R be a non zero non negative function with the property that
h(t) > 0 for all t ≥ 0, where JT is a Fh-convex subset of the real T. A monotonically increasing
function f : I2

T → R on I2
T is Fh-convex on time scale co-ordinates if the partial mappings

fy : [a, b]IT → R, fy(u) := f(u, y), ∀ y ∈ [c, d]IT
and
fx : [c, d]IT → R, fx(v) := f(x, v), ∀ x ∈ [a, b]IT

are continuous and Fh-convex.
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Definition 3.2. Let h : JT ⊂ T → R be a non zero non negative function with the property that
h(t) > 0 for all t ≥ 0 , where JT is a Fh-convex subset of the real T. We say that a monotonically
increasing function f : I2

T → R is Fh-convex on time scale co-ordinates if for all x, y ∈ IT, we
have

f(λx+ (1− λ)y, tu+ (1− t)v) ≤
(

t
h(t)

)s (
λ
h(λ)

)s
f(x, u)

+
(

λ
h(λ)

)s (
1−t
h(1−t)

)s
f(x, v)

+
(

1−λ
h(1−λ)

)s (
t
h(t)

)s
f(y, u)

+
(

1−t
h(1−t)

)s (
1−λ
h(1−λ)

)s
f(y, v),

holds for s ∈ [0, 1], 0 ≤ λ ≤ 1, 0 ≤ t ≤ 1 and (x, u), (x, v), (y, u), (y, v) ∈ I2
T.

It is easy to see that the mapping f : I2
T → R is Fh-convex in I2

T satisfying the following
inequality:

f(λx+ (1− λ)u, λy + (1− λ)v) ≤
(

λ

h(λ)

)s
f(x, y) +

(
1− λ

h(1− λ)

)s
f(u, v) (3.1)

holds for all (x, y), (u, v) ∈ I2
T, s ∈ [0, 1] and 0 ≤ λ ≤ 1.

We state and prove the following Lemma.

Lemma 3.3. Every Fh-convex mapping f : I2
T → R on I2

T is Fh-convex on the co-ordinates.

Proof. Suppose that the mapping f : I2
T → R is Fh-convex in I2

T by (3.1).
Consider the partial mapping fx : [c, d]IT → R, fx(v) := f(x, v).

Then for all s ∈ [0, 1], 0 ≤ λ ≤ 1 and f(u, v) monotonically increasing functions on IT, we have

fx(λu+ (1− λ)v) = f
(
x,
(

λ
h(λ)

)s
u+

(
1−λ
h(1−λ)

)s
v
)

= f
((

λ
h(λ)

)s
x+

(
1−λ
h(1−λ)

)s
x,
(

λ
h(λ)

)s
u+

(
1−λ
h(1−λ)

)s
v
)

≤
(

λ
h(λ)

)s
f(x, u) +

(
1−λ
h(1−λ)

)s
f(x, v)

=
(

λ
h(λ)

)s
fxu+

(
1−λ
h(1−λ)

)s
fxv,

which shows Fh-convexity of fx.
By a similar argument, the partial mappings
fy : [a, b]IT → R, fy(u) := f(u, y), is also Fh-convex for all s ∈ [0, 1], 0 ≤ λ ≤ 1 and f(v, r)
monotonically increasing functions on IT goes likewise and the proof is omitted.

Note that in some special cases, some co-ordinated Fh-convex functions may not necessarily
be Fh-convex on time scales.

Firstly, we discuss and establish a double integral inequality of Hermite-Hadamard type for
a Fh-convex function on time scale co-ordinates.

Theorem 3.4. Let h : JT ⊂ T → R be a non zero non negative function with the property
that h(t) > 0 for all t ≥ 0, where JT is a Fh-convex subset of the real T. Let f : I2

T → R
be a continuous and an integrable Fh-convex function with respect to the function Fh on the
co-ordinates on I2

T. Then for any a, b, c, d ≥ 0, with b > a, d > c and s ∈ [0, 1],

f(MFh , NFh) ≤
( 1

2
h( 1

2 )

)s
Iλ,t(a,b;c,d)
(b−a)(d−c)

≤
(

t
h(t)

)s
IM,y(a,b;c,d)
(b−a)(d−c) +

(
1−t
h(1−t)

)s
IM,N (a,b;c,d)
(b−a)(d−c)

≤
( 1

2
h( 1

2 )

)s 4Ix,y(a,b;c,d)
(b−a)(d−c) , (3.2)
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where

MFh =
∫ b
a
u �Fh u, NFh =

∫ b
a
v �Fh v,

Iλ,t(a, b; c, d) =
∫ b
a

∫ d
c
f(λx+ (1− λ)MFh , ty + (1− t)NFh) �Fh y �Fh x,

IM,y(a, b; c, d) =
∫ b
a

∫ d
c
f
((

λ
h(λ)

)s
x+

(
1−λ
h(1−λ)

)s
MFh , y

)
�Fh x �Fh y,

IM,N (a, b; c, d) =
∫ b
a

∫ d
c
f
((

λ
h(λ)

)s
x+

(
1−λ
h(1−λ)

)s
MFh , NFh)

)
�Fh x �Fh y,

and

Ix,y(a, b; c, d) =
∫ b
a

∫ d
c
f(x, y) �Fh x �Fh y.

Proof. (A) To show the first inequality in (3.2).
We have

f(MFh , NFh)

≤
( 1

2
h( 1

2 )

)s
f
(

1
b−a

∫ b
a
[λx+ (1− λ)MFh ], NFh

)
�Fh x

≤
( 1

2
h( 1

2 )

)s
1
b−a

∫ b
a
f [λx+ (1− λ)MFh , NFh ] �Fh x

≤
( 1

2
h( 1

2 )

)s
1
b−a

∫ b
a
f
(
λx+ (1− λ)MFh ,

1
d−c

∫ d
c
[ty + (1− t)NFh ] �Fh y

)
�Fh x

≤
( 1

2
h( 1

2 )

)s
1
b−a

∫ b
a

[
1
d−c

∫ d
c
f (λx+ (1− λ)MFh , ty + (1− t)NFh) �Fh y

]
�Fh x.

This proves the first inequality in (3.2).
Then by Definition 3.2, we have that( 1

2
h( 1

2 )

)s
1
b−a

∫ b
a

[
1
d−c

∫ d
c
f (λx+ (1− λ)MFh , ty + (1− t)NFh) �Fh y

]
�Fh x

≤
(

t
h(t)

)s
1
b−a

∫ b
a

(
1
d−c

∫ d
c
f
((

λ
h(λ)

)s
x+

(
1−λ
h(1−λ)

)s
MFh , y

)
�Fh y

)
�Fh x

+
(

1−t
h(1−t)

)s
× 1

d−c
∫ d
c
f
((

λ
h(λ)

)s
x+

(
1−λ
h(1−λ)

)s
MFh , NFh)

)
�Fh y �Fh x, (∗)

satisfying the second inequality in (3.2).

Thus from the right hand side of (*), we have(
t
h(t)

)s
1
b−a

∫ b
a

(
1
d−c

∫ d
c
f
((

λ
h(λ)

)s
x+

(
1−λ
h(1−λ)

)s
MFh , y

)
�Fh y

)
�Fh x

+
(

1−t
h(1−t)

)s
× 1

d−c
∫ d
c
f
((

λ
h(λ)

)s
x+

(
1−λ
h(1−λ)

)s
MFh , NFh)

)
�Fh y �Fh x

≤
(

t
h(t)

)s
× 1

d−c
∫ d
c
[
(

λ
h(λ)

)s
1
b−a

∫ b
a
f(x, y) �Fh y �Fh x

+
(

1−λ
h(1−λ)

)s
1
b−a

∫ b
a
f (MFh , y) �Fh x] �Fh y

+
(

1−t
h(1−t)

)s
× 1

d−c
∫ d
c
[
(

λ
h(λ)

)s
· 1
b−a

∫ b
a
f (x,NFh) �Fh x

+
(

1−λ
h(1−λ)

)s
f (MFh , NFh)] �Fh y

≤
(

t
h(t)

)s (
λ
h(λ)

)s
1

(b−a)(d−c)
∫ b
a

∫ d
c
f(x, y) �Fh x �Fh y

+
(

t
h(t)

)s (
1−λ
h(1−λ)

)s
1
d−c

∫ d
c
f(MFh , y) �Fh y

+
(

1−t
h(1−t)

)s (
λ
h(λ)

)s
1
b−a

∫ b
a
f (x,NFh) �Fh x

+
(

1−t
h(1−t)

)s (
1−λ
h(1−λ)

)s
f (MFh , NFh) . (3.3)

Also, from the first inequality in Theorem 1.6, inequality (3.1) and Lemma 3.3, we have

f(MFh , y) ≤

(
1
2

h( 1
2)

)s
1

b− a

∫ b

a

f(x, y) �Fh x (3.4)

and

f(x,NFh)) ≤

(
1
2

h( 1
2)

)s
1

d− c

∫ d

c

f(x, y) �Fh y. (3.5)
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Integrating (3.4) over �Fhy on [c, d]IT and (3.5) over �Fhx on [a, b]IT , we have

1
d− c

∫ d

c

f(MFh , y) �Fh y ≤

(
1
2

h( 1
2)

)s
1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y) �Fh x �Fh y (3.6)

and

1
b− a

∫ b

a

f(x,NFh) �Fh x ≤

(
1
2

h( 1
2)

)s
1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y) �Fh y �Fh x. (3.7)

Using (3.4), (3.5),(3.6) and (3.7), we deduce that (3.3) becomes(
t
h(t)

)s (
λ
h(λ)

)s
1

(b−a)(d−c)
∫ b
a

∫ d
c
f(x, y) �Fh x �Fh y

+
(

t
h(t)

)s (
1−λ
h(1−λ)

)s
1
d−c

∫ d
c
f(MFh , y) �Fh y

+
(

1−t
h(1−t)

)s (
λ
h(λ)

)s
1
b−a

∫ b
a
f (x,NFh) �Fh x

+
(

1−t
h(1−t)

)s (
1−λ
h(1−λ)

)s
f (MFh , NFh)

≤
( 1

2
h( 1

2 )

)s
[
(

t
h(t)

)s (
λ
h(λ)

)s
+
(

t
h(t)

)s (
1−λ
h(1−λ)

)s
+

(
1−t
h(1−t)

)s (
λ
h(λ)

)s
+
(

1−t
h(1−t)

)s (
1−λ
h(1−λ)

)s
]

× 1
(b−a)(d−c)

∫ b
a

∫ d
c
f(x, y) �Fh x�Fh

≤
( 1

2
h( 1

2 )

)s
4

(b−a)(d−c)
∫ b
a

∫ d
c
f(x, y) �Fh x �Fh y.

This proves the third inequality in (3.2).

Theorem 3.5. Let h : JT ⊂ T → R be a non zero non negative function with the property
that h(t) > 0 for all t ≥ 0, where JT is a Fh-convex subset of the real T. Let f : I2

T =
[a, b]IT× [c, d]IT → R be continuous, integrable and co-ordinated Fh-convex on I2

T. Then for any
a, b, c, d ≥ 0, with b > a, d > c, the following inequalities hold

1
2

[
1
b−a

∫ b
a
f(x, MFh) �Fh x+ 1

d−c
∫ d
c
f(NFh , y) �Fh y

]
≤

( 1
2

h( 1
2 )

)s
Ix,y(a,b;c,d)
(b−a)(d−c)

≤ 1
2

 d−MFh
(b−a)(d−c)

h

(
d−MFh

(b−a)(d−c)

)
s

+

 y−NFh
(b−a)(d−c)

h

(
y−NFh

(b−a)(d−c)

)
s Ix∆,y∆

(a, b; c, d)

+ 1
2

 MFh
−c

(b−a)(d−c)

h

(
MFh

−c
(b−a)(d−c)

)
s

+

 NFh
−x

(b−a)(d−c)

h

(
NFh

−x
(b−a)(d−c)

)
s Ix∇,y∇(a, b; c, d), (3.8)

where
MFh =

∫ b
a
u �Fh u, NFh =

∫ b
a
v �Fh v,

Ix,y(a, b; c, d) =
∫ b
a

∫ d
c
f(x, y) �Fh x �Fh y,

Ix∆,y∆
(a, b; c, d) =

∫ b
a

∫ d
c
f(x, y)∆x∆y

and

Ix∇,y∇(a, b; c, d) =
∫ b
a

∫ d
c
f(x, y)∇x∇y.

Proof. Since x = λa+ (1− λ)b for λ ∈ [0, 1], then (1.6) can be written as

f(MFh) ≤
( 1

2
h( 1

2 )

)s
1
b−a

∫ b
a
f(x) �Fh x

≤

 b−MFh
b−a

h

(
b−MFh
b−a

)
s ∫ b

a
f(x)∆x+

 MFh
−a

b−a

h

(
MFh

−a
b−a

)
s ∫ b

a
f(x)∇x,
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where MFh is as defined above.
By Definition 3.1, we have

fx(MFh) ≤
( 1

2
h( 1

2 )

)s
1
d−c

∫ d
c
fx(y) �Fh y

≤

 d−MFh
d−c

h

(
d−MFh
d−c

)
s ∫ d

c
fx(y)∆y +

 MFh
−c

d−c

h

(
MFh

−c
d−c

)
s ∫ d

c
fx(y)∇y,

That is,

f(x,MFh) ≤
( 1

2
h( 1

2 )

)s
1
d−c

∫ d
c
f(x, y) �Fh y

≤

 d−MFh
d−c

h

(
d−MFh
d−c

)
s ∫ d

c
f(x, y)∆y +

 MFh
−c

d−c

h

(
MFh

−c
d−c

)
s ∫ d

c
f(x, y)∇y. (3.9)

Integrating both sides of (3.9) over �Fhx, ∆x and ∇x on [a, b]IT , we obtain

1
b−a

∫ b
a
f(x,MFh) �Fh x ≤

( 1
2

h( 1
2 )

)s
1

(b−a)(d−c)
∫ b
a

∫ d
c
f(x, y) �Fh x �Fh y

≤

 d−MFh
(b−a)(d−c)

h

(
d−MFh

(b−a)(d−c)

)
s ∫ b

a

∫ d
c
f(x, y)∆x∆y

+

 MFh
−c

(b−a)(d−c)

h

(
MFh

−c
(b−a)(d−c)

)
s ∫ b

a

∫ d
c
f(x, y)∇x∇y. (3.10)

By a similar argument, for the partial mapping fy : [a, b]→ R, fy(u) := f(u, y), we obtain

f(NFh , y) ≤
( 1

2
h( 1

2 )

)s
1
b−a

∫ b
a
f(x, y) �Fh x

≤

 y−NFh
b−a

h

(
y−NFh
b−a

)
s ∫ b

a
f(x, y)∆x+

 NFh
−x

b−a

h

(
NFh

−x
b−a

)
s ∫ b

a
f(x, y)∇x. (3.11)

Integrating both sides of (3.11) over �Fhy, ∆y and ∇y on [c, d]IT , we obtain

1
d−c

∫ d
c
f(NFh , y) �Fh x ≤

( 1
2

h( 1
2 )

)s
1

(b−a)(d−c)
∫ b
a

∫ d
c
f(x, y) �Fh x �Fh y

≤

 y−NFh
(b−a)(d−c)

h

(
y−NFh

(b−a)(d−c)

)
s ∫ b

a

∫ d
c
f(x, y)∆x∆y

+

 NFh
−x

(b−a)(d−c)

h

(
NFh

−x
(b−a)(d−c)

)
s ∫ b

a

∫ d
c
f(x, y)∇x∇y. (3.12)

Adding (3.10) and (3.12), we get the desired result (3.8).

Remark 3.6. (i) If Fh = α, s = 1, h( 1
2) =

1
2 , then the first and second inequalities of Theorem

1.1. above are recovered (see Nwaeze [17]).

(ii) If we take IT1 = IT2 = R in Theorem 3.5, we get the second inequality of Theorem 1.1 of
Dragomir [9].

4 Applications

Most dynamic optimization problems in Economics are set up in the following form: a repre-
sentative consumer seeks to maximize his lifetime utility u subject to certain budget constraints
A. There is the (constant) discount factor δ, which satisfies 0 ≤ δ ≤ 1, Cs is consumption
during period s, u(Cs) is the utility the consumer derives from consuming Cs units of con-
sumption in periods s = 0, 1, 2, ..., T . Utility is assumed to be concave: u(Cs) has u(Cs)′ > 0
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and u(Cs)′′ < 0. The consumer receives some income Y in a time period s and decides how
much to consume and save during that same period. If the consumer consumes more today, the
utility or satisfaction he derives from consumption, is forgone tomorrow as the ‘punishment’.
The consumer would always like to consume more but each additional unit consumed during
the same period generates less utility than the previous unit consumed within the same period.
This property of utility function is called the law of diminishing marginal utility (LMDU). This
means that the first unit of consumption of a good or service yields more utility than the second
or subsequent units, with a continuing reduction for greater amounts.

The individual is constrained by the fact that the value function of his consumption, u(C)
must be equal to the value function of his income Ys, plus the assets/debts, As that he might
accommodate in a period s. As+1 is the amount of assets held at the beginning of period s+ 1.
A could be positive or negative; the consumer might save for the future or borrow against the
future at interest rate r in any given period s but the value of AT , which is the debt accrued with
limit or the last period asset holding, has to be nonnegative(the optimal level is naturally zero,
we want to spend all the money we have got and we do not care to leave money behind after
death).

Thus, a simple utility maximization model of household consumption in Economics for a
function of two variables can be set up and solved in time scales settings, using the same intu-
ition as that of the dynamic optimization problem presented above, by employing our developed
concepts in sections 2 and 3 as follows. The model assumes a perfect foresight.

Theorem 4.1. Let R = [0, T1]× [0, T2] define a rectangle on T1×T2 and h : JT ⊂ T1×T2 → R
be a nonzero non negative function with the property that h(t) > 0 for all t ≥ 0, where JT is
a Fh-convex subset of the real T1 × T2. The value function of the lifetime utility U�Fh to be
maximized subject to certain constraints is;

Maximize U�Fh =

∫
R

u(C(t1, t2))e−δ((t1, 0), (t2, 0)) �Fh t1 �Fh t2, (4.1)

subject to the budget constraints

A∇∇(t) = [(rA+ Y − C)(ρ(t))]∇,

A∆∆(t) =
[

r
1 + rµ(t)A

σ(t) + 1
1+rµ(t)y

σ(t)− 1
1+rµ(t)c

σ(t)
]∆

, (4.2)

a(0) = a0, a(T ) = aT ,

where u is co-ordinated Fh-concave (u
′
(C(t1, t2)) > 0 and u

′′
(C(t1, t2)) < 0), 0 ≤ λ ≤ 1, s ∈

[0, 1], A∆∆ and A∇∇ are the partial delta and nabla derivatives of the budget constraints, e is
the exponential function, r, δ, A, and Y are as defined above.

Proof. Let f(t1, t2) be a function satisfied by the consumption function path that would max-
imize lifetime utility u(C(t1, t2))e−δ((t1, 0), (t2, 0)), then the condition for a functional (2.4)
to have a local extremum for a function u(t1, t2) and the sufficient condition for an absolute
maximum(minimum) of (2.4) hold and hence satisfies the sufficient conditions for optimization,
which in turn satisfies Theorem 3.5.

Therefore, the model (4.1)-(4.2) can be analysed by writing (4.1) in terms of (2.3), stating the
maximum principle and giving the Hamiltonian function for the model.

Remark 4.2. The new double diamond-Fh time scale model (4.1)-(4.2) unifies the convensional
discrete and continuous models for R = T1 = T2 = Z and R = T1 = T2 = R respectively. It
equally unifies nabla, delta, double delta and single variable diamond-Fh models of [2], [7], [8]
and [15] within a much more general framework.
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