A STUDY ON GROWTH OF ITERATED ENTIRE FUNCTIONS

Dibyendu Banerjee and Sumanta Ghosh
Communicated by P. K. Banerji

MSC 2010 Classifications: 30D35.
Keywords and phrases: Growth, entire function, iteration.
Abstract. In this paper we consider iteration of three entire functions and study some growth properties.

1 Introduction

Let $f(z)$ and $g(z)$ be two entire functions. Lahiri and Banerjee in [7] form the iterations of $f(z)$ with respect to $g(z)$ as follows:

$$
\begin{aligned}
f_{1}(z)= & f(z) \\
f_{2}(z)= & f(g(z))=f\left(g_{1}(z)\right) \\
f_{3}(z)= & f(g(f(z)))=f\left(g\left(f_{1}(z)\right)\right) \\
& \vdots \\
f_{n}(z)= & f(g(f(g \ldots(f(z) \text { or } g(z) \text { according as } n \text { is odd or even }) \ldots))) \\
= & f\left(g_{n-1}(z)\right)=f\left(g\left(f_{n-2}(z)\right)\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
g_{1}(z)= & g(z) \\
g_{2}(z)= & g(f(z))=g\left(f_{1}(z)\right) \\
g_{3}(z)= & g\left(f_{2}(z)\right)=g\left(f\left(g_{1}(z)\right)\right) \\
& \vdots \\
g_{n}(z)= & g\left(f_{n-1}(z)\right)=g\left(f\left(g_{n-2}(z)\right)\right)
\end{aligned}
$$

Then all $f_{n}(z)$ and $g_{n}(z)$ are entire functions.
Let $f(z)$ and $g(z)$ be entire functions. Banerjee and Dutta [1] used the notations $M_{f_{1}}(r)$, $M_{f_{2}}(r), M_{f_{3}}(r)$, etc to mean $M(r, f), M(M(r, f), g), M(M(M(r, f), g), f)$, respectively and $F(r)=O^{*}(G(r))$ to mean that there exist two positive costants K_{1} and K_{2} such that $K_{1} \leq \frac{F(r)}{G(r)} \leq K_{2}$ for large r.

In 2003 Sun [9] proved the following theorem.
Theorem 1.1. Let f_{1}, f_{2} and g_{1}, g_{2} be four transcendental entire functions with $T\left(r, f_{1}\right)=$ $O^{*}\left((\log r)^{\nu} e^{(\log r)^{\alpha}}\right)$ and $T\left(r, g_{1}\right)=O^{*}\left((\log r)^{\beta}\right)$.

If $T\left(r, f_{1}\right) \sim T\left(r, f_{2}\right)$ and $T\left(r, g_{1}\right) \sim T\left(r, g_{2}\right)(r \rightarrow \infty)$, then

$$
T\left(r, f_{1}\left(g_{1}\right)\right) \sim T\left(r, f_{2}\left(g_{2}\right)\right) \quad(r \rightarrow \infty, r \notin E)
$$

where $\nu>0,0<\alpha<1, \beta>1$ and $\alpha \beta<1$ and E is a set of finite logarithmic measure.

After this in 2011, Banerjee and Dutta [1] extend Theorem 1.1 for iterated entire functions in the following manner.

Theorem 1.2. Let f, g, u, v be four transcendental entire functions with $T(r, f) \sim T(r, u)$, $T(r, g) \sim T(r, v), T(r, f)=O^{*}\left((\log r)^{\nu} e^{(\log r)^{\alpha}}\right)(0<\alpha<1, \nu>0)$ and $T(r, g)=O^{*}\left((\log r)^{\beta}\right)$ where $\beta>1$ is a constant, then $T\left(r, f_{n}\right) \sim T\left(r, u_{n}\right)$ for $n \geq 2$, where $u_{n}(z)=u(v(u(v \ldots(u(z)$ or $v(z)) \ldots)))$ according as n is odd or even.

In [8], Niino and Suita proved the following theorem.

Theorem 1.3. Let $f(z)$ and $g(z)$ be entire functions. If $M(r, g)>\frac{2+\varepsilon}{\varepsilon}|g(0)|$ for any $\varepsilon>0$, then we have

$$
T(r, f(g)) \leq(1+\varepsilon) T(M(r, g), f)
$$

In particular, if $g(0)=0$, then

$$
T(r, f(g)) \leq T(M(r, g), f) \text { for all } r>0
$$

As a generalisation of Theorem 1.3, Banerjee and Dutta [1] proved the following theorem.

Theorem 1.4. Let $f(z), g(z)$ be two entire functions.Then

$$
T\left(R_{2}, f\right) \leq T\left(r, f_{n}\right) \leq T\left(R_{3}, f\right)
$$

where $|f(z)|>R_{1}>\frac{2+\varepsilon}{\varepsilon}|f(0)|$ and $|g(z)|>R_{2}>\frac{2+\varepsilon}{\varepsilon}|g(0)|, R_{3}=\max \left\{M_{f_{n-1}}(r)\right.$, $\left.M_{g_{n-1}}(r)\right\}$ for sufficiently large values of r and any integer $n \geq 2$.

Further they showed Theorem 1.2 also true for less conditions and proved the following theorem.

Theorem 1.5. Let f, g, u, v be four transcendental entire functions with $T(r, f) \sim T(r, u)$, $T(r, g) \sim T(r, v), T(r, f)=O^{*}\left((\log r)^{\beta}\right)$ and $T(r, g)=O^{*}\left((\log r)^{\beta}\right)$ where $\beta>1$ is a constant, then $T\left(r, f_{n}\right) \sim T\left(r, u_{n}\right)$.

In this paper we consider three entire functions $f(z), g(z)$ and $h(z)$ and following Banerjee and Mandal [2] form the iterations of $f(z)$ with respect to $g(z)$ and $h(z)$ [defined below] and generalise the results of Banerjee and Dutta [1] in this direction.

$$
\begin{aligned}
f_{1}(z)= & f(z) \\
f_{2}(z)= & f(g(z))=f\left(g_{1}(z)\right) \\
f_{3}(z)= & f(g(h(z)))=f\left(g\left(h_{1}(z)\right)\right)=f\left(g_{2}(z)\right) \\
f_{4}(z)= & f(g(h(f(z))))=f\left(g\left(h_{2}(z)\right)\right)=f\left(g_{3}(z)\right) \\
& \vdots \\
f_{n}(z)= & f(g(h(f . .(f(z) \text { or } g(z) \text { or } h(z) \text { according as } n=3 m-2 \text { or } 3 m-1 \\
& \text { or } 3 m) \ldots))) \\
= & f\left(g_{n-1}(z)\right)=f\left(g\left(h_{n-2}(z)\right)\right) .
\end{aligned}
$$

Similarly,

```
\(g_{1}(z)=g(z)\)
\(g_{2}(z)=g(h(z))=g\left(h_{1}(z)\right)\)
\(g_{3}(z)=g(h(f(z)))=g\left(h\left(f_{1}(z)\right)\right)=g\left(h_{2}(z)\right)\)
\(g_{4}(z)=g(h(f(g(z))))=g\left(h\left(f_{2}(z)\right)\right)=g\left(h_{3}(z)\right)\)
    \(\vdots\)
\(g_{n}(z)=g(h(f(g \ldots(g(z)\) or \(h(z)\) or \(f(z)\) according as \(n=3 m-2\) or \(3 m-1\)
        or \(3 m) \ldots)\) )
    \(=g\left(h_{n-1}(z)\right)=g\left(h\left(f_{n-2}(z)\right)\right)\)
```

and

```
\(h_{1}(z)=h(z)\)
\(h_{2}(z)=h(f(z))=h\left(f_{1}(z)\right)\)
\(h_{3}(z)=h(f(g(z)))=h\left(f\left(g_{1}(z)\right)\right)=h\left(f_{2}(z)\right)\)
\(h_{4}(z)=h(f(g(h(z))))=h\left(f\left(g_{2}(z)\right)\right)=h\left(f_{3}(z)\right)\)
    \(\vdots\)
\(h_{n}(z)=h(f(g(h \ldots(h(z)\) or \(f(z)\) or \(g(z)\) according as \(n=3 m-2\) or \(3 m-1\)
        or \(3 m) \ldots)\) )
    \(=h\left(f_{n-1}(z)\right)=h\left(f\left(g_{n-2}(z)\right)\right)\).
```

Clearly all f_{n}, g_{n} and h_{n} are entire functions.
We now use the following notation throughout the paper.
Let $f(z), g(z)$ and $h(z)$ be entire functions. we use the notations $M_{f_{1}}(r), M_{f_{2}}(r), M_{f_{3}}(r)$, $M_{f_{4}}(r)$ etc to mean $M(r, f), M(M(r, f), h), M(M(M(r, f), h), g)$,
$M(M(M(M(r, f), h), g), f)$ respectively. Similarly we use the notations $M_{g_{1}}(r), M_{g_{2}}(r)$, $M_{g_{3}}(r), M_{g_{4}}(r)$ etc to mean $M(r, g), M(M(r, g), f), M(M(M(r, g), f), h)$,
$M(M(M(M(r, g), f), h), g)$ respectively and $M_{h_{1}}(r), M_{h_{2}}(r), M_{h_{3}}(r), M_{h_{4}}(r)$ etc to mean $M(r, h), M(M(r, h), g), M(M(M(r, h), g), f), M(M(M(M(r, h), g), f), h)$ respectively and $F(r)=O^{*}(G(r))$ to mean that there exist two positive costants K_{1} and K_{2} such that $K_{1} \leq \frac{F(r)}{G(r)} \leq K_{2}$ for any large r.

2 Lemmas

Lemma 2.1. [6] Let $f(z)$ be an entire function. For $0 \leq r<R<\infty$, we have

$$
T(r, f) \leq \log ^{+} M(r, f) \leq \frac{R+r}{R-r} T(R, f)
$$

Lemma 2.2. [5] Let $f(z)$ be an entire function of order $\rho(\rho<\infty)$. If $k>\rho-1$, then

$$
\log M(r, f) \sim \log M\left(r-r^{-k}, f\right) \quad(r \rightarrow \infty)
$$

Lemma 2.3. [8] Let $g(z)$ and $f(z)$ be two entire functions. Suppose that $|g(z)|>R>|g(0)|$ on the circumference $\{|z|=r\}$ for some $r>0$. Then we have

$$
T(r, f(g)) \geq \frac{R-|g(0)|}{R+|g(0)|} T(R, f)
$$

Lemma 2.4. [9] Let f be a transcendental entire function with

$$
T(r, f)=O^{*}\left((\log r)^{\beta} e^{(\log r)^{\alpha}}\right) \quad(0<\alpha<1, \beta>0) .
$$

Then

$$
\begin{aligned}
T(r, f) & \sim \log M(r, f) \quad(r \rightarrow \infty, r \notin E) \quad \text { and } \\
T(\sigma r, f) & \sim T(r, f) \quad(r \rightarrow \infty, \sigma \geq 2, r \notin E),
\end{aligned}
$$

where E is a set of finite logarithmic measure.
Lemma 2.5. [1] Let f be a transcendental entire function with $T(r, f)=O^{*}\left((\log r)^{\beta}\right)$ where $\beta>1$. Then

$$
\begin{aligned}
T(r, f) & \sim \log M(r, f) \quad(r \rightarrow \infty, r \notin E) \quad \text { and } \\
T(\sigma r, f) & \sim T(r, f) \quad(r \rightarrow \infty, \sigma \geq 2, r \notin E),
\end{aligned}
$$

where E is a set of finite logarithmic measure.
Lemma 2.6. [1] Let f_{1} and f_{2} be two entire functions with $T\left(r, f_{1}\right)=O^{*}\left((\log r)^{\beta}\right)$ where $\beta>1$ and $T\left(r, f_{1}\right) \sim T\left(r, f_{2}\right)$ then $M\left(r, f_{1}\right) \sim M\left(r, f_{2}\right)$.

Lemma 2.7. [1] Let f_{1} and f_{2} be two entire functions with $T\left(r, f_{1}\right)=O^{*}\left((\log r)^{\nu} e^{(\log r)^{\alpha}}\right)$ where $\nu>1,0<\alpha<1$ and $T\left(r, f_{1}\right) \sim T\left(r, f_{2}\right)$ then $M\left(r, f_{1}\right) \sim M\left(r, f_{2}\right)$.

3 Main Results

Theorem 3.1. Let $f(z), g(z)$ and $h(z)$ be three entire functions.Then we have

$$
\begin{equation*}
T\left(R_{2}, f\right) \leq T\left(r, f_{n}\right) \leq T\left(R_{4}, f\right) \tag{3.1}
\end{equation*}
$$

where $|f(z)|>R_{1}>\frac{2+\varepsilon}{\varepsilon}|f(0)|,|g(z)|>R_{2}>\frac{2+\varepsilon}{\varepsilon}|g(0)|,|h(z)|>R_{3}>\frac{2+\varepsilon}{\varepsilon}|h(0)|$ and $R_{4}=\max \left\{M_{f_{n-1}}(r), M_{g_{n-1}}(r), M_{h_{n-1}}(r)\right\}$ for sufficiently large values of r and any integer $n \geq 3$.

Proof. CASE-I : When $n=3 m, m \in \mathbb{N}$ and $\varepsilon>0$ arbitrary small, then by Theorem 1.3, we have

$$
\begin{aligned}
T\left(r, f_{n}\right)= & T\left(r, f_{n-1}(h)\right) \\
\leq & (1+\varepsilon) T\left(M(r, h), f_{n-1}\right) \\
= & (1+\varepsilon) T\left(M_{h_{1}}(r), f_{n-2}(g)\right) \\
\leq & (1+\varepsilon)^{2} T\left(M\left(M_{h_{1}}(r), g\right), f_{n-2}\right) \\
= & (1+\varepsilon)^{2} T\left(M_{h_{2}}(r), f_{n-2}\right) \\
= & (1+\varepsilon)^{2} T\left(M_{h_{2}}(r), f_{n-3}(f)\right) \\
\leq & (1+\varepsilon)^{3} T\left(M_{h_{3}}(r), f_{n-3}\right) \\
= & (1+\varepsilon)^{3} T\left(M_{h_{3}}(r), f_{n-4}(h)\right) \\
\leq & (1+\varepsilon)^{4} T\left(M_{h_{4}}(r), f_{n-4}\right) \\
& \vdots \\
\leq & (1+\varepsilon)^{n-1} T\left(M_{h_{n-1}}(r), f\right) \\
\leq & (1+\varepsilon)^{n-1} T\left(R_{4}, f\right) .
\end{aligned}
$$

CASE-II: When $n=3 m-1, m \in \mathbb{N}$ we have

$$
\begin{aligned}
T\left(r, f_{n}\right)= & T\left(r, f_{n-1}(g)\right) \\
\leq & (1+\varepsilon) T\left(M(r, g), f_{n-1}\right) \\
= & (1+\varepsilon) T\left(M_{g_{1}}(r), f_{n-2}(f)\right) \\
\leq & (1+\varepsilon)^{2} T\left(M\left(M_{g_{1}}(r), f\right), f_{n-2}\right) \\
= & (1+\varepsilon)^{2} T\left(M_{g_{2}}(r), f_{n-2}\right) \\
= & (1+\varepsilon)^{2} T\left(M_{g_{2}}(r), f_{n-3}(h)\right) \\
\leq & (1+\varepsilon)^{3} T\left(M_{g_{3}}(r), f_{n-3}\right) \\
= & (1+\varepsilon)^{3} T\left(M_{g_{3}}(r), f_{n-4}(g)\right) \\
\leq & (1+\varepsilon)^{4} T\left(M_{g_{4}}(r), f_{n-4}\right) \\
& \vdots \\
\leq & (1+\varepsilon)^{n-1} T\left(M_{g_{n-1}}(r), f\right) \\
\leq & (1+\varepsilon)^{n-1} T\left(R_{4}, f\right)
\end{aligned}
$$

CASE-III : When $n=3 m-2, m \in \mathbb{N}$ we have

$$
\begin{aligned}
T\left(r, f_{n}\right)= & T\left(r, f_{n-1}(f)\right) \\
\leq & (1+\varepsilon) T\left(M(r, f), f_{n-1}\right) \\
= & (1+\varepsilon) T\left(M_{f_{1}}(r), f_{n-2}(h)\right) \\
\leq & (1+\varepsilon)^{2} T\left(M\left(M_{f_{1}}(r), h\right), f_{n-2}\right) \\
= & (1+\varepsilon)^{2} T\left(M_{f_{2}}(r), f_{n-2}\right) \\
= & (1+\varepsilon)^{2} T\left(M_{f_{2}}(r), f_{n-3}(g)\right) \\
\leq & (1+\varepsilon)^{3} T\left(M_{f_{3}}(r), f_{n-3}\right) \\
= & (1+\varepsilon)^{3} T\left(M_{f_{3}}(r), f_{n-4}(f)\right) \\
\leq & (1+\varepsilon)^{4} T\left(M_{f_{4}}(r), f_{n-4}\right) \\
& \vdots \\
\leq & (1+\varepsilon)^{n-1} T\left(M_{f_{n-1}}(r), f\right) \\
\leq & (1+\varepsilon)^{n-1} T\left(R_{4}, f\right) .
\end{aligned}
$$

Therefore $T\left(r, f_{n}\right) \leq(1+\varepsilon)^{n-1} T\left(R_{4}, f\right)$ for any integer $n \geq 3$.
Since $\varepsilon>0$ was arbitrary, for sufficiently large values of r we have

$$
\begin{equation*}
T\left(r, f_{n}\right) \leq T\left(R_{4}, f\right) \tag{3.2}
\end{equation*}
$$

Also using Lemma 2.3, we have
When $n=3 m, m \in \mathbb{N}$

$$
\begin{aligned}
T\left(r, f_{n}\right) \geq & T\left(r, f_{n-1}(h)\right) \\
\geq & \left(\frac{R_{3}-|h(0)|}{R_{3}+|h(0)|}\right) T\left(R_{3}, f_{n-1}\right) \\
> & (1-\varepsilon) T\left(R_{3}, f_{n-2}(g)\right) \\
\geq & (1-\varepsilon)\left(\frac{R_{2}-|g(0)|}{R_{2}+|g(0)|}\right) T\left(R_{2}, f_{n-2}\right) \\
> & (1-\varepsilon)^{2} T\left(R_{2}, f_{n-2}\right) \\
\geq & (1-\varepsilon)^{3} T\left(R_{1}, f_{n-3}\right) \\
& \vdots \\
\geq & (1-\varepsilon)^{n-2} T\left(R_{3}, f(g)\right) \\
\geq & (1-\varepsilon)^{n-1} T\left(R_{2}, f\right)
\end{aligned}
$$

When $n=3 m-1, m \in \mathbb{N}$ we have

$$
\begin{aligned}
T\left(r, f_{n}\right) \quad & T\left(r, f_{n-1}(g)\right) \\
\geq & \left(\frac{R_{2}-|g(0)|}{R_{2}+|g(0)|}\right) T\left(R_{2}, f_{n-1}\right) \\
> & (1-\varepsilon) T\left(R_{2}, f_{n-2}(f)\right) \\
\geq & (1-\varepsilon)\left(\frac{R_{1}-|f(0)|}{R_{1}+|f(0)|}\right) T\left(R_{1}, f_{n-2}\right) \\
> & (1-\varepsilon)^{2} T\left(R_{1}, f_{n-3}(h)\right) \\
\geq & (1-\varepsilon)^{3} T\left(R_{3}, f_{n-3}\right) \\
& \vdots \\
\geq & (1-\varepsilon)^{n-2} T\left(R_{3}, f(g)\right) \\
\geq & (1-\varepsilon)^{n-1} T\left(R_{2}, f\right)
\end{aligned}
$$

When $n=3 m-2, m \in \mathbb{N}$ we have

$$
\begin{aligned}
T\left(r, f_{n}\right) \quad & T\left(r, f_{n-1}(f)\right) \\
\geq & \left(\frac{R_{1}-|f(0)|}{R_{1}+|f(0)|}\right) T\left(R_{1}, f_{n-1}\right) \\
> & (1-\varepsilon) T\left(R_{1}, f_{n-2}(h)\right) \\
\geq & (1-\varepsilon)\left(\frac{R_{3}-|h(0)|}{R_{3}+|h(0)|}\right) T\left(R_{3}, f_{n-2}\right) \\
> & (1-\varepsilon)^{2} T\left(R_{3}, f_{n-3}(g)\right) \\
\geq & (1-\varepsilon)^{3} T\left(R_{2}, f_{n-3}\right) \\
& \vdots \\
\geq & (1-\varepsilon)^{n-2} T\left(R_{3}, f(g)\right) \\
\geq & (1-\varepsilon)^{n-1} T\left(R_{2}, f\right)
\end{aligned}
$$

So

$$
T\left(r, f_{n}\right) \geq(1-\varepsilon)^{n-1} T\left(R_{2}, f\right)
$$

Therefore for sufficiently large values of r and for $\varepsilon>0$ arbitrarily, small we have

$$
\begin{equation*}
T\left(r, f_{n}\right) \geq T\left(R_{2}, f\right) \tag{3.3}
\end{equation*}
$$

Hence from (3.2) and (3.3) we obtain (3.1).
This completes the proof.
Theorem 3.2. Let $f, g, h ; u, v, w$ be six transcendental entire functions with $T(r, f) \sim T(r, u)$, $T(r, g) \sim T(r, v), T(r, h) \sim T(r, w), T(r, f)=O^{*}\left((\log r)^{\nu} e^{(\log r)^{\alpha}}\right) \quad(0<\alpha<1, \nu>0)$, $T(r, g)=O^{*}\left((\log r)^{\beta}\right)$ and $T(r, h)=O^{*}\left((\log r)^{\lambda}\right)$ where $\beta, \lambda>1$ are constants. Then $T\left(r, f_{n}\right) \sim T\left(r, u_{n}\right)$ for $n \geq 3$, where $u_{n}(z)=u(v(w(u \ldots(u(z)$ or $v(z)$ or $w(z) \ldots))))$ according as $n=3 m-2$ or $3 m-1$ or $3 m, m \in \mathbb{N}$.

Proof. We have from Theorem 3.1,

$$
\begin{align*}
T\left(R_{1}, f\right) & \leq T\left(r, f_{n}\right) \leq T\left(R_{2}, f\right) \tag{3.4}\\
T\left(R_{1}^{\prime}, u\right) & \leq T\left(r, u_{n}\right) \leq T\left(R_{2}^{\prime}, u\right) \tag{3.5}
\end{align*}
$$

where R_{1} and R_{1}^{\prime} are such that $|g(z)|>R_{1}>\frac{2+\varepsilon}{\varepsilon}|g(0)|,|v(z)|>R_{1}^{\prime}>\frac{2+\varepsilon}{\varepsilon}|v(0)|$ and $T\left(R_{1}, f\right) \sim T\left(R_{1}^{\prime}, f\right), R_{2}=\max \left\{M_{f_{n-1}}(r), M_{g_{n-1}}(r), M_{h_{n-1}}(r)\right\}$ and $\quad R_{2}^{\prime}=$ $\max \left\{M_{u_{n-1}}(r), M_{v_{n-1}}(r), M_{w_{n-1}}(r)\right\}$ for sufficiently large values of r and arbitrary small $\varepsilon>0$.

Since

$$
T(r, f) \sim T(r, u)
$$

so

$$
\begin{gather*}
T\left(R_{1}, f\right) \sim T\left(R_{1}^{\prime}, f\right) \sim T\left(R_{1}^{\prime}, u\right) \\
\text { i.e. } T\left(R_{1}, f\right) \sim T\left(R_{1}^{\prime}, u\right) \quad(r \rightarrow \infty, r \notin E) \tag{3.6}
\end{gather*}
$$

From Lemma 2.7, we have

$$
M(r, f) \sim M(r, u)
$$

Also we have

$$
\begin{aligned}
M(M(r, f), h) & \sim M(M(r, u), w) \quad(r \rightarrow \infty) \\
\text { i.e } M(M(M(r, f), h), g) & \sim M(M(M(r, u), w), v) \quad(r \rightarrow \infty) .
\end{aligned}
$$

So, for $n=3 m-2, m \in \mathbb{N}$ we have

$$
\begin{equation*}
M_{f_{n-1}}(r) \sim M_{u_{n-1}}(r) \quad(r \rightarrow \infty) \tag{3.7}
\end{equation*}
$$

Similarly for $n=3 m-1, m \in \mathbb{N}$ we have

$$
\begin{equation*}
M_{g_{n-1}}(r) \sim M_{v_{n-1}}(r) \quad(r \rightarrow \infty) \tag{3.8}
\end{equation*}
$$

and for $n=3 m, m \in \mathbb{N}$ we have

$$
\begin{equation*}
M_{h_{n-1}}(r) \sim M_{w_{n-1}}(r) \quad(r \rightarrow \infty) \tag{3.9}
\end{equation*}
$$

Combining (3.7), (3.8) and (3.9) and for $n \geq 3, n \in \mathbb{N}$ we obtain $R_{2} \sim R_{2}^{\prime}$ for large r.
So combining $T(r, f) \sim T(r, u)$ and $R_{2} \sim R_{2}^{\prime}$ we have

$$
\begin{equation*}
T\left(R_{2}, f\right) \sim T\left(R_{2}^{\prime}, u\right) \quad(r \rightarrow \infty) \tag{3.10}
\end{equation*}
$$

So from (3.4), (3.5), (3.6) and (3.10) we get

$$
T\left(r, f_{n}\right) \sim T\left(r, u_{n}\right)
$$

This completes the proof.
Theorem 3.3. Let $f, g, h ; u, v, w$ be six transcendental entire functions with $T(r, f) \sim T(r, u)$, $T(r, g) \sim T(r, v), T(r, h) \sim T(r, w), T(r, f)=O^{*}\left((\log r)^{\beta}\right), T(r, g)=O^{*}\left((\log r)^{\beta}\right)$ and $T(r, h)=O^{*}\left((\log r)^{\beta}\right)$ where $\beta>1$ is a constant. Then $T\left(r, f_{n}\right) \sim T\left(r, u_{n}\right)$ for $n \geq 3$, where $u_{n}(z)=u(v(w(u \ldots(u(z)$ or $v(z)$ or $w(z) \ldots))))$ according as $n=3 m-2$ or $3 m-1$ or $3 m, m \in \mathbb{N}$.

The conditions of Theorem 3.2 and Theorem 3.3 are not strictly sharp, which are illustrated by the following examples.

Example 3.4. Let $f(z)=e^{2 z}, g(z)=2 z, h(z)=3 z$ and $u(z)=2 e^{2 z}, v(z)=4 z, w(z)=6 z$.
Then we have $f_{3}(z)=f(g(h(z)))=f(g(3 z))=f(6 z)=e^{12 z}$ and $u_{3}(z)=u(v(w(z)))=$ $u(v(6 z))=u(24 z)=2 e^{48 z}$.

Now

$$
\begin{aligned}
& T(r, f)=\frac{2 r}{\pi}, T(r, u)=\frac{2 r}{\pi}+\log 2 \\
& T(r, g)=\log r+\log 2, T(r, v)=\log r+\log 4 \\
& T(r, h)=\log r+\log 3, T(r, w)=\log r+\log 6
\end{aligned}
$$

Thus $T(r, f) \sim T(r, u), T(r, g) \sim T(r, v)$ and $T(r, h) \sim T(r, w)$.
Again

$$
T\left(r, f_{3}\right)=\frac{12 r}{\pi}, T\left(r, u_{3}\right)=\frac{48 r}{\pi}+\log 2
$$

Therefore

$$
\frac{T\left(r, f_{3}\right)}{T\left(r, u_{3}\right)}=\frac{\frac{12 r}{\pi}}{\frac{48 r}{\pi}+\log 2}=\frac{1}{4} \quad \text { as } r \rightarrow \infty
$$

So

$$
T\left(r, f_{3}\right) \nsim T\left(r, u_{3 .}\right) \text { as } r \rightarrow \infty .
$$

Example 3.5. Let $f(z)=2 e^{z}, g(z)=e^{z}, h(z)=z$ and $u(z)=2 z, v(z)=e^{\frac{z}{2}}, w(z)=2 e^{z}$.
Then we have $f_{3}(z)=f(g(h(z)))=f(g(z))=f\left(e^{z}\right)=2 e^{e^{z}}$ and $u_{3}(z)=u(v(w(z)))=$ $u\left(v\left(2 e^{z}\right)\right)=u\left(e^{e^{z}}\right)=2 e^{e^{z}}$.

Then we have

$$
\begin{aligned}
T(r, f) & =\frac{r}{\pi}+\log 2, T(r, u)=\log 2+\log r \\
T(r, g) & =\frac{r}{\pi}, T(r, v)=\frac{r}{2 \pi} \\
T(r, h) & =\log r, T(r, w)=\log 2+\frac{r}{\pi}
\end{aligned}
$$

Therefore we have $T(r, f) \nsim T(r, u), T(r, g) \nsim T(r, v), T(r, h) \nsim T(r, w)$ as $r \rightarrow \infty$.
But still

$$
T\left(r, f_{3}\right) \sim T\left(r, u_{3}\right) \text { as } r \rightarrow \infty
$$

References

[1] D. Banerjee and R. K. Dutta, Growth of a class of iterated entire functios, Bulletin of Mathematical Analysis and Applications. 3(1), 77-88 (2011).
[2] D. Banerjee and B. Mandal, Relative fix points of a certain class of complex functions, Istanbul Univ. Sci. Fac. J. Math. Phys. Astr. 6, 15-25 (2015).
[3] M. L. Cartwight, Integral functions, Cambridge University Press, (1956).
[4] C. Chuang and C. C. Yang, The fixpoint of meromorphic and factorization theory, Beijing University Press, (1988).
[5] J. Clunie, The composition of entire and meromorphic functions, Mathematical Essays dedicated to A. J. Macintyre, Ohio. Univ. Press, 75-92 (1970).
[6] W. K. Hayman, Meromorphic functions, Oxford University Press, (1964).
[7] B. K. Lahiri and D. Banergee, Relative fix points of entire functions, J. Indian Acad. Math., 19(1), 87-97 (1997).
[8] K. Niino and N. Suita, Growth of composite function of entire functions, Kodai Math. J., 3, 374-379 (1980).
[9] J. Sun, Growth of a class of composite entire functions, Acta Math. Vietnamica, 28(2), 175-183 (2003).

Author information

Dibyendu Banerjee and Sumanta Ghosh, Department of Mathematics, Visva-Bharati, Santiniketan - 731235, West Bengal, India.
E-mail: dibyendu192@rediffmail.com
Received: January 25, 2020
Accepted: Februery 12, 2020

