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Abstract. In this paper we consider iteration of three entire functions and study some growth
properties.

1 Introduction

Let f (z) and g (z) be two entire functions. Lahiri and Banerjee in [7] form the iterations of f (z)
with respect to g (z) as follows:

f1 (z) = f (z)

f2 (z) = f (g (z)) = f (g1 (z))

f3 (z) = f (g (f (z))) = f (g (f1 (z)))

...

fn (z) = f (g (f (g... (f (z) or g (z) according as n is odd or even) ...)))

= f (gn−1 (z)) = f (g (fn−2 (z)))

and so

g1 (z) = g (z)

g2 (z) = g (f (z)) = g (f1 (z))

g3 (z) = g (f2 (z)) = g (f (g1 (z)))

...

gn (z) = g (fn−1 (z)) = g (f (gn−2 (z))) .

Then all fn (z) and gn (z) are entire functions.
Let f (z) and g (z) be entire functions. Banerjee and Dutta [1] used the notations Mf1 (r),

Mf2 (r) , Mf3 (r), etc to mean M (r, f), M (M (r, f) , g) , M(M (M (r, f) , g), f) , respectively
and F (r) = O∗ (G (r)) to mean that there exist two positive costants K1 and K2 such that
K1 ≤ F (r)

G(r) ≤ K2 for large r.
In 2003 Sun [9] proved the following theorem.

Theorem 1.1. Let f1, f2 and g1, g2 be four transcendental entire functions with T (r, f1) =

O∗ ((log r)ν e(log r)α
)

and T (r, g1) = O∗
(
(log r)β

)
.

If T (r, f1) ∼ T (r, f2) and T (r, g1) ∼ T (r, g2) (r →∞), then

T (r, f1 (g1)) ∼ T (r, f2 (g2)) (r →∞, r /∈ E) ,

where ν > 0, 0 < α < 1, β > 1 and αβ < 1 and E is a set of finite logarithmic measure.
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After this in 2011, Banerjee and Dutta [1] extend Theorem 1.1 for iterated entire functions in
the following manner.

Theorem 1.2. Let f, g, u, v be four transcendental entire functions with T (r, f) ∼ T (r, u) ,

T (r, g) ∼ T (r, v) , T (r, f) = O∗ ((log r)ν e(log r)α
)
(0 < α < 1, ν > 0) and T (r, g) = O∗

(
(log r)β

)
where β > 1 is a constant, then T (r, fn) ∼ T (r, un) for n ≥ 2,
where un (z) = u (v (u (v... (u (z) or v (z)) ...))) according as n is odd or even.

In [8], Niino and Suita proved the following theorem.

Theorem 1.3. Let f (z) and g (z) be entire functions. If M (r, g) > 2+ε
ε |g (0)| for any ε > 0,

then we have

T (r, f (g)) ≤ (1 + ε)T (M (r, g) , f) .

In particular, if g (0) = 0, then

T (r, f (g)) ≤ T (M (r, g) , f) for all r > 0.

As a generalisation of Theorem 1.3, Banerjee and Dutta [1] proved the following theorem.

Theorem 1.4. Let f (z) , g (z) be two entire functions.Then

T (R2, f) ≤ T (r, fn) ≤ T (R3, f)

where |f (z)| > R1 >
2+ε
ε |f (0)| and |g (z)| > R2 >

2+ε
ε |g (0)| , R3 = max{Mfn−1 (r) ,

Mgn−1 (r)} for sufficiently large values of r and any integer n ≥ 2.

Further they showed Theorem 1.2 also true for less conditions and proved the following
theorem.

Theorem 1.5. Let f, g, u, v be four transcendental entire functions with T (r, f) ∼ T (r, u) ,

T (r, g) ∼ T (r, v) , T (r, f) = O∗
(
(log r)β

)
and T (r, g) = O∗

(
(log r)β

)
where β > 1 is a

constant, then T (r, fn) ∼ T (r, un) .

In this paper we consider three entire functions f (z) , g (z) and h (z) and following Banerjee
and Mandal [2] form the iterations of f (z) with respect to g (z) and h (z) [defined below] and
generalise the results of Banerjee and Dutta [1] in this direction.

f1 (z) = f (z)

f2 (z) = f (g (z)) = f (g1 (z))

f3 (z) = f (g (h (z))) = f (g (h1 (z))) = f (g2 (z))

f4 (z) = f (g (h (f (z)))) = f (g (h2 (z))) = f (g3 (z))

...

fn (z) = f(g(h(f..(f (z) or g (z) or h (z) according as n = 3m− 2 or 3m− 1

or 3m)...)))

= f (gn−1 (z)) = f (g (hn−2 (z))) .

Similarly,
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g1 (z) = g (z)

g2 (z) = g (h (z)) = g (h1 (z))

g3 (z) = g (h (f (z))) = g (h (f1 (z))) = g (h2 (z))

g4 (z) = g (h (f (g (z)))) = g (h (f2 (z))) = g (h3 (z))

...

gn (z) = g(h(f(g...(g (z) or h (z) or f (z) according as n = 3m− 2 or 3m− 1

or 3m)...)))

= g (hn−1 (z)) = g (h (fn−2 (z)))

and

h1 (z) = h (z)

h2 (z) = h (f (z)) = h (f1 (z))

h3 (z) = h (f (g (z))) = h (f (g1 (z))) = h (f2 (z))

h4 (z) = h (f (g (h (z)))) = h (f (g2 (z))) = h (f3 (z))

...

hn (z) = h(f(g(h...(h (z) or f (z) or g (z) according as n = 3m− 2 or 3m− 1

or 3m)...)))

= h (fn−1 (z)) = h (f (gn−2 (z))) .

Clearly all fn, gn and hn are entire functions.
We now use the following notation throughout the paper.
Let f (z) , g (z) and h (z) be entire functions. we use the notations Mf1 (r),Mf2 (r) , Mf3 (r),

Mf4 (r) etc to mean M (r, f), M (M (r, f) , h) , M(M (M (r, f) , h), g) ,
M (M (M (M (r, f) , h) , g) , f) respectively. Similarly we use the notations Mg1 (r), Mg2 (r) ,
Mg3 (r), Mg4 (r) etc to mean M (r, g), M (M (r, g) , f) , M(M (M (r, g) , f), h) ,
M (M (M (M (r, g) , f) , h) , g) respectively andMh1 (r),Mh2 (r) , Mh3 (r),Mh4 (r) etc to mean
M (r, h),M (M (r, h) , g) , M(M (M (r, h) , g), f) , M (M (M (M (r, h) , g) , f) , h) respectively
and F (r) = O∗ (G (r)) to mean that there exist two positive costants K1 and K2 such that
K1 ≤ F (r)

G(r) ≤ K2 for any large r.

2 Lemmas

Lemma 2.1. [6] Let f (z) be an entire function. For 0 ≤ r < R <∞, we have

T (r, f) ≤ log+M (r, f) ≤
R+ r

R− r
T (R, f) .

Lemma 2.2. [5] Let f (z) be an entire function of order ρ (ρ <∞). If k > ρ− 1, then

logM (r, f) ∼ logM
(
r − r−k, f

)
(r →∞) .

Lemma 2.3. [8] Let g (z) and f (z) be two entire functions. Suppose that |g (z)| > R > |g (0)|
on the circumference {|z| = r} for some r > 0. Then we have

T (r, f (g)) ≥
R− |g (0)|
R+ |g (0)|

T (R, f) .
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Lemma 2.4. [9] Let f be a transcendental entire function with

T (r, f) = O∗
(
(log r)β e(log r)α

)
(0 < α < 1, β > 0) .

Then

T (r, f) ∼ logM (r, f) (r →∞, r /∈ E) and

T (σr, f) ∼ T (r, f) (r →∞, σ ≥ 2, r /∈ E) ,

where E is a set of finite logarithmic measure.

Lemma 2.5. [1] Let f be a transcendental entire function with T (r, f) = O∗
(
(log r)β

)
where

β > 1. Then

T (r, f) ∼ logM (r, f) (r →∞, r /∈ E) and

T (σr, f) ∼ T (r, f) (r →∞, σ ≥ 2, r /∈ E) ,

where E is a set of finite logarithmic measure.

Lemma 2.6. [1] Let f1 and f2 be two entire functions with T (r, f1) = O∗
(
(log r)β

)
where

β > 1 and T (r, f1) ∼ T (r, f2) then M (r, f1) ∼M (r, f2) .

Lemma 2.7. [1] Let f1 and f2 be two entire functions with T (r, f1) = O∗ ((log r)ν e(log r)α
)

where ν > 1, 0 < α < 1 and T (r, f1) ∼ T (r, f2) then M (r, f1) ∼M (r, f2) .

3 Main Results

Theorem 3.1. Let f (z) , g (z) and h (z) be three entire functions.Then we have

T (R2, f) ≤ T (r, fn) ≤ T (R4, f) (3.1)

where |f (z)| > R1 >
2+ε
ε |f (0)| , |g (z)| > R2 >

2+ε
ε |g (0)| , |h (z)| > R3 >

2+ε
ε |h (0)| and

R4 = max{Mfn−1 (r) , Mgn−1 (r) , Mhn−1 (r)} for sufficiently large values of r and any integer
n ≥ 3.

Proof. CASE-I : When n = 3m,m ∈ N and ε > 0 arbitrary small, then by Theorem 1.3, we
have

T (r, fn) = T (r, fn−1 (h))

≤ (1 + ε)T (M (r, h) , fn−1)

= (1 + ε)T (Mh1 (r) , fn−2 (g))

≤ (1 + ε)
2
T (M (Mh1 (r) , g) , fn−2)

= (1 + ε)
2
T (Mh2 (r) , fn−2)

= (1 + ε)
2
T (Mh2 (r) , fn−3 (f))

≤ (1 + ε)
3
T (Mh3 (r) , fn−3)

= (1 + ε)
3
T (Mh3 (r) , fn−4 (h))

≤ (1 + ε)
4
T (Mh4 (r) , fn−4)

...

≤ (1 + ε)
n−1

T
(
Mhn−1 (r) , f

)
≤ (1 + ε)

n−1
T (R4, f) .
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CASE-II : When n = 3m− 1,m ∈ N we have

T (r, fn) = T (r, fn−1 (g))

≤ (1 + ε)T (M (r, g) , fn−1)

= (1 + ε)T (Mg1 (r) , fn−2 (f))

≤ (1 + ε)
2
T (M (Mg1 (r) , f) , fn−2)

= (1 + ε)
2
T (Mg2 (r) , fn−2)

= (1 + ε)
2
T (Mg2 (r) , fn−3 (h))

≤ (1 + ε)
3
T (Mg3 (r) , fn−3)

= (1 + ε)
3
T (Mg3 (r) , fn−4 (g))

≤ (1 + ε)
4
T (Mg4 (r) , fn−4)

...

≤ (1 + ε)
n−1

T
(
Mgn−1 (r) , f

)
≤ (1 + ε)

n−1
T (R4, f) .

CASE-III : When n = 3m− 2,m ∈ N we have

T (r, fn) = T (r, fn−1 (f))

≤ (1 + ε)T (M (r, f) , fn−1)

= (1 + ε)T (Mf1 (r) , fn−2 (h))

≤ (1 + ε)
2
T (M (Mf1 (r) , h) , fn−2)

= (1 + ε)
2
T (Mf2 (r) , fn−2)

= (1 + ε)
2
T (Mf2 (r) , fn−3 (g))

≤ (1 + ε)
3
T (Mf3 (r) , fn−3)

= (1 + ε)
3
T (Mf3 (r) , fn−4 (f))

≤ (1 + ε)
4
T (Mf4 (r) , fn−4)

...

≤ (1 + ε)
n−1

T
(
Mfn−1 (r) , f

)
≤ (1 + ε)

n−1
T (R4, f) .

Therefore T (r, fn) ≤ (1 + ε)
n−1

T (R4, f) for any integer n ≥ 3.
Since ε > 0 was arbitrary, for sufficiently large values of r we have

T (r, fn) ≤ T (R4, f) . (3.2)

Also using Lemma 2.3, we have
When n = 3m, m ∈ N
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T (r, fn) = T (r, fn−1 (h))

≥
(
R3 − |h (0)|
R3 + |h (0)|

)
T (R3, fn−1)

> (1− ε)T (R3, fn−2 (g))

≥ (1− ε)
(
R2 − |g (0)|
R2 + |g (0)|

)
T (R2, fn−2)

> (1− ε)2
T (R2, fn−2)

≥ (1− ε)3
T (R1, fn−3)

...

≥ (1− ε)n−2
T (R3, f (g))

≥ (1− ε)n−1
T (R2, f) .

When n = 3m− 1, m ∈ N we have

T (r, fn) = T (r, fn−1 (g)) .

≥
(
R2 − |g (0)|
R2 + |g (0)|

)
T (R2, fn−1)

> (1− ε)T (R2, fn−2 (f))

≥ (1− ε)
(
R1 − |f (0)|
R1 + |f (0)|

)
T (R1, fn−2)

> (1− ε)2
T (R1, fn−3 (h))

≥ (1− ε)3
T (R3, fn−3)

...

≥ (1− ε)n−2
T (R3, f (g))

≥ (1− ε)n−1
T (R2, f) .

When n = 3m− 2, m ∈ N we have

T (r, fn) = T (r, fn−1 (f))

≥
(
R1 − |f (0)|
R1 + |f (0)|

)
T (R1, fn−1)

> (1− ε)T (R1, fn−2 (h))

≥ (1− ε)
(
R3 − |h (0)|
R3 + |h (0)|

)
T (R3, fn−2)

> (1− ε)2
T (R3, fn−3 (g))

≥ (1− ε)3
T (R2, fn−3)

...

≥ (1− ε)n−2
T (R3, f (g))

≥ (1− ε)n−1
T (R2, f) .

So
T (r, fn) ≥ (1− ε)n−1

T (R2, f) .
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Therefore for sufficiently large values of r and for ε > 0 arbitrarily, small we have

T (r, fn) ≥ T (R2, f) (3.3)

Hence from (3.2) and (3.3) we obtain (3.1) .
This completes the proof.

Theorem 3.2. Let f, g, h ; u, v, w be six transcendental entire functions with T (r, f) ∼ T (r, u) ,
T (r, g) ∼ T (r, v) , T (r, h) ∼ T (r, w) , T (r, f) = O∗ ((log r)ν e(log r)α

)
(0 < α < 1, ν > 0),

T (r, g) = O∗
(
(log r)β

)
and T (r, h) = O∗

(
(log r)λ

)
where β, λ > 1 are constants. Then

T (r, fn) ∼ T (r, un) for n ≥ 3 , where un (z) = u (v (w (u... (u (z) or v (z) or w (z) ...))))
according as n = 3m− 2 or 3m− 1 or 3m, m ∈ N.

Proof. We have from Theorem 3.1,

T (R1, f) ≤ T (r, fn) ≤ T (R2, f) (3.4)

T
(
R
′

1, u
)
≤ T (r, un) ≤ T

(
R
′

2, u
)

(3.5)

where R1 and R
′

1 are such that |g (z)| > R1 >
2+ε
ε |g (0)| , |v (z)| > R

′

1 >
2+ε
ε |v (0)| and

T (R1, f) ∼ T
(
R
′

1, f
)
, R2 = max

{
Mfn−1 (r) ,Mgn−1 (r) ,Mhn−1 (r)

}
and R

′

2 =

max
{
Mun−1 (r) ,Mvn−1 (r) ,Mwn−1 (r)

}
for sufficiently large values of r and arbitrary small

ε > 0.
Since

T (r, f) ∼ T (r, u)

so
T (R1, f) ∼ T

(
R
′

1, f
)
∼ T

(
R
′

1, u
)

i.e. T (R1, f) ∼ T
(
R
′

1, u
)

(r →∞, r /∈ E) . (3.6)

From Lemma 2.7, we have

M (r, f) ∼M (r, u) .

Also we have

M (M (r, f) , h) ∼ M (M (r, u) , w) (r →∞)

i.e M (M (M (r, f) , h) , g) ∼ M (M (M (r, u) , w) , v) (r →∞) .

So, for n = 3m− 2, m ∈ N we have

Mfn−1 (r) ∼Mun−1 (r) (r →∞) . (3.7)

Similarly for n = 3m− 1, m ∈ N we have

Mgn−1 (r) ∼Mvn−1 (r) (r →∞) (3.8)

and for n = 3m, m ∈ N we have

Mhn−1 (r) ∼Mwn−1 (r) (r →∞) . (3.9)

Combining (3.7) , (3.8) and (3.9) and for n ≥ 3, n ∈ N we obtain R2 ∼ R
′

2 for large r.
So combining T (r, f) ∼ T (r, u) and R2 ∼ R

′

2 we have

T (R2, f) ∼ T
(
R
′

2, u
)

(r →∞) . (3.10)

So from (3.4), (3.5) , (3.6) and (3.10) we get
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T (r, fn) ∼ T (r, un) .

This completes the proof.

Theorem 3.3. Let f, g, h ; u, v, w be six transcendental entire functions with T (r, f) ∼ T (r, u) ,

T (r, g) ∼ T (r, v) , T (r, h) ∼ T (r, w) , T (r, f) = O∗
(
(log r)β

)
, T (r, g) = O∗

(
(log r)β

)
and

T (r, h) = O∗
(
(log r)β

)
where β > 1 is a constant. Then T (r, fn) ∼ T (r, un) for n ≥ 3 ,

where un (z) = u (v (w (u... (u (z) or v (z) or w (z) ...)))) according as n = 3m− 2 or 3m− 1
or 3m, m ∈ N.

The conditions of Theorem 3.2 and Theorem 3.3 are not strictly sharp, which are illustrated
by the following examples.

Example 3.4. Let f (z) = e2z, g (z) = 2z, h (z) = 3z and u (z) = 2e2z, v (z) = 4z, w (z) = 6z.
Then we have f3 (z) = f (g (h (z))) = f (g (3z)) = f (6z) = e12z and u3 (z) = u (v (w (z))) =

u (v (6z)) = u (24z) = 2e48z.
Now

T (r, f) =
2r
π
, T (r, u) =

2r
π

+ log 2

T (r, g) = log r + log 2, T (r, v) = log r + log 4

T (r, h) = log r + log 3, T (r, w) = log r + log 6

Thus T (r, f) ∼ T (r, u) , T (r, g) ∼ T (r, v) and T (r, h) ∼ T (r, w) .
Again

T (r, f3) =
12r
π
, T (r, u3) =

48r
π

+ log 2.

Therefore
T (r, f3)

T (r, u3)
=

12r
π

48r
π + log 2

=
1
4

as r →∞.

So
T (r, f3) � T (r, u3.) as r →∞.

Example 3.5. Let f (z) = 2ez, g (z) = ez, h (z) = z and u (z) = 2z, v (z) = e
z
2 , w (z) = 2ez.

Then we have f3 (z) = f (g (h (z))) = f (g (z)) = f (ez) = 2ee
z

and u3 (z) = u (v (w (z))) =
u (v (2ez)) = u

(
ee
z)

= 2ee
z

.
Then we have

T (r, f) =
r

π
+ log 2, T (r, u) = log 2 + log r

T (r, g) =
r

π
, T (r, v) =

r

2π

T (r, h) = log r, T (r, w) = log 2 +
r

π
..

Therefore we have T (r, f) � T (r, u) , T (r, g) � T (r, v) , T (r, h) � T (r, w) as r →∞.
But still

T (r, f3) ∼ T (r, u3) as r →∞.
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