A STUDY ON GROWTH OF ITERATED ENTIRE FUNCTIONS

Dibyendu Banerjee and Sumanta Ghosh

Communicated by P. K. Banerji

MSC 2010 Classifications: 30D35.

Keywords and phrases: Growth, entire function, iteration.

Abstract. In this paper we consider iteration of three entire functions and study some growth properties.

1 Introduction

Let f(z) and g(z) be two entire functions. Lahiri and Banerjee in [7] form the iterations of f(z) with respect to g(z) as follows:

$$f_{1}(z) = f(z)$$

$$f_{2}(z) = f(g(z)) = f(g_{1}(z))$$

$$f_{3}(z) = f(g(f(z))) = f(g(f_{1}(z)))$$

$$\vdots$$

$$f_{n}(z) = f(g(f(g...(f(z) \text{ or } g(z) \text{ according as } n \text{ is odd or even})...)))$$

$$= f(g_{n-1}(z)) = f(g(f_{n-2}(z)))$$

and so

$$g_{1}(z) = g(z)$$

$$g_{2}(z) = g(f(z)) = g(f_{1}(z))$$

$$g_{3}(z) = g(f_{2}(z)) = g(f(g_{1}(z)))$$

$$\vdots$$

$$g_{n}(z) = g(f_{n-1}(z)) = g(f(g_{n-2}(z))).$$

Then all $f_n(z)$ and $g_n(z)$ are entire functions.

Let f(z) and g(z) be entire functions. Banerjee and Dutta [1] used the notations $M_{f_1}(r)$, $M_{f_2}(r)$, $M_{f_3}(r)$, etc to mean M(r, f), M(M(r, f), g), M(M(M(r, f), g), f), respectively and $F(r) = O^*(G(r))$ to mean that there exist two positive costants K_1 and K_2 such that $K_1 \leq \frac{F(r)}{G(r)} \leq K_2$ for large r.

In 2003 Sun [9] proved the following theorem.

Theorem 1.1. Let f_1 , f_2 and g_1 , g_2 be four transcendental entire functions with $T(r, f_1) = O^*\left((\log r)^{\nu} e^{(\log r)^{\alpha}}\right)$ and $T(r, g_1) = O^*\left((\log r)^{\beta}\right)$. If $T(r, f_1) \sim T(r, f_2)$ and $T(r, g_1) \sim T(r, g_2)$ $(r \to \infty)$, then

$$T(r, f_1(g_1)) \sim T(r, f_2(g_2)) \quad (r \to \infty, r \notin E),$$

where $\nu > 0$, $0 < \alpha < 1$, $\beta > 1$ and $\alpha\beta < 1$ and E is a set of finite logarithmic measure.

After this in 2011, Banerjee and Dutta [1] extend Theorem 1.1 for iterated entire functions in the following manner.

Theorem 1.2. Let f, g, u, v be four transcendental entire functions with $T(r, f) \sim T(r, u)$, $T(r, g) \sim T(r, v)$, $T(r, f) = O^* \left((\log r)^{\nu} e^{(\log r)^{\alpha}} \right) (0 < \alpha < 1, \nu > 0)$ and $T(r, g) = O^* \left((\log r)^{\beta} \right)$ where $\beta > 1$ is a constant, then $T(r, f_n) \sim T(r, u_n)$ for $n \ge 2$, where $u_n(z) = u(v(u(v...(u(z) \text{ or } v(z))...)))$ according as n is odd or even.

In [8], Niino and Suita proved the following theorem.

Theorem 1.3. Let f(z) and g(z) be entire functions. If $M(r,g) > \frac{2+\varepsilon}{\varepsilon} |g(0)|$ for any $\varepsilon > 0$, then we have

$$T(r, f(g)) \le (1 + \varepsilon) T(M(r, g), f).$$

In particular, if g(0) = 0, then

$$T(r, f(g)) \leq T(M(r, g), f)$$
 for all $r > 0$.

As a generalisation of Theorem 1.3, Banerjee and Dutta [1] proved the following theorem.

Theorem 1.4. Let f(z), g(z) be two entire functions. Then

$$T(R_2, f) \le T(r, f_n) \le T(R_3, f)$$

where $|f(z)| > R_1 > \frac{2+\varepsilon}{\varepsilon} |f(0)|$ and $|g(z)| > R_2 > \frac{2+\varepsilon}{\varepsilon} |g(0)|$, $R_3 = \max\{M_{f_{n-1}}(r), M_{g_{n-1}}(r)\}$ for sufficiently large values of r and any integer $n \ge 2$.

Further they showed Theorem 1.2 also true for less conditions and proved the following theorem.

Theorem 1.5. Let f, g, u, v be four transcendental entire functions with $T(r, f) \sim T(r, u)$, $T(r,g) \sim T(r,v), T(r,f) = O^*\left((\log r)^{\beta}\right)$ and $T(r,g) = O^*\left((\log r)^{\beta}\right)$ where $\beta > 1$ is a constant, then $T(r, f_n) \sim T(r, u_n)$.

In this paper we consider three entire functions f(z), g(z) and h(z) and following Banerjee and Mandal [2] form the iterations of f(z) with respect to g(z) and h(z) [defined below] and generalise the results of Banerjee and Dutta [1] in this direction.

$$\begin{array}{lll} f_1(z) &=& f(z) \\ f_2(z) &=& f(g(z)) = f(g_1(z)) \\ f_3(z) &=& f(g(h(z))) = f(g(h_1(z))) = f(g_2(z)) \\ f_4(z) &=& f(g(h(f(z)))) = f(g(h_2(z))) = f(g_3(z)) \\ &\vdots \\ f_n(z) &=& f(g(h(f..(f(z) \text{ or } g(z) \text{ or } h(z) \text{ according as } n = 3m - 2 \text{ or } 3m - 1 \\ &\text{ or } 3m)...))) \\ &=& f(g_{n-1}(z)) = f(g(h_{n-2}(z))) \,. \end{array}$$

Similarly,

$$g_{1}(z) = g(z)$$

$$g_{2}(z) = g(h(z)) = g(h_{1}(z))$$

$$g_{3}(z) = g(h(f(z))) = g(h(f_{1}(z))) = g(h_{2}(z))$$

$$g_{4}(z) = g(h(f(g(z)))) = g(h(f_{2}(z))) = g(h_{3}(z))$$

$$\vdots$$

$$g_{n}(z) = g(h(f(g...(g(z) \text{ or } h(z) \text{ or } f(z) \text{ according as } n = 3m - 2 \text{ or } 3m - 1 \text{ or } 3m)...)))$$

$$= g(h_{n-1}(z)) = g(h(f_{n-2}(z)))$$

and

$$\begin{split} h_1(z) &= h(z) \\ h_2(z) &= h(f(z)) = h(f_1(z)) \\ h_3(z) &= h(f(g(z))) = h(f(g_1(z))) = h(f_2(z)) \\ h_4(z) &= h(f(g(h(z)))) = h(f(g_2(z))) = h(f_3(z)) \\ &\vdots \\ h_n(z) &= h(f(g(h...(h(z) \text{ or } f(z) \text{ or } g(z) \text{ according as } n = 3m - 2 \text{ or } 3m - 1 \\ &\text{ or } 3m)...))) \\ &= h(f_{n-1}(z)) = h(f(g_{n-2}(z))) \,. \end{split}$$

Clearly all f_n , g_n and h_n are entire functions.

We now use the following notation throughout the paper.

Let f(z), g(z) and h(z) be entire functions. we use the notations $M_{f_1}(r)$, $M_{f_2}(r)$, $M_{f_3}(r)$, $M_{f_4}(r)$ etc to mean M(r, f), M(M(r, f), h), M(M(M(r, f), h), g), M(M(M(r, f), h), g), f) respectively. Similarly we use the notations $M_{g_1}(r)$, $M_{g_2}(r)$, $M_{g_3}(r)$, $M_{g_4}(r)$ etc to mean M(r, g), M(M(r, g), f), M(M(M(r, g), f), h), M(M(M(M(r, g), f), h), g) respectively and $M_{h_1}(r)$, $M_{h_2}(r)$, $M_{h_3}(r)$, $M_{h_4}(r)$ etc to mean M(r, h), M(M(r, h), g), M(M(M(r, h), g), f), M(M(M(r, h), g), f), h) respectively and $F(r) = O^*(G(r))$ to mean that there exist two positive costants K_1 and K_2 such that $K_1 \leq \frac{F(r)}{G(r)} \leq K_2$ for any large r.

2 Lemmas

Lemma 2.1. [6] Let f(z) be an entire function. For $0 \le r < R < \infty$, we have

$$T(r, f) \le \log^{+} M(r, f) \le \frac{R+r}{R-r}T(R, f)$$

Lemma 2.2. [5] Let f(z) be an entire function of order ρ ($\rho < \infty$). If $k > \rho - 1$, then

$$\log M(r, f) \sim \log M(r - r^{-k}, f) \quad (r \to \infty) \,.$$

Lemma 2.3. [8] Let g(z) and f(z) be two entire functions. Suppose that |g(z)| > R > |g(0)| on the circumference $\{|z| = r\}$ for some r > 0. Then we have

$$T(r, f(g)) \ge \frac{R - |g(0)|}{R + |g(0)|} T(R, f).$$

Lemma 2.4. [9] Let f be a transcendental entire function with

$$T(r,f) = O^*\left(\left(\log r\right)^\beta e^{\left(\log r\right)^\alpha}\right) \quad \left(0 < \alpha < 1, \beta > 0\right).$$

Then

$$T(r, f) \sim \log M(r, f) \quad (r \to \infty, r \notin E) \text{ and}$$

$$T(\sigma r, f) \sim T(r, f) \quad (r \to \infty, \sigma \ge 2, r \notin E),$$

where E is a set of finite logarithmic measure.

Lemma 2.5. [1] Let f be a transcendental entire function with $T(r, f) = O^*\left((\log r)^{\beta}\right)$ where $\beta > 1$. Then

$$\begin{array}{lll} T\left(r,f\right) & \sim & \log M\left(r,f\right) & \left(r \to \infty, r \notin E\right) \ and \\ T\left(\sigma r,f\right) & \sim & T\left(r,f\right) & \left(r \to \infty, \sigma \geq 2, r \notin E\right), \end{array}$$

where E is a set of finite logarithmic measure.

Lemma 2.6. [1] Let f_1 and f_2 be two entire functions with $T(r, f_1) = O^*\left((\log r)^{\beta}\right)$ where $\beta > 1$ and $T(r, f_1) \sim T(r, f_2)$ then $M(r, f_1) \sim M(r, f_2)$.

Lemma 2.7. [1] Let f_1 and f_2 be two entire functions with $T(r, f_1) = O^* \left((\log r)^{\nu} e^{(\log r)^{\alpha}} \right)$ where $\nu > 1, 0 < \alpha < 1$ and $T(r, f_1) \sim T(r, f_2)$ then $M(r, f_1) \sim M(r, f_2)$.

3 Main Results

Theorem 3.1. Let f(z), g(z) and h(z) be three entire functions. Then we have

$$T(R_2, f) \le T(r, f_n) \le T(R_4, f)$$
(3.1)

where $|f(z)| > R_1 > \frac{2+\varepsilon}{\varepsilon} |f(0)|$, $|g(z)| > R_2 > \frac{2+\varepsilon}{\varepsilon} |g(0)|$, $|h(z)| > R_3 > \frac{2+\varepsilon}{\varepsilon} |h(0)|$ and $R_4 = \max\{M_{f_{n-1}}(r), M_{g_{n-1}}(r), M_{h_{n-1}}(r)\}$ for sufficiently large values of r and any integer $n \ge 3$.

Proof. CASE-I: When $n = 3m, m \in \mathbb{N}$ and $\varepsilon > 0$ arbitrary small, then by Theorem 1.3, we have

$$T(r, f_n) = T(r, f_{n-1}(h))$$

$$\leq (1 + \varepsilon) T(M(r, h), f_{n-1})$$

$$= (1 + \varepsilon) T(M_{h_1}(r), f_{n-2}(g))$$

$$\leq (1 + \varepsilon)^2 T(M(M_{h_1}(r), g), f_{n-2})$$

$$= (1 + \varepsilon)^2 T(M_{h_2}(r), f_{n-2})$$

$$= (1 + \varepsilon)^2 T(M_{h_2}(r), f_{n-3}(f))$$

$$\leq (1 + \varepsilon)^3 T(M_{h_3}(r), f_{n-3})$$

$$= (1 + \varepsilon)^3 T(M_{h_3}(r), f_{n-4}(h))$$

$$\leq (1 + \varepsilon)^4 T(M_{h_4}(r), f_{n-4})$$

$$\vdots$$

$$\leq (1 + \varepsilon)^{n-1} T(M_{h_{n-1}}(r), f)$$

CASE-II: When $n = 3m - 1, m \in \mathbb{N}$ we have

$$T(r, f_n) = T(r, f_{n-1}(g))$$

$$\leq (1 + \varepsilon) T(M(r, g), f_{n-1})$$

$$= (1 + \varepsilon) T(M_{g_1}(r), f_{n-2}(f))$$

$$\leq (1 + \varepsilon)^2 T(M_{g_1}(r), f), f_{n-2})$$

$$= (1 + \varepsilon)^2 T(M_{g_2}(r), f_{n-2})$$

$$= (1 + \varepsilon)^2 T(M_{g_2}(r), f_{n-3}(h))$$

$$\leq (1 + \varepsilon)^3 T(M_{g_3}(r), f_{n-3})$$

$$= (1 + \varepsilon)^3 T(M_{g_3}(r), f_{n-4}(g))$$

$$\leq (1 + \varepsilon)^4 T(M_{g_4}(r), f_{n-4})$$

$$\vdots$$

$$\leq (1 + \varepsilon)^{n-1} T(M_{g_{n-1}}(r), f)$$

$$\leq (1 + \varepsilon)^{n-1} T(R_4, f).$$

CASE-III: When $n = 3m - 2, m \in \mathbb{N}$ we have

$$T(r, f_n) = T(r, f_{n-1}(f))$$

$$\leq (1 + \varepsilon) T(M(r, f), f_{n-1})$$

$$= (1 + \varepsilon) T(M_{f_1}(r), f_{n-2}(h))$$

$$\leq (1 + \varepsilon)^2 T(M_{f_1}(r), h), f_{n-2})$$

$$= (1 + \varepsilon)^2 T(M_{f_2}(r), f_{n-2})$$

$$= (1 + \varepsilon)^2 T(M_{f_2}(r), f_{n-3}(g))$$

$$\leq (1 + \varepsilon)^3 T(M_{f_3}(r), f_{n-3})$$

$$= (1 + \varepsilon)^3 T(M_{f_3}(r), f_{n-4}(f))$$

$$\leq (1 + \varepsilon)^4 T(M_{f_4}(r), f_{n-4})$$

$$\vdots$$

$$\leq (1 + \varepsilon)^{n-1} T(M_{f_{n-1}}(r), f)$$

$$\leq (1 + \varepsilon)^{n-1} T(R_4, f).$$

Therefore $T(r, f_n) \leq (1 + \varepsilon)^{n-1} T(R_4, f)$ for any integer $n \geq 3$. Since $\varepsilon > 0$ was arbitrary, for sufficiently large values of r we have

$$T(r, f_n) \le T(R_4, f). \tag{3.2}$$

Also using Lemma 2.3, we have When $n = 3m, m \in \mathbb{N}$

$$T(r, f_n) = T(r, f_{n-1}(h))$$

$$\geq \left(\frac{R_3 - |h(0)|}{R_3 + |h(0)|}\right) T(R_3, f_{n-1})$$

$$> (1 - \varepsilon) T(R_3, f_{n-2}(g))$$

$$\geq (1 - \varepsilon) \left(\frac{R_2 - |g(0)|}{R_2 + |g(0)|}\right) T(R_2, f_{n-2})$$

$$> (1 - \varepsilon)^2 T(R_2, f_{n-2})$$

$$\geq (1 - \varepsilon)^3 T(R_1, f_{n-3})$$

$$\vdots$$

$$\geq (1 - \varepsilon)^{n-2} T(R_3, f(g))$$

$$\geq (1 - \varepsilon)^{n-1} T(R_2, f).$$

When $n = 3m - 1, m \in \mathbb{N}$ we have

$$T(r, f_n) = T(r, f_{n-1}(g)).$$

$$\geq \left(\frac{R_2 - |g(0)|}{R_2 + |g(0)|}\right) T(R_2, f_{n-1})$$

$$> (1 - \varepsilon) T(R_2, f_{n-2}(f))$$

$$\geq (1 - \varepsilon) \left(\frac{R_1 - |f(0)|}{R_1 + |f(0)|}\right) T(R_1, f_{n-2})$$

$$> (1 - \varepsilon)^2 T(R_1, f_{n-3}(h))$$

$$\geq (1 - \varepsilon)^3 T(R_3, f_{n-3})$$

$$\vdots$$

$$\geq (1 - \varepsilon)^{n-2} T(R_3, f(g))$$

$$\geq (1 - \varepsilon)^{n-1} T(R_2, f).$$

When n = 3m - 2, $m \in \mathbb{N}$ we have

$$T(r, f_n) = T(r, f_{n-1}(f))$$

$$\geq \left(\frac{R_1 - |f(0)|}{R_1 + |f(0)|}\right) T(R_1, f_{n-1})$$

$$> (1 - \varepsilon) T(R_1, f_{n-2}(h))$$

$$\geq (1 - \varepsilon) \left(\frac{R_3 - |h(0)|}{R_3 + |h(0)|}\right) T(R_3, f_{n-2})$$

$$> (1 - \varepsilon)^2 T(R_3, f_{n-3}(g))$$

$$\geq (1 - \varepsilon)^3 T(R_2, f_{n-3})$$

$$\vdots$$

$$\geq (1 - \varepsilon)^{n-2} T(R_3, f(g))$$

$$\geq (1 - \varepsilon)^{n-1} T(R_2, f).$$

So

$$T(r, f_n) \ge (1 - \varepsilon)^{n-1} T(R_2, f).$$

Therefore for sufficiently large values of r and for $\varepsilon > 0$ arbitrarily, small we have

$$T(r, f_n) \ge T(R_2, f) \tag{3.3}$$

Hence from (3.2) and (3.3) we obtain (3.1). This completes the proof.

Theorem 3.2. Let f, g, h; u, v, w be six transcendental entire functions with $T(r, f) \sim T(r, u)$, $T(r,g) \sim T(r,v)$, $T(r,h) \sim T(r,w)$, $T(r,f) = O^*\left((\log r)^{\nu} e^{(\log r)^{\alpha}}\right)$ $(0 < \alpha < 1, \nu > 0)$, $T(r,g) = O^*\left((\log r)^{\beta}\right)$ and $T(r,h) = O^*\left((\log r)^{\lambda}\right)$ where $\beta, \lambda > 1$ are constants. Then $T(r, f_n) \sim T(r, u_n)$ for $n \ge 3$, where $u_n(z) = u(v(w(u...(u(z) \text{ or } v(z) \text{ or } w(z)...))))$ according as n = 3m - 2 or 3m - 1 or $3m, m \in \mathbb{N}$.

Proof. We have from Theorem 3.1,

$$T(R_1, f) \leq T(r, f_n) \leq T(R_2, f)$$
(3.4)

$$T\left(R_{1}^{'},u\right) \leq T\left(r,u_{n}\right) \leq T\left(R_{2}^{'},u\right)$$

$$(3.5)$$

where R_1 and R'_1 are such that $|g(z)| > R_1 > \frac{2+\varepsilon}{\varepsilon} |g(0)|, |v(z)| > R'_1 > \frac{2+\varepsilon}{\varepsilon} |v(0)|$ and $T(R_1, f) \sim T(R'_1, f), R_2 = \max \{M_{f_{n-1}}(r), M_{g_{n-1}}(r), M_{h_{n-1}}(r)\}$ and $R'_2 = \max \{M_{u_{n-1}}(r), M_{v_{n-1}}(r), M_{w_{n-1}}(r)\}$ for sufficiently large values of r and arbitrary small $\varepsilon > 0$.

Since

$$T(r,f) \sim T(r,u)$$

$$T(R_1, f) \sim T\left(R_1', f\right) \sim T\left(R_1', u\right)$$

i.e. $T(R_1, f) \sim T\left(R_1', u\right) \quad (r \to \infty, r \notin E).$ (3.6)

From Lemma 2.7, we have

$$M(r,f) \sim M(r,u).$$

Also we have

$$\begin{split} M\left(M\left(r,f\right),h\right) &\sim M\left(M\left(r,u\right),w\right) \quad (r\to\infty)\\ \text{i.e } M\left(M\left(M\left(r,f\right),h\right),g\right) &\sim M\left(M\left(M\left(r,u\right),w\right),v\right) \quad (r\to\infty)\,. \end{split}$$

So, for $n = 3m - 2, m \in \mathbb{N}$ we have

$$M_{f_{n-1}}(r) \sim M_{u_{n-1}}(r) \quad (r \to \infty).$$
 (3.7)

Similarly for $n = 3m - 1, m \in \mathbb{N}$ we have

$$M_{g_{n-1}}(r) \sim M_{v_{n-1}}(r) \quad (r \to \infty)$$
 (3.8)

and for $n = 3m, m \in \mathbb{N}$ we have

$$M_{h_{n-1}}(r) \sim M_{w_{n-1}}(r) \quad (r \to \infty).$$
 (3.9)

Combining (3.7), (3.8) and (3.9) and for $n \ge 3$, $n \in \mathbb{N}$ we obtain $R_2 \sim R'_2$ for large r. So combining $T(r, f) \sim T(r, u)$ and $R_2 \sim R'_2$ we have

$$T(R_2, f) \sim T\left(R'_2, u\right) \quad (r \to \infty).$$
 (3.10)

So from (3.4), (3.5), (3.6) and (3.10) we get

$$T(r, f_n) \sim T(r, u_n)$$
.

This completes the proof.

Theorem 3.3. Let f, g, h; u, v, w be six transcendental entire functions with $T(r, f) \sim T(r, u)$, $T(r,g) \sim T(r,v)$, $T(r,h) \sim T(r,w)$, $T(r,f) = O^*\left((\log r)^{\beta}\right)$, $T(r,g) = O^*\left((\log r)^{\beta}\right)$ and $T(r,h) = O^*\left((\log r)^{\beta}\right)$ where $\beta > 1$ is a constant. Then $T(r, f_n) \sim T(r, u_n)$ for $n \ge 3$, where $u_n(z) = u$ (v (w (u... (u (z) or v (z) or w (z)...)))) according as n = 3m - 2 or 3m - 1 or $3m, m \in \mathbb{N}$.

The conditions of Theorem 3.2 and Theorem 3.3 are not strictly sharp, which are illustrated by the following examples.

Example 3.4. Let $f(z) = e^{2z}$, g(z) = 2z, h(z) = 3z and $u(z) = 2e^{2z}$, v(z) = 4z, w(z) = 6z. Then we have $f_3(z) = f(g(h(z))) = f(g(3z)) = f(6z) = e^{12z}$ and $u_3(z) = u(v(w(z))) = u(v(6z)) = u(24z) = 2e^{48z}$.

Now

$$T(r, f) = \frac{2r}{\pi}, T(r, u) = \frac{2r}{\pi} + \log 2$$

$$T(r, g) = \log r + \log 2, T(r, v) = \log r + \log 4$$

$$T(r, h) = \log r + \log 3, T(r, w) = \log r + \log 6$$

Thus $T\left(r,f\right)\sim T\left(r,u\right),$ $T\left(r,g\right)\sim T\left(r,v\right)$ and $T\left(r,h\right)\sim T\left(r,w\right).$ Again

$$T(r, f_3) = \frac{12r}{\pi}, T(r, u_3) = \frac{48r}{\pi} + \log 2.$$

Therefore

$$\frac{T(r, f_3)}{T(r, u_3)} = \frac{\frac{12r}{\pi}}{\frac{48r}{\pi} + \log 2} = \frac{1}{4} \text{ as } r \to \infty.$$

So

$$T(r, f_3) \nsim T(r, u_{3.})$$
 as $r \to \infty$.

Example 3.5. Let $f(z) = 2e^z$, $g(z) = e^z$, h(z) = z and u(z) = 2z, $v(z) = e^{\frac{z}{2}}$, $w(z) = 2e^z$. Then we have $f_3(z) = f(g(h(z))) = f(g(z)) = f(e^z) = 2e^{e^z}$ and $u_3(z) = u(v(w(z))) = u(v(2e^z)) = u(e^{e^z}) = 2e^{e^z}$.

Then we have

$$T(r, f) = \frac{r}{\pi} + \log 2, \ T(r, u) = \log 2 + \log r$$

$$T(r, g) = \frac{r}{\pi}, \ T(r, v) = \frac{r}{2\pi}$$

$$T(r, h) = \log r, \ T(r, w) = \log 2 + \frac{r}{\pi}.$$

Therefore we have $T(r, f) \nsim T(r, u)$, $T(r, g) \nsim T(r, v)$, $T(r, h) \nsim T(r, w)$ as $r \to \infty$. But still

$$T(r, f_3) \sim T(r, u_3)$$
 as $r \to \infty$.

References

- [1] D. Banerjee and R. K. Dutta, Growth of a class of iterated entire functios, *Bulletin of Mathematical Analysis and Applications*. **3**(1), 77–88 (2011).
- [2] D. Banerjee and B. Mandal, Relative fix points of a certain class of complex functions, *Istanbul Univ. Sci. Fac. J. Math. Phys. Astr.* 6, 15–25 (2015).
- [3] M. L. Cartwight, Integral functions, Cambridge University Press, (1956).

- [4] C. Chuang and C. C. Yang, *The fixpoint of meromorphic and factorization theory*, Beijing University Press, (1988).
- [5] J. Clunie, The composition of entire and meromorphic functions, *Mathematical Essays dedicated to A. J. Macintyre, Ohio. Univ. Press*, 75–92 (1970).
- [6] W. K. Hayman, Meromorphic functions, Oxford University Press, (1964).
- [7] B. K. Lahiri and D. Banergee, Relative fix points of entire functions, J. Indian Acad. Math., 19(1), 87–97 (1997).
- [8] K. Niino and N. Suita, Growth of composite function of entire functions, *Kodai Math. J.*, **3**, 374–379 (1980).
- [9] J. Sun, Growth of a class of composite entire functions, Acta Math. Vietnamica, 28(2), 175–183 (2003).

Author information

Dibyendu Banerjee and Sumanta Ghosh, Department of Mathematics, Visva-Bharati, Santiniketan - 731235, West Bengal, India.

E-mail: dibyendu192@rediffmail.com

Received: January 25, 2020 Accepted: Februery 12, 2020