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Abstract. In this paper we consider iteration of three entire functions and study some growth
properties.

1 Introduction

Let f (z) and g (2) be two entire functions. Lahiri and Banerjee in [7] form the iterations of f (z)
with respect to g (z) as follows:

fiz) = [(2)

h(z) = fl9(2) =f(9(2)

f(z) = [a(f(2)=fg(fi(2)

fa(z) = f(g(f(g...(f (%) org(z) according as n is odd or even)...)))

= f(gn—l (z)) = f(g (fn—Z (Z)))

and so

g1(2) = g(2)
0(2) = g(f(2)=9(fi(2))
5(2) = g(f(2)=9(f(91(2)))

gn (2) = g(fu1(2) = 9(f (922(2)))-

Then all f,, (z) and g,, (z) are entire functions.

Let f (%) and g (z) be entire functions. Banerjee and Dutta [1] used the notations My, (r),
My, (r), My, (r), etc to mean M (r, f), M (M (r,f),g), M(M (M (r, f),g), f), respectively
and F (r) = O* (G (r)) to mean that there exist two positive costants K; and K, such that

K < 28 < K, for large r.

In 2003 Sun [9] proved the following theorem.

Theorem 1.1. Let f, f> and g1, g2 be four transcendental entire functions with T (r, f1) =
O* ((logr)” e°¢™™) and T (r, g1) = O* ((log r)ﬁ) .
IfT(r, fi) ~T(r, f2) and T (r,g1) ~ T (r,92) (r — o), then

T(T’,f] (gl))NT(T7f2<92)) ('I’-)OO, T¢E)a
wherev > 0,0 < a < 1,8 > 1and af < 1 and E is a set of finite logarithmic measure.
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After this in 2011, Banerjee and Dutta [1] extend Theorem 1.1 for iterated entire functions in
the following manner.

Theorem 1.2. Let f, g, u, v be four transcendental entire functions with T (r, f) ~ T (r,u),
T(r,g) ~ T (r,0), T (r, f) = O" ((logr)" ") (0 < a < 1, > 0) and T (r, ) = O* ((logr)")

where 3 > 1 is a constant, then T (v, f,) ~ T (r,u,) forn > 2,
where u, (z) = u (v (u (v... (u(2) orv(z))...))) according as n is odd or even.

In [8], Niino and Suita proved the following theorem.

Theorem 1.3. Let f (z) and g (z) be entire functions. If M (r,g) > 2% lg (0)] for any ¢ > 0,
then we have

T(r,f(g) <(1+e)T(M(r.g),[).
In particular, if g (0) = 0, then
T(r,f(9) <T(M(r.g).f) forallr > 0.
As a generalisation of Theorem 1.3, Banerjee and Dutta [1] proved the following theorem.
Theorem 1.4. Let f (z), g (z) be two entire functions.Then

T (Ra, f) <T(r,fn) <T (B3, f)

where |f (2)] > R > 2% |f(0)] and |g(z)| > Rz > 2% lg (0)|, R3 = max{M;y, ,(r),
My, ., (r)} for sufficiently large values of v and any integer n > 2.

Further they showed Theorem 1.2 also true for less conditions and proved the following
theorem.

Theorem 1.5. Let f, g, u, v be four transcendental entire functions with T (r, f) ~ T (r,u),
T(r,g) ~T(r,v),T(r,f) = 0" ((logr)ﬁ> and T (r,g) = O* ((logr)ﬂ> where 5 > 1is a
constant, then T (r, ) ~ T (r,uy) .

In this paper we consider three entire functions f (z), ¢ (z) and h (z) and following Banerjee
and Mandal [2] form the iterations of f (z) with respect to g (z) and h (z) [defined below] and
generalise the results of Banerjee and Dutta [1] in this direction.

hi(z) = [f(z)

£(z) = f(g(2)=Ff(91(2))

f3(z) = flg(h(2) = F(g(m () = f(92(2))

fa(z) = f(g(h(f(2)) = f(g(ha2(2))) = f (93 (2))

fn(z) = f(g(h(f..(f(2) org(z) or h(z) according as n = 3m — 2 or 3m — 1

Similarly,
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gi(z) = 9(2)
9 (2) g9(h(2)) = g(hi(2))
g3 (2) g(h(f(2)) =g (h(fi(2)) =g(h2(2))
94(2) = g(h(f(9(2) =9 (h(f2(2))) = g(hs(2))
gn(2) = g(h(f(g...(9(2) orh(z) or f(z) according asn =3m — 2 or3m — 1
or3m)...)))
= 9(hn1(2)) =g (h(fn2(2)))
and
hi(2) = h(z)
ha(z) = h(f(2)=h(fi(2))
hs (2) h(f(g(2) =h(f(9(2)) =h(f2(2))
ha(z) = h(f(g(h(2)) =h(f(92(2)) =h(f3(2))
hn(z2) = h(f(g(h...(h(2) or f(z) or g (z) according as n = 3m — 2 or 3m — 1

or3m)...)))
= h(fo1(2)) =h0(f (gn-2(2)))-

Clearly all f,,, g,, and h,, are entire functions.
We now use the following notation throughout the paper.
Let f (z), g (z) and h (z) be entire functions. we use the notations My, (r), My, (r), My, (r),

. ’ 92
, My, (r) etc tomean M (r,g), M (M (r,g), f), M(M (M (r,g9), f),h),
M (M (r,g),f),h),qg)respectively and My, (r), My, (r), My, (r), My, () etc to mean
M (r,h), M (M (r,h),g), M(M (M (r,h),q),f), M (M (M (M (r,h),q),f),h) respectively
r) = O* (G (r)) to mean that there exist two positive costants K; and K, such that
K, < £0 < K, for any large .

)

M (M (M (M (r, f),h),qg), f) respectively. Similarly we use the notations M, (r), My, (1),
)
(

2 Lemmas
Lemma 2.1. [6] Let f (z) be an entire function. For 0 < r < R < oo, we have

T(r,7) < log" M(r,f) < ot

T (R, f).

—r
Lemma 2.2. [5] Let f (z) be an entire function of order p (p < o). If k > p — 1, then
logM(T,f)NlogM(r—rfk,f) (r— o0).

Lemma 2.3. [8] Let g (z) and f (=) be two entire functions. Suppose that |g (z)| > R > |g (0)]
on the circumference {|z| = r} for some r > 0. Then we have

R —1g(0)]
T(T,f(g)) 2 R+|g(0)\T

(R, [).
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Lemma 2.4. [9] Let f be a transcendental entire function with

T(r, f) = O ((logr)ﬂ e<l°gr>"‘) O<a<1,8>0).
Then

T(r,f) ~ logM(r,f) (r—oo,r¢FE) and
T(or,f) ~ T(r,f) (r—o0,0>2,r¢E),

where E is a set of finite logarithmic measure.

Lemma 2.5. [1] Let f be a transcendental entire function with T (r, f) = O* ((log r)ﬁ) where
B > 1. Then

T(r,f) ~ logM(r,f) (r—oo,r¢FE) and
T(or,f) ~ T(r,f) (r—o0,0>2,r¢E),

where E is a set of finite logarithmic measure.

Lemma 2.6. [1] Let f; and f, be two entire functions with T (r, f;) = O* ((log r)ﬁ) where
6 > 1andT<r7f1) ~ T(TafZ) then M(T,f]) ~ M<T7f2) .

Lemma 2.7.[1] Let fi and f> be two entire functions with T (r, f;) = O* ((logr)” e(e™)?)
wherev > 1,0 < a < 1land T (r, fi) ~ T (r, f2) then M (r, fi) ~ M (r, f>).

3 Main Results

Theorem 3.1. Ler f (2), g (2) and h (z) be three entire functions.Then we have

T (Ry, f) <T(r, fn) <T (R4, f) 3.1)

where |f (2)| > Ry > 2= [£(0)], |9 (2)] > Ry > 22 g (0)], |1 (2)| > B3 > #£= |1 (0)| and
Ry = max{My, , (r), My, ,(r), My, , (r)} for sufficiently large values of r and any integer
n > 3.

Proof. CASE-I: Whenn = 3m,m € N and ¢ > 0 arbitrary small, then by Theorem 1.3, we
have

T(r.fn) = T(r fo-1(h))
< (I4e)T(M(r,h), fa1)
= (1+4e)T My, (1), fn—2(9))
< (14T (M (M, (r),9) s fa2)
= (14T (M, (), fa2)
= (14T (My, (), fa—s (f))
< (L4 T (M, (r), fas)
= (1 +5)3T(Mh3 (1) fn—a(h))
< (U +e)' T (M (1), fues)
< (14" ' 7 (M, (r), f)

IA
_|_
N
3

L
N
F
=
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CASE-II: Whenn =3m — 1,m € N we have

T(T‘, fn) =

IN

IN

IN

IN

IN

IN

(1+¢)T (M (r,9), faz1)
(14e)T (My, (1), fo2 (£))
(142)*T (M (My, (r), ), fu-2)
(142)*T (My, (r), fn2)
(14¢)* T (Mg, (r), fas (b))
(142)* T (My, (r), fn-3)
(14¢)’ T (Mg, (1), fas (9))
(1+)" T (My, () , fns)

CASE-III: Whenn =3m —2,m € N we have

T(rvfn) =

[7AN | | R VAN | B VAN

IN

IN

IA

Therefore T'(r, fn) < (14¢)"

T (r, fa1(f))

(L&) T (M (r, f), fa1)
(14+2)T (Mg, (r), faa (h))
(14e)* T (M (Mj, (r),h), fu-2)
(14 )T (My, (1), fa2)
(142> T (My, (1), fa-3(9))
(1+¢)’ T (My, (r), fa_3)
(142)* T (My, (1), fs (F))
(1+2)* T (My, (1), foas)

T (Rs, f) for any integer n > 3.

Since € > 0 was arbitrary, for sufficiently large values of » we have

Also using Lemma 2.3, we have
Whenn =3m,m e N

T(van) ST(R47f)

(3.2)
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T (r, fn) T (r, fn—1 (h))

Ry — |h(0)]
> <R3+|h(o)|>T(R37fn—])

> (1-¢)T(R3, fn2(9))
|

Ry —1g(0)
-9 (Fr o) 76 o0

> (1 *5)2T(Rz,fn—z)
(1 =)’ T (Ry, fu-s)

%

v

(1—¢)" T (Rs,f (9))
(1—¢)" '"T(Ry, f).

When n = 3m — 1, m € N we have

AVARNIY,

T (r, fn)

T (r, fn-1(9)) -

Ry, — 19 (0)]
(R 70 )
> (1-¢)T (Rz,fnz )

> (1 ) (Rhfn
>

(1-¢) (R3afn7»)

(1-¢)" T (Rs, f (9))
(1—e)" 'T(Ry, f).

When n = 3m — 2, m € N we have

AVARNVS

T (r, fn)

T (r, fa1 (f))

Ry —|f(0)
= (R1+|f( >|>T(Rl’f"“>
> (1-¢)T (R, fn 2 (h))

0)]

> (R —|-|h | TR3 fn2
> (1- ) T (Rs, fn-3(9))
(R27fn7)

\Y
. —~
—
I
\_/

> (1-¢)" T (Rs, f(9))
> (1-e)" 'T(Ry, f).

So
T(r fo)>(1—e)" ' T(Ry, f).
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Therefore for sufficiently large values of r and for ¢ > 0 arbitrarily, small we have

T(r, fn) > T (Ra, f) (3.3)

Hence from (3.2) and (3.3) we obtain (3.1).

This completes the proof. O
Theorem 3.2. Let f, g, h ; u, v, w be six transcendental entire functions with T (r, f) ~ T (r,u),
T (r,g) ~ T (r,v), T (r,h) ~ T (r,w),T(r,f) = O0*((logr)”ele"”) (0 <a<1l,v>0),
T (r,g) = O* ((logr)ﬁ) and T (r,h) = O* ((logT)A) where 3, X > 1 are constants. Then
T(r, fn) ~ T (r,uy) for n > 3, where u, () = u(v(w(u...(u(z) orv(z) orw(z)..))))
according asm =3m — 2 or3m — 1 or3m, m € N.

Proof. We have from Theorem 3.1,

T(Ri,f) < T(r,fn) <T (R, f) (3.4)
T (R’l, u) T (ryun) < T (R;, u) (3.5)

where Ry and R are such that |g (z)| > Ry > 2= |g(0)], |v(2)| > R} > %= |[v(0)] and

T(R17f) ~ T (Rll’f) ’ R2 = max {anfl (T)7Mgn71 (T) 7Mhn71 (T)} and RIZ =
max { M, , (r),M,, , (r),M,, , (r)} for sufficiently large values of r and arbitrary small

e>0.
Since

IN

T(r,f)~T(r,u)
S0 / ,
T (Ri f) ~T (B f) ~ T (R u)
ie. T(R,f)~T (R’l,u) (r— o0, r¢ E). (3.6)
From Lemma 2.7, we have
M (r,f) ~ M (r,u).

Also we have

MM (r,f),h) ~ M(M(r,u),w) (r— o0)
ie M(M(M(r,f),h),g) ~ MMM (ru),w),v) (r— oc0).

So, forn = 3m — 2, m € N we have

My, (r)~DM,, ,(r) (r—o00). (3.7

Similarly for n = 3m — 1, m € N we have

My, (r) ~ My, (r) (r— o) (3.8)

and for n = 3m, m € N we have

My, (1)~ My, ,(r) (r— o0). 3.9

Combining (3.7), (3.8) and (3.9) and for n > 3, n € N we obtain R, ~ R, for large r.
So combining T (r, f) ~ T (r,u) and Ry ~ R, we have

T(Ry, f) ~T (R’z,u) (r — 00) . (3.10)
So from (3.4), (3.5), (3.6) and (3.10) we get
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T(ry fn) ~T (r,up) .

This completes the proof. O

Theorem 3.3. Let f, g, h ; u, v, w be six transcendental entire functions with T (r, f) ~ T (r,u),
T(r.9) ~ T (r,0), T (r,h) ~ T (r,w) T (r, f) = 0" ((logr)°), T (r.9) = 0 ((logr)") and
T(r,h) = OF ((logr)ﬁ) where 8 > 1 is a constant. Then T (r, f,) ~ T (r,uy) forn > 3,
where u,, (2) = u (v (w (u... (u(2) orv(z) orw(z)...)))) according asn = 3m —2 or 3m — 1

or3m,m € N.

The conditions of Theorem 3.2 and Theorem 3.3 are not strictly sharp, which are illustrated
by the following examples.

Example 3.4. Let f (z) = €2,
Then we have f3 (z) = f (g (h
u (v (62)) = u (242) = 2%,

S
—~
N
W —
I
\®]
n

(2) =3zand u (z) = 2e**, v (2) = 42, w (z) = 62.
)= f(62) =e*andu; (2) = u (v (w(2))) =

Now
2r r
T(r,f) = —,T(r,u)=—=—+1log2
T(r,g) = logr+log2, T (r,v)=logr+log4
T (r,h) = logr+log3, T (r,w)=1logr+log6
Thus T'(r, f) ~ T (r,u), T (r,g) ~T (r,v) and T (r,h) ~ T (r,w) .
Again
12 4
T(T,f3) = J7T(r7u3) - ﬁ +10g2
™ ™
Therefore b
T(T7f3) _ % _ 1
T(ruw) = log2 4 as r — oo.
So
T(r, f3) =~ T (r,us.) as 7 — o0
Example 3.5. Let f (2) = 2¢%, g (2) = €, h(2) = zand u (2) = 22, v (2) = 7, w (2) = 2¢.
Thenwehave f3 (2) = f (g (h(2))) = f(g(2)) = f(€*) =2¢° andu3 (2) = u (v (w(z))) =
u(v(2e?)) =u (662) =2¢°.
Then we have
T(r,f) = L +log2, T (r,u) =log2 +logr
T
T T
T - 7 -
T(r,h) = logr, T (r,w)=log2+ —.
7T

Therefore we have T (r, f) = T (r,u), T (r,g) = T (r,v), T (r,h) = T (r,w) as r — oc.
But still
T (r, f3) ~ T (r,u3) asr — oo.
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