A NOTE ON SMOOTH TRANSCENDENTAL APPROXIMATION TO |x|

Yogesh J. Bagul and Bhavna K. Khairnar

Communicated by P. K. Banerji

MSC 2010 Classifications: Primary 26A99, 26E99; Secondary 41A30.

Keywords and phrases: Smooth transcendental approximation; Hyperbolic tangent.

Abstract. In this review paper, we present a pellucid proof of how $x \tanh(x/\mu)$ approximates |x| and is better than $\sqrt{x^2 + \mu}$ when we are concerned with accuracy.

1 Introduction

The following limits of hyperbolic tangent (see [2]):

$$\lim_{x \to -\infty} \tanh(x) = -1$$

and

$$\lim_{x \to \infty} \tanh(x) = 1$$

are known. It is easy to see that for $\mu > 0$,

$$\lim_{\mu \to 0} \tanh\left(\frac{x}{\mu}\right) = -1 ; \text{ when } x < 0$$

and
$$\lim_{\mu \to 0} \tanh\left(\frac{x}{\mu}\right) = 1; \text{ when } x > 0.$$

As a consequence for $\mu \rightarrow 0$ one can write

$$x \tanh\left(\frac{x}{\mu}\right) \approx |x|.$$

 $x \tanh\left(\frac{x}{\mu}\right)$ being differentiable can be a good approximation for |x|. The following theorem [1] in this connection was recently proposed by first author.

Theorem 1.1. ([1, Theorem 1]) The approximation $h(x) = x \tanh\left(\frac{x}{\mu}\right); \mu > 0 \in \mathbf{R}$ to |x| satisfies

$$x \tanh\left(\frac{x}{\mu}\right) - \mu < |x| < x \tanh\left(\frac{x}{\mu}\right) + \mu.$$
 (1.1)

The proof of Theorem 1.1 in [1] is somewhat cumbersome and doesn't sound much convincing. The initial goal of this paper is to provide new pellucid proof of Theorem 1.1 and then to show how $x \tanh(x/\mu)$ is better approximation of $|x| \tanh \sqrt{x^2 + \mu^2}$ or $\sqrt{x^2 + \mu}$ in terms of accuracy. The details about the approximations $\sqrt{x^2 + \mu^2}$ and $\sqrt{x^2 + \mu}$ can be found in [4] and [3] respectively.

2 Main Result

We need the following lemma for our promising proof.

Lemma 2.1. For $x \in \mathbf{R}$ such that $x \neq 0$ we have

$$|\tanh(x)| + \frac{1}{|x|} > 1.$$
 (2.1)

Proof: We consider the following two cases:

Case(1): For x > 0, we introduce the function $f(x) = tanh(x) + \frac{1}{x} - 1$ which on differentiation gives

$$f'(x) = \frac{1}{\cosh^2(x)} - \frac{1}{x^2}$$

Therefore f'(x) < 0, since $\cosh(x) > x$. Hence f(x) is decreasing on $(0, \infty)$ and we have that

$$f(x) > f(\infty^{-})$$
 for any $x > 0$

So

$$\tanh(x) + \frac{1}{x} - 1 > 0.$$

Case(2): For x < 0 we introduce the function $g(x) = \tanh(x) + \frac{1}{x} + 1$. As in Case 1, g'(x) < 0 and is decreasing in $(-\infty, 0)$.

Hence
$$g(x) < g(-\infty^+)$$
 for any $x < 0$.

So we get

$$\tanh(x) + \frac{1}{x} + 1 < 0,$$

which proves our lemma.

Proof of Theorem 1: Clearly for x = 0 the theorem holds. For $x \neq 0$ we prove (1.1) by making use of Lemma 2.1 as follows: consider

$$\left| |x| - x \tanh\left(\frac{x}{\mu}\right) \right| = \left| |x| - \left| x \tanh\left(\frac{x}{\mu}\right) \right| \right|$$
$$= |x| \left| 1 - \left| \tanh\left(\frac{x}{\mu}\right) \right| \right|$$
$$< |x| \left| \frac{\mu}{x} \right| = \mu$$

by Lemma 2.1. This completes the proof. \Box

In the same paper, it is claimed that the approximation $x \tanh(x/\mu)$ to |x| is better than $\sqrt{x^2 + \mu^2}$. The claim is supported by graphs; but is not proved. We prove this claim as follows:

Comparison between two approximations: All three functions being positive and

$$x \tanh\left(\frac{x}{\mu}\right) < |x| < \sqrt{x^2 + \mu^2}$$

that is

$$x^2 \tanh^2\left(\frac{x}{\mu}\right) < x^2 < x^2 + \mu^2.$$

It is enough to prove that

$$x^2 - x^2 \tanh^2\left(\frac{x}{\mu}\right) < \mu^2$$

which is equivalent to

$$x^2 \operatorname{sech}^2\left(\frac{x}{\mu}\right) < \mu^2.$$

This follows immediately due to

$$\cosh\left(\frac{x}{\mu}\right) > \frac{x}{\mu}.$$

Now as $\mu \to 0$, $\sqrt{x^2 + \mu^2} < \sqrt{x^2 + \mu}$, proving that $x \tanh(x/\mu)$ is far better than $\sqrt{x^2 + \mu}$ as far as accuracy is concerned.

This fact is illustrated in the following table by investigating global L_2 error which is given by

$$e(h) = \int_{-\infty}^{\infty} \left[|x| - h(x) \right]^2 dx$$

where h(x) is approximation to |x|.

	$\mu=0.1$		
h(x)	$x \tanh(x/\mu)$	$\sqrt{x^2 + \mu}$	
e(h)	≈ 0.000158151	≈ 0.042164	
	$\mu = 0.01$		
h(x)	$x \tanh(x/\mu)$	$\sqrt{x^2 + \mu}$	
e(h)	$\approx 1.58151 \times 10^{-7}$	≈ 0.00133333	

Table 1. Global L_2 errors $e(h)$ f	for the functions $h(x)$
--	--------------------------

Again it is easy to verify the following by above formula: $e(x \tanh(x/\mu)) = 0.158151 \times \mu^3$, while $e(\sqrt{x^2 + \mu^2}) = \frac{4}{3} \times \mu^3$ supporting the claim.

3 Conclusion

A new crystal clear proof of old theorem is presented in a simple way and two approximations are compared analytically as well as by numerical illustrations.

References

- [1] Yogesh J. Bagul, A smooth transcendental approximation to |x|, *International Journal of Mathematical Sciences and Engineering Applications(IJMSEA)*, Vol. **11**, No. 2(August 2017), pp. 213-217, (2017).
- [2] Milton Abramowitz and Irene A. Stegun, Editors. Handbook of mathematical functions with formulas, graphs and mathematical tables, *A Wiley-Inter science Publication, John Wiley and Sons, Inc., New York; National Bureau of Standards, Washington, DC*, (1984).
- [3] Carlos Ramirez, Reinaldo Sanchez, Vladik Kreinovich and Miguel Argaéz, $\sqrt{x^2 + \mu}$ is the most computationally efficient smooth approximation to |x|: a Proof, *Journal of Uncertain Systems*, Vol. 8, No. 3, pp. 205-210, (2014).
- [4] Sergey Voronin, Görkem Özkaya and Davis Yoshida, Convolution based smooth approximations to the absolute value function with application to non-smooth regularization, *arXiv e-prints*, August (**2014**).

Author information

Yogesh J. Bagul, Department of Mathematics, K. K. M. College, Manwath (Affiliated to S. R. T. M. U. Nanded), Dist: Parbhani(M. S.) - 431505, India. E-mail: yjbagul@gmail.com

Bhavna K. Khairnar, Department of Engineering Sciences, JSPM's Rajarshi Shahu College of Engineering, Tathawade, Pune - 33, India. E-mail: 31bhavna90@gmail.com

Received: August 26, 2019 Accepted: September 29, 2019