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Abstract In this work, considering a special subclass of the family of holomorphic functions
in an open unit disk, defined by means of quasi-subordination, we determine sharp bounds for
Fekete-Szegd functional |ds — ud3| of functions in this class. Several results for new classes and
connections to known classes are mentioned.

1 Introduction, preliminaries and definitions

Let A be the family of normalized functions that have the form
s(z) =24 dp, (1.1)
k=2

which are holomorphic in © = {z € C : |z| < 1}. Let S be the collection of all members from
A that are univalent in ©. Let 1)(z) be holomorphic function in ® with |n(z)| < 1,z € D, such
that

n(z) = Ro+ Riz + Ra2? + ..., (1.2)

where Ry, Ry, Ry, ... are real. Let h(z) be holomorphic function in ®, with h(0) = 1,5(0) > 0,
having the positive real part, such that

h(z) =14+ Qiz+ Q22> + ..., (1.3)

where @1, @2, @3, ... are real and Q; > 0. Through out this work we shall assume that the
functions 7 and f follow the above conditions unless otherwise mentioned.

It is known that for s € S given by (1.1), there holds upper bounds for |d3 — pd5| when p is
real, which are sharp (see[8]). Since then, the estimation of the sharp upper bounds for |d3 — pud5|
with p being an arbitrary real or complex number for any compact collection § of elements in S
is well- known as the Fekete- Szeg6 problem for §. Several researchers including [3], [5], [6],
[117, [12], [17] and [20] have estimated sharp Fekete-Szegd bounds for many subclasses of S.
Additional informations about Fekete-Szegt problem associated with ¢- derivative operator are
available in the works of Alsoboh and Darus [2] and Elhaddad and Darus [7]. Very interesting
resource about Fekete-Szego inequality associated with the Haradam polynomials may be found
in the investigation by Srivastava et. al [18].

We recall the principle of subordinatin and also the principle of majorization, between two
holomorphic functions s(z) and v(z) in ©. We say that s(z) is subordinate to v(z), written
s(z) < v(z), z € D, if there is a holomorphic function w(z) in ®, with w(0) = 0 and |w(z)| <
1, z € ®, such that s(z) = v(w(z)). Moreover s(z) < v(z) is equivalent to s(0) = v(0)
and (D) C v(D), if v is univalent in ©. We know that s(z) is majorized by v(z), written
s(z) << v(z), z € D, if there exists a holomorphic function n(z), z € ©, with |n(z)| < 1, such
that s(z) = n(2)v(z), z € D.

Robertson [16] introduced a new concept called quasi-subordination, which generalizes both
subordination and majorization. For two holomorphic functions s(z) and v(z), s(z) is quasi-
subordinate to v(z), written as s(z) <, v(z), z € D, if there exists holomorphic functions 7 and
w with |n(2)] < 1,w(0) = 0 and |w(z)| < 1 such that s(z) = n(z)v(w(z)),z € D. Observe that
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if n(z) = 1, then s(z) = v(w(2)),z € D, so that s(z) < v(z) in D. Also note that if w(z) = z,
then s(z) = n(z)r(z), z € © and hence s(z) << v(z) in ©. There are more studies related to
quasi-subordination such as [1], [4], [9], [14] and [15].

Let Y be the family of holomorphic functions in ® of the form

w(z) =wiz + w2’ +wzd + ... (1.4)

satisfying the condition |w(z)| < 1, z € ©. We require the following lemma [10] to prove our
main result.

Lemma 1.1. If w € Y, then for any complex number i, we have |w| < 1, |wy — pw?| < 1+
(| = Dwi|? < maz{l, |p|}. w(2) = z or w(z) = 2* exhibit the sharpness of the result.

Inspired by recent trends on quasi-subordination, we define the following new subclasses of
the family A.

Definition 1.2. A function s(z) in A is said to be in the family RR,(7,~,5), 7 > 0, v € C — {0},
if

1

;(s’(z) +728"(2) = 1) <4 (h(z) — 1),z € D,

where b is as stated in (1.3).

Definition 1.3. A function s(z) in A is said to be in the family £,(7,~,h), 7 > 1, v € C — {0},

if 1+§ (z;l’;(zj)) <o h(2), z€D,

where b is as stated in (1.3).

Motivated by the paper [19] and earlier works on quasi-subordination, we now define a new
special class M, (7,7, i, b).

Definition 1.4. A function s(z) in A is said to be in the family M, (7,£,v,h), 0 < <1, 7 >
0, 7>¢ veC—{0},if

1 < 2'(2) + 728" (2)

o G = B R UG

where b is as stated in (1.3).
Clearly a function s is in M, (7,&,~, b) if and only if there exits a holomorphic function 7(z)
with |(z)] < 1, z € D such that

1 (zs’(z)+rzzs"(z) .
(1-8)z+€z5'(2)

W )
) <(h(z)—1),2€D,

where b is as stated in (1.3).
If we set (z) = 1, then My (7, &,~,b) is denoted by M (7, &,~, b) satisfying the condition

1+

1 [ 28 (2) + 72%5"(2)
T fereng ) <peem

The family M, (7,£,~, h) is of special interest . In view of this, we deem it worth while to note
the relevance of M, (7, &, v, h) with classes defined above as well as some known ones. Indeed we
have i)Mq(Ta Oa s h) = %Q(Ta s h>’ ii)Mq(Ta 17’77 b) = ’gq(Ta s h)’ and llZ)Mq(f, 57 s h)’
0 < ¢ < lisinvestigated by Kant and Vyas [9].

In the second section, we find Fekete-Szegd functional |ds—ud;3| for elements in My (7, &, 7, b).
Many new consequences of this result are pointed out.
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2 Main results

Theorem 2.1. Let 0 < £ < 1,7 > 0,7 > £ and v € C — {0}. If s(z) € My(7,&,7,b), then

[71@Q:
< ——7— .
|d2| = 2(1_§+7_) (2 1)
and for any complex number i, € C,
dr — ud?| < _ her 1 _ @ o)

where

_(3u(l—¢+27) ¢
J_7<4(1—§+T)2 1—§+r>' 23)

The result is sharp.

Proof. Let s € M,y(7,£,v,b). Then there exists a schwarz function w(z) and a holomorphic
function n(z) such that

1 ( z8'(2) + 7225"(2)
Y\ =&)z+&25'(2)

Series expansions of s and its successive derivatives from (1.1) gives

()
1

5 [(1—€+7)2doz+ (1 — €+27)3ds — (1 — €+ 7)4éd3) 22 +..].

- 1) — () (B(w(z)) 1), z € D, 2.4)

(2.5)

Similarly from (1.2), (1.3) and (1.4), we obtain
n(z)(h(w(z)) — 1) = RoQiwiz + [R1Qiwi + Ro(Qrwa + Qawi)] 2% + ... (2.6)

Making use of (2.5) and (2.6) in (2.4), we get

YRoQi1wi

dy= """ 2.7
2T 2(1—¢+7) 7
e Q SRQ | Q
1Yl Tl 2 2
= - 4 == . 2.
ds 3(1—c+27) |:R10J1+R0{w2+<1§+T+Ql>w1}] (2.8)
Thus, for any p € C, we get
2 Qi Q2 2 o
— = =l =< — 2.
A Ty gy {R“‘” " <w2 " Qlwl) fo JR]QOW]} ’ 2
where J is as stated in (2.3).
Since 7(z) is holomorphic and bounded by one in D, we have (see [13],p.172)
|Ro| <1 and Ry =(1-R})z x<1. (2.10)

The assertion (2.1) follows from (2.7) using (2.10) and Lemma 1.1. From (2.9) and (2.10),
we obtain

YQ1 Q-
ds — pds = ) [m + <w2 + lw%) Ro — (JQiw?} + zwi ) R3] . (2.11)

If Ry = 0, then (2.11) yields

d — 3| < 5 al?] 2.12)

(I—¢+27)°
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On the other side, if Ry # 0, we define a function

L(Ry) = zw; + <w2 + g?ﬁ) Ro — (JQw? + zwi ) R3. (2.13)

The equation (2.13) is a quadratic in Ry and hence holomorphic in |Ry| < 1. Clearly
|L(Rp)| attains its maximum value at Ry = ¢, 0 < 6 < 2. Thus

maz|L(Ro)| = max [L(e")| = |L(1)|

0<0<2m
= |wy — <JQ1 - g?) wil.
Therefore, it follows from (2.11) that
dy— 2| < — N9 | _ @) 2.14
‘ 3 /‘L 2| = 3(1 _§+27_) wr JQI Q] wl ( )
By virtue of Lemma 1.1, we obtain
— ud?l < Mi 1 _@ ) 2.1
|ds — pd3| < 30 7£+27)max | JQ1 o (2.15)

The assertion (2.2) now follows from (2.12) and (2.15). We exhibit the sharpness by defining
s(z) as

(e b)Y
Y ((1 — &)z +&28(z) 1) = b(2),
or
L (z8'(2) + 727" (2) (2
v ((1 Ozt E25'(2) 1) = h(z%),
or
1 (25(2) +7228//(2’) _ =z(b(z) —
'Y((lf)z—i-fzs’(z) 1) =z2(h(2) = 1).
This ends the proof. )

Remark 2.2. We obtain Theorem 1 of [9] from Theorem 2.1, when 7 = 1.

We conclude the below sharp result for the class R, (7,7, h), by putting £ = 0 in Theorem
2.1.

Corollary 2.3. Let y € C — {0} and 7 > 0. If 5(2) € Ry(7,7,h), then |ds| < 3725 and for
3u|"f|(1+2T)Q _ )

4(l+7‘)2 Q1
Remark 2.4. For 7 = 1, Corollary 2.3 reduces to Corollary 1 of [9].

some p € C, |d3 — pd3| < 3(‘1‘3;)7”‘“” (1,

We conclude the following sharp result for the class £,(7,~, h), on putting £ = 1 in Theorem
2.1.

Corollary 2.5. Let v € C — {0} and 7 > 1. If s(z) € £4(7,7,Y), then |dz| < hzl?l and for some
peC, |dy— pdi| < Lg?‘max (1, blpy 9, )

2T Q]
Our next sharp result is based on majorization.

Theorem 2.6. Let v € C — {0},0 < &< 1,7 > 0and 7 > & If s(z) € A satisfies

1 < 2'(2) + 7225"(2)

Y\ (1 =€)z + 25/ (2)

1> << (h(z) - 1),z €D, (2.16)

then

171Q1
|dy| < o 2.17)

A —¢+7)
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and for any complex number p,

2 Iy1Q1 @2
) = 5 e (1

) (2.18)

where J is as stated by (2.3).

Proof. Assume that (2.16) holds. There exists a holomorphic function 7(z), from the principle
of majorization, such that

1 ((zs’(z) + 722 (z)

1 =8z + 825 (2)

Setting w(z) = z (so that w; = 1,w,, = 0,n > 2), we obtain the desired results (2.17) and (2.18),
following the proof of Theorem 2.1. We exhibit the sharpness by defining s(z) as

(28 +72"() |\ _piy s
s <(1_§)Z+fzs’(z) 1> =h(z), z €D,

which completes the proof. O

— 1) =n(z)(b(z) — 1),z € D. (2.19)

Our next sharp result is associated with M (7,£,v, b)
Theorem 2.7. Ler 0 < £ < 1,7 > 0,7 > Eand v € C—{0}. If s € M(1,&,7,h), then

17@1
|da| < m
and for any u € C,
2 17Q1 Q2

where J is as stated in (2.3).

Proof. Lets € M(7,&,7,b). Takingn(z) =1, 2 € ©,we get Ry = 1, R, = 0,n € N and by
following the proof of Theorem 2.1, we attain the desired results. We exhibit the sharpness by

defining s(z) as
1 [ 25 (2) + 72%8"(2) B
3Ge == FRURLE.

1 s'(2) + 72%5"(2) s
o ((1 R ON 1) —0E

which ends the proof. O

or

We now settle sharp bounds of |d; — ud3| for real v and p,when s € M, (7,&,7, ).

Theorem 2.8. Ler 0 < (< 1,7 >0, 7> &andy € C—{0}. If s € My(7,&,7,h), then for real
~v and 1, we have

3p(1—E6427
% |:le (1 &7 - 4{1‘((175:;_)2)) + %} (M S pl)

|ds — pd3| < § 52 (p1 <p<pi+20) (220)

Q 3u(l—g427
- (lh‘erlZT |:Q1’Y (l = #(175-&-7)2)) + %:| (lu’ > p1+ 20)

where

f4‘5(1_§+7’)_ 41 — ¢+ 7)? (1_@2)
p1_3(1—§+27) 3y(1-€&+21) \ Q1 3 (2.21)
and
A —g+7)?
31 —-E+21)Q

(2.22)
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Q

Proof. Let p and + be the real values. Then (2.20) can be obtained from (2.2) and (2.3), respec-
tively, under the below cases
JQ — = < -1, —1<JQ1—8—<1andJQ1——>l

@2
oF
where J is as stated in (2.3). We also note the following
(i) Equality holds for < p; or u > p; + 20 if and only if n(2) = 1 and w(z) = z or one of
its rotations.
(i) Equality holds for p; < u < p; + 20 if and only if 7(z) = 1 and w(z) = z? or one of its
1 and w(z) = 1$Z70§9§ , or

rotations.
(iii) Equality holds for ;4 = p; if and only if n(z) =
one of its rotation, while for u = p; 4 20, the equality holds if and only if (z) = 1 and
w(z) = —Zl(igz) ,0 < 0 < 1, or one of its rotations
|
The second part of assertion in (2.20) for real valus of 4 and v can be improved further as

follows:
Gl (m <p<p+o)

real v and p, we have
<
=30 —¢e+2n)

Theorem 2.9. Let 0 < £ < 1,7 > 0,7 > £ and p € C—{0}. If s(z) € My(7,£,7,b), then for
|ds = 3| + (1 = pr)laf? (2.23)

L2 2o — Bl < @ <u< 2 2.24
|ds — pd3| + (p1 + 20 )|d2|_3(1_§+2T) (P +o<p<pi+20) (2.24)

where p; and o are given by (2.21) and (2.22), respectively.

and
Proof. Lets € M,(,&,,h). For real p satisfying py < u < p; + o and using (2.7) and (2.14)

—EE2) (4 )]

we get
|d3 — pd3|+ (i — p1)|da
71Q1 3y|@: (1
< _
S3i—cra2n | Tai—e
3|y|@: (1 — £+ 27) 2
+ 4(1—§+T)2 (:u‘ P1)|w1‘ :
Therefore, by using Lemma 1.1, we obtain
7@ 2 2
_3(1754_%)[ lwi|* + |wi ],

ds — pd3| + (1 — p1)|da)?

which yields the assertion (2.23).
If p1 + 0 < < p1 4 20, then again from (2.7), (2.14) and Lemma 1.1, we have

— 2
§427) (o 420 — )l P

|ds — pud3|+(p1 + 20 — p)|da|?
[7Q1 3ly|Q:1(1
S3(0—c+27) ['w2+ 41—¢17)
39|Qi (1 — £ +27) 2
+ 4(1_6_'_7_)2 (N*Pl)|wl‘ :|
Iv1Q1
=31 -¢+27)

1w + wi ],
O

[

which estimates (2.24).
Remark 2.10. Numerous consequences of Theorem 2.6 to Theorem 2.9 can be obtained for

different choices of £ and 7



672

S R Swamy and Y Sailaja

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]
[14]

[15]

[16]
[17]

(18]

[19]

[20]

Abdul Rahman S. Juma and Mohammed H. Saloomi, Generalized differential operator on bistarlike and
biconvex functions associated by quasi-subordination, IOP conf. series: Journal of Physics: Conf. Series
1003, 012046 (2018). doi: 10.1088/1742-6596/1003/1/012046.

A. Alsoboh and M. Darus, On Fekete-Szego problem associated with g-derivative operator, IOP conf.
Series: Journal of Physics: Conf. Series 1212, 012003 (2019). doi: 10.1088/1742-6596/1212/1/012003.

O. P. Ahuja and M. Jahangiri, Fekete-Szego problem for a unified class of analytic functions, PanAmer.
Math. J., 7 (2), 67-78 (1997).

R. Bharavi Sharma and K. Rajya Laxmi, Fekete-Szeg6 inequalities for some subclasses of bi-univalent
functions through quasi-subordination, Asian -Europian journal of Mathematics, 13 (1), 2050006 (16
pages) (2020).

N. E. Cho and S. Owa, On the Fekete-Szego problem for strongly a-logarithmic quasiconvex functions,
Southeast Asian Bull. Math., 28(3), 421-430 (2004).

E. Deniz and H. Orhan, The Fekete-Szego problem for a generalized subclass of analytic functions, Kyung-
pook Math. J., 50, 37-47 (2010).

S. Elhaddad and M. Darus, On Fekete-Szegt problems for a certain subclass defined by g-analogue of
Ruscheweyh operator, IOP Con. Series: Journnal of Physics: Conf. Series 1212, 012002 (2019). doi:
10.1088/1742-6596/1212/1/012002.

M. Fekete and G. Szego, Eine Bemerkung Uber ungerade schlichte Funktionen, J. London Math. Soc., 8,
85-89 (1933).

S. Kant and P. P. Vyas, Sharp bounds of Fekete-Szegd functional for quasi-subordination class, Acta Uniyv.
Sapientiae, Math., 11 (1), 87-98 (2019).

F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc.
Amer. Math. Soc., 8-12 (1969).

B. Kowalczyk, A. Lecko and H. M. Srivastava, A note on the Fekete-Szeg6 problem for close-to-convex
functions with respect to convex functions, Publications de I’institut mathematique, Nouvelle série. tome
101, 115, 143-149 (2017). https: //doi.org/10.2298/PIM1715143K.

M. H. Mohd and M. Darus, Fekete-Szego problems for Quasi-Subordination classes, Abst. Appl. Anal.,
Article ID 192956, 14 pages (2012). doi: 10.1155/2012/192956.

Z. Nehari, Conformal mapping, Dover, New York (1975) (reprinting of the 1952 edition).

T. Panigrahi and R. K. Raina, Fekete-Szego coefficient functional for quasi-subordination class, Afro.
Mat., 28 (5-6), 707-716 (2017).

F. Y. Ren, S. Owa and S. Fukui, Some Inequalities on Quasi-Subordinate functions, Bull. Aust. Math.Soc.,
43 (2),317-324 (1991).

M. S. Robertson, Quasi-subordination and coefficient conjecture, Bull. Amer. Math. Soc., 76, 1-9 (1970).

H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szeg6 problem for a subclass of close-to-
convex functions, Complex Var. Theory Appl., 44, 145-163 (2001).

H. M. Srivastava, § Altinkaya and S. Yalcin, Certain subclasses of bi-univalent functions associated with
the Horadam polynomials, Iran J. Sci. Technol. Trans. Sci., (2018). doi.org/10.1007/s 40995-018-0647-0.

S. R. Swamy, Ruscheweyh derivative and a new generalized Multiplier differential operator, Annals of
Pure and Applied Mathematics, 10 (2), 229-238 (2015).

L. Taishun and X. Qinghua, Fekete and Szego inequality for a subclass of starlike mappings of order o on
the bounded starlike circular domain in C", Acta Mathematica Scientia, 37 (3), 722-731 (2017).

Author information

S R Swamy and Y Sailaja,

Department of Computer Science and Engineering, RV College of Engineering, Bengaluru - 560 059, Kar-
nataka, India.

Department of Mathematics, RV College of Engineering, Bengaluru - 560 059, Karnataka, India.

E-mail: swamysr@rvce.edu.in, sailajay@rvce.edu.in

Received: October 8, 2019

Accepted: November 16, 2019



	1 Introduction, preliminaries and definitions
	2 Main results

