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Abstract. In this paper, we consider convolution type nonlinear singular integral operators
of the form

Tλ(f ;x) =
b∫
a

Kλ(t− x, f(t)) dt ,

where 〈a, b〉 is an arbitrary interval in R, λ ∈ Λ, f ∈ L1〈a, b〉 and Kλ is a family of kernels sat-
isfying suitable conditions. We give some approximation results with regard to the convergence
of the operators Tλ to right, left, and symmetric Borel differentiable functions.

We note that our results extend some of the previous results obtained in [5] and [6] which
they cope with the linear singular integral operators.

1 Introduction

The problem of approximation of rth finite derivatives of functions belonging to L1(−π, π) by
means of linear singular integral operators of convolution type considered in [15] as the following
form

U(f ;x, λ) =
π∫
−π

f(t)K(t− x, λ) dt , x ∈ (−π, π)

that was investigated by Taberski, where the kernel K(t, λ) is a singular function and satisfies
suitable assumptions. In [11] and [12], Karsli and Ibikli extended Taberski’s work to functions
belonging to L1(a, b), under some weaker suitable assumptions. We also refer readers to another
paper on this subject written by Gadjiev [4] as well as a monograph [3].

In paper [13], Musielak extended the concept of singularity over the case of nonlinear integral
operators using the assumption of a Lipschitz condition forKλ(t, f(t)) with respect to the second
variable. In virtue of this study, we can use the classical way for linear integral operators[3] to
obtain some convergence results for nonlinear integral operators.

Recently, the first author studied both pointwise convergence and rate of pointwise conver-
gence of the nonlinear singular integral operators defined by

Tλ(f ;x) =
b∫
a

Kλ(t− x, f(t)) dt, x ∈ 〈a, b〉 (1.1)

where 〈a, b〉 is an arbitrary interval in R, λ ∈ Λ, f ∈ L1〈a, b〉 and Kλ is a family of kernels
satisfying suitable properties ( see [7]- [10] and [14]).

The goal of this paper is to obtain some convergence results for the derivatives of the operators
(1.1). To the best of our knowledge, we can say that this study is the first paper on this subject
by means of nonlinear singular integral operators.
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2 Preliminaries

Let Λ be a nonempty set of indices with a suitable topology and λ0 be an accumulation point of
Λ in this topology. We denote the family of all neighborhoods of the neutral element θ of R by
U(θ) and x0 is a fixed accumulation point of R. We take a family K of functions Kλ : R xR→R
with Kλ(t, 0) = 0 for all t ∈ R and λ ∈ Λ such that Kλ(t, u) integrable over R with respect
to t, in the sense of Lebesgue measure, for all values of the index λ and second variable u. The
family K will be called a kernel. In addition, if the kernel function Kλ(t, u) is continuous in R
for every t ∈ R, then the kernel function is called Carathéodory kernel function.

We assume that Kλ : R xR→R is a kernel satisfying the following conditions: (‡)

a) Let Lλ(•) be any differentiable and integrable function such that[
∂

∂x
Kλ(t− x, u)−

∂

∂x
Kλ(t− x, v)

]
=

∂

∂x
Lλ(t− x) [u− v] ,

holds for every t and any λ ∈ Λ where u, v ∈ R.

b) lim
λ→λ0

∫
R \U

Lλ(z)dz = 0, for every U ∈ U(0).

c) lim
λ→λ0

[
sup
|z|≥δ

Lλ(z)

]
= 0, for every δ > 0.

d) lim
λ→λ0

∫
R
Lλ(z) dz = 1.

e) There exists a δ0 > 0 such that Lλ(z) is non-increasing on [0, δ0) and non-decreasing on
(−δ0, 0] for any λ ∈ Λ.

Theorem 2.1. [1] Let 1 ≤ p < ∞ and assume that a function Kλ(t, u) is a kernel. If f ∈
Lp〈a, b〉, then Tλ(f) ∈ Lp〈a, b〉, for every λ ∈ Λ.

Readers can find the following well-known definition in [6].

Definition 2.2. A function f(t) has a right Borel derivative α (6=∞) at the point x0 ∈ R if

lim
h→0+

1
h

h∫
0

f(x0 + t)− f(x0)

t
dt = α

and we denote it BD+f(x0).

Similarly, a function f(t) has a left Borel derivative β (6=∞) at the point x0 ∈ R if

lim
h→0+

1
h

h∫
0

f(x0)− f(x0 − t)
t

dt = β

and we denote it BD−f(x0).

A function f(t) has a symmetric Borel derivative γ (6=∞) at the point x0 ∈ R if

lim
h→0+

1
h

h∫
0

f(x0 + t)− f(x0 − t)
2t

dt = γ
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and we write it BDsf(x0), where the integrals are taken in the sense of limε→0+
h∫
ε

.

Note that, if BD+f(x0) and BD−f(x0) exist, then clearly BDsf(x0) exists and

BDsf(x0) =
BD+f(x0) +BD−f(x0)

2

holds true.

Obviously, if the ordinary derivative of f(x) at x0 exists, then so does Borel derivatives and
the following equalities

BD+f(x0) = BD−f(x0) = BDsf(x0) = f ′(x0)

hold.

3 Convergence of the derivatives

Now, we will investigate the approximation properties of finite first derivative of the operator Tλ
in L1〈a, b〉.

Theorem 3.1. Let assume that all the conditions of (‡) are satisfied by the kernel function
Kλ(t, u) and also ∂

∂tLλ(t) are piecewise continuous function with respect to t on (−∞,∞)
having the following equality

lim
λ→λ0

sup
δ≤|t|

∣∣∣∣ ∂∂tLλ(t)
∣∣∣∣ = 0. (3.1)

If the function f ∈ L1(a, b) has a finite derivative f ′(x) at x0, then we obtain

lim
(x,λ)→(x0,λ0)

∂

∂x
Tλ(f ;x) = BDsf(x0).

Proof. Suppose that

x0 + δ < b, x0 − δ > a and 0 ≤ x0 − x <
δ

2
, (3.2)

for any 0 < δ < δ0. Define

g(t) := f(x0) + (t− x0)BDsf(x0). (3.3)

Clearly, g(t) is a linear polynomial.

At first, we start proving the theorem for g(t) by introducing a new function
∼
g∈ L1(R) given by

∼
g(t) :=

{
g(t) , t ∈ 〈a, b〉
0 , t /∈ 〈a, b〉

. (3.4)

If we apply the operator Tλ to the function g(t), then we have

Tλ(g;x) =
b∫
a

Kλ(t− x, g(t))dt

and using (3.4) one can rewrite the last equality as follows:

Tλ(
∼
g ;x) =

∫
R

Kλ(t− x,
∼
g(t))dt. (3.5)
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Differentiating the above equality with respect to x and using (‡ a) yield

∂

∂x
Tλ(
∼
g ;x) =

∫
R

∂

∂x
Kλ(t− x,

∼
g(t))dt =

∫
R

∂Lλ(t− x)
∂x

∼
g(t)dt = −

∫
R

∼
g(t)

∂Lλ(t− x)
∂t

dt.

Using the integration by parts, we obtain

∂

∂x
Tλ(
∼
g ;x) =

∫
R

∼
g
′
(t)Lλ(t− x)dt.

Using (3.3), (3.4) and (‡ d) we have

lim
(x,λ)→(x0,λ0)

∂

∂x
Tλ(
∼
g ;x) = BDsf(x0).

Here, we set

I(x, λ) :=
∂

∂x
Tλ(
∼
g ;x)− ∂

∂x
Tλ(f ;x). (3.6)

it is enough to show the following equality for the proof of the theorem

lim
(x,λ)→(x0,λ0)

|I(x, λ)| = 0.

For this purpose, we take absolute value of (3.6), then according to (‡ a), (3.19) and (3.4), it is
easy to see that

|I(x, λ)| =

∣∣∣∣∣∣
b∫
a

∂

∂x
Kλ(t− x, f(t))dt−

b∫
a

∂

∂x
Kλ(t− x, g(t))dt

∣∣∣∣∣∣
≤

b∫
a

|f(t)− g(t)|
∣∣∣∣ ∂∂xLλ(t− x)

∣∣∣∣ dt.
Since the function f ∈ L1(a, b) possess a finite derivative f ′(x) at x0, we can divide the last
integral into three terms as follows:

|I(x, λ)| ≤


x0−δ∫
a

+

x0+δ∫
x0−δ

+

b∫
x0+δ

 |f(t)− g(t)|
∣∣∣∣ ∂∂tLλ(t− x)

∣∣∣∣ dt
= : I1(x, λ) + I2(x, λ) + I3(x, λ). (3.7)

We now fix this δ and estimate I1(x, λ), I2(x, λ) and I3(x, λ) as follows:

I1(x, λ) =

x0−δ∫
a

|f(t)− g(t)|
∣∣∣∣ ∂∂tLλ(t− x)

∣∣∣∣ dt.
According to (3.2), we have t− x < x0 − x− δ < − δ2 < 0. Thus, we get

I1(x, λ) ≤ sup
δ
2<|u|

∣∣∣∣ ∂∂uLλ(u)
∣∣∣∣
b∫
a

|f(t)− g(t)| dt.

Since f, g ∈ L1(a, b), then f − g ∈ L1(a, b). So, there exists a positive constant M such that
‖f − g‖L1(a,b)

≤M. Consequently, we have

I1(x, λ) ≤M sup
δ
2<|u|

∣∣∣∣ ∂∂uLλ(u)
∣∣∣∣ . (3.8)
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In the same way, we obtain

I3(x, λ) ≤M sup
δ
2<|u|

∣∣∣∣ ∂∂uLλ(u)
∣∣∣∣ . (3.9)

Finally, we can tackle the integral I2(x, λ). For each ε > 0 there exists a δ > 0 such that

I2(x, λ) =

x0+δ∫
x0−δ

|f(t)− g(t)|
∣∣∣∣ ∂∂tLλ(t− x)

∣∣∣∣ dt ≤ ε
x0+δ∫
x0−δ

|t− x0|
∣∣∣∣ ∂∂tLλ(t− x)

∣∣∣∣ dt.
Setting

I2,1(x, λ) :=

x0−x+δ∫
x0−x−δ

|x0 − x− t|
∣∣∣∣ ∂∂tLλ(t)

∣∣∣∣ dt,
and using (‡ e) together with (3.2), we can now obtain the following estimate:

I2,1(x, λ) =

x0−x∫
x0−x−δ

|x0 − x− t|
∣∣∣∣ ∂∂tLλ(t)

∣∣∣∣ dt+
x0−x+δ∫
x0−x

|x0 − x− t|
∣∣∣∣ ∂∂tLλ(t)

∣∣∣∣ dt
=

0∫
x0−x−δ

|x0 − x− t|
∣∣∣∣ ∂∂tLλ(t)

∣∣∣∣ dt+
x0−x∫
0

|x0 − x− t|
∣∣∣∣ ∂∂tLλ(t)

∣∣∣∣ dt
+

x0−x+δ∫
x0−x

(x0 − x− t)
∂

∂t
Lλ(t)dt

=

x0∫
x0−δ

(t− x0)
∂

∂t
Lλ(t− x)dt+

x0+δ∫
x0

(x0 − t)
∂

∂t
Lλ(t− x)dt.

Using integration by parts and (‡ e), we obtain:

x0∫
x0−δ

(t− x0)
∂

∂t
Lλ(t− x)dt = (t− x0)Lλ(t− x)

∣∣∣x0
x0−δ +

x0∫
x0−δ

Lλ(t− x)dt

= δLλ(x0 − δ − x) +
x0∫

x0−δ

Lλ(t− x)dt

and

x0+δ∫
x0

(x0 − t)
∂

∂t
Lλ(t− x)dt = (x0 − t)Lλ(t− x)

∣∣x0+δ
x0

+

x0+δ∫
x0

Lλ(t− x)dt

= δLλ(x0 + δ − x) +
x0+δ∫
x0

Lλ(t− x)dt.

Thus, we get

I2(x, λ) ≤ εδ {Lλ(x0 − δ − x) + Lλ(x0 + δ − x)}+ ε

∫
R

Lλ(t)dt. (3.10)
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Substituting (3.8)-(3.10) into (3.7), we obtain

|I(x, λ)| ≤ 2M sup
δ
2<|u|

∣∣∣∣ ∂∂uLλ(u)
∣∣∣∣

+ ε

δ {Lλ(x0 − δ − x) + Lλ(x0 + δ − x)}+
∫
R

Lλ(t)dt


which in view of (‡ c − d) and (3.1) approaches to zero as (x, λ) → (x0, λ0). The estimate
− δ2 < x0 − x ≤ 0 is obtained in similar way. So this completes the proof.

Theorem 3.2. Suppose that the hypothesis of Theorem 3.1 are satisfied. Let f ∈ L1 (a, b) be such
that finite f ′+(x) and f ′−(x) derivatives exist at x0, then

lim
(x,λ)→(x0,λ0)

∂

∂x
Tλ(f ;x) = N BDf+(x0) + (1−N)BDf−(x0)

where

lim
(x,λ)→(x0,λ0)

∞∫
x0

Lλ(t− x)dt = N, 0 ≤ N ≤ 1. (3.11)

Proof. Suppose that (3.2) is satisfied for any 0 < δ < δ0. Setting

g(t) =

{
f(x0) + (t− x0)BDf−(x0) , a ≤ t < x0

f(x0) + (t− x0)BDf+(x0) , x0 ≤ t ≤ b
(3.12)

we also define a function
∼
g(t) as in (3.4). According to the proof of the Theorem 3.1, one can

write
∂

∂x
Tλ(g;x) =

∫
R

∼
g
′
(t)Lλ(t− x)dt. (3.13)

Substituting (3.12) into (3.4) and using it in (3.13), we have

∂

∂x
Tλ(g;x) = BDf−(x0)

x0∫
−∞

Lλ(t− x)dt+BDf+(x0)

∞∫
x0

Lλ(t− x)dt

and by (3.11), we get

∂

∂x
Tλ(g;x) = N BDf+(x0) + (1−N)BDf−(x0)

as (x, λ)→ (x0, λ0). Setting

I(x, λ) :=
∂

∂x
Tλ(g;x)− ∂

∂x
Tλ(f ;x).

Since the function f ∈ L1(a, b) possess a finite f ′+(x) and f ′−(x) derivatives at x0, we can divide
the last integral into four terms as follows:

|I(x, λ)| ≤


x0−δ∫
a

+

x0∫
x0−δ

+

b∫
x0+δ

+

x0+δ∫
x0

 |f(t)− g(t)|
∣∣∣∣ ∂∂tLλ(t− x)

∣∣∣∣ dt
= : I1(x, λ) + I2(x, λ) + I3(x, λ) + I4(x, λ).

Fix this δ and consider the integrals I2(x, λ) and I4(x, λ). For each ε > 0 there exists a δ > 0
such that

I2(x, λ) =

x0∫
x0−δ

∣∣∣∣f(t)− f(x0)

t− x0
−BDf−(x0)

∣∣∣∣ |t− x0|
∣∣∣∣ ∂∂tLλ(t− x)

∣∣∣∣ dt
≤ ε

x0∫
x0−δ

(x0 − t)
∂

∂t
Lλ(t− x)dt (3.14)
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and

I4(x, λ) =

x0+δ∫
x0

∣∣∣∣f(t)− f(x0)

t− x0
−BDf+(x0)

∣∣∣∣ |t− x0|
∣∣∣∣ ∂∂tLλ(t− x)

∣∣∣∣ dt
≤ ε

x0+δ∫
x0

(x0 − t)
∂

∂t
Lλ(t− x)dt (3.15)

Using (3.14) and (3.15) together, we have

I2(x, λ) + I4(x, λ) ≤ ε
x0+δ∫
x0−δ

(x0 − t)
∂

∂t
Lλ(t− x)dt.

Again using integration by parts, we obtain

I2(x, λ) + I4(x, λ) ≤ ε

−δ {Lλ(x0 + δ − x) + Lλ(x0 − δ − x)}+
∫
R

Lλ(t− x)dt

 . (3.16)

In view of (3.8) and (3.9), one has

I1(x, λ) + I3(x, λ) ≤ 2M sup
δ
2<|u|

∣∣∣∣ ∂∂uLλ(u)
∣∣∣∣ . (3.17)

Hence, we get from (3.16) and (3.17)

|I(x, λ)| ≤ ε

−δ {Lλ(x0 + δ − x) + Lλ(x0 − δ − x)}+
∫
R

Lλ(t− x)dt


+2M sup

δ
2<|u|

∣∣∣∣ ∂∂uLλ(u)
∣∣∣∣

that, in the light of conditions (‡ a − d), approaches to zero as (x, λ) → (x0, λ0) and this
completes the proof.

Theorem 3.3. Suppose that the hypothesis of Theorem 3.1 are satisfied. Let f ∈ L1 (a, b) be such
that BDf+(x) and BDf−(x) (right and left Borel derivatives) exist at x0, then

lim
(x,λ)→(x0,λ0)

∂

∂x
Tλ(f ;x) = N BDf+(x0) + (1−N)BDf−(x0)

where

lim
(x,λ)→(x0,λ0)

∞∫
x0

Lλ(t− x)dt = N, 0 ≤ N ≤ 1. (3.18)

Proof. Suppose that

x0 + δ < b, x0 − δ > a and 0 ≤ x0 − x <
δ

2
,

for any 0 < δ < δ0. Clearly, we have

Tλ(f ;x) =
b∫
a

Kλ(t− x, f(t))dt.
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Defining a new function
∼
f∈ L1(R) by

∼
f (t) :=

{
f(t) , t ∈ (a, b)

0 , t /∈ (a, b)
, (3.19)

and using (3.19), we can rewrite the last equality as follows:

Tλ(f ;x) = Tλ(
∼
f ;x) =

∫
R

Kλ(t− x,
∼
f (t))dt.

Differentiating the inequality (3.5) with respect to x and using (‡ a) yield

∂

∂x
Tλ(f ;x) = −

∫
R

∼
f (t)

∂

∂t
Lλ(t− x)dt.

In view of the definitions of right and left Borel derivatives, we divide the last integral as follows:

I(x, λ) = −


∫

t/∈〈a,b〉

+

∫
|t−x0|>δ, t∈〈a,b〉

+

x0∫
x0−δ

+

x0+δ∫
x0

∼f (t) ∂∂tLλ(t− x)dt
= : I0(x, λ) + I1(x, λ) + I ′1(x, λ) + I2(x, λ) + I3(x, λ).

We now fix this δ and estimate I1(x, λ), I ′1(x, λ), I2(x, λ) and I3(x, λ) as follows:

I1(x, λ) ≤
x0−δ∫
a

|f(t)|
∣∣∣∣ ∂∂tLλ(t− x)

∣∣∣∣ dt.
According to (3.2), we have t− x < x0 − x− δ < − δ2 < 0. Thus, we get

I1(x, λ) ≤ sup
δ
2<|u|

∣∣∣∣ ∂∂uLλ(u)
∣∣∣∣
b∫
a

|f(t)| dt.

Since f ∈ L1 (a, b), then there exists a positive constant M with ‖f‖L1(a,b)
≤ M. Consequently,

we have

I1(x, λ) ≤M sup
δ
2<|u|

∣∣∣∣ ∂∂uLλ(u)
∣∣∣∣ .

In the same way, we obtain

I ′1(x, λ) =

b∫
x0+δ

|f(t)|
∣∣∣∣ ∂∂tLλ(t− x)

∣∣∣∣ dt ≤M sup
δ
2<|u|

∣∣∣∣ ∂∂uLλ(u)
∣∣∣∣ .

Finally, let us consider the integrals I2(x, λ) and I3(x, λ). For each ε > 0 there exists a δ > 0
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such that

I2(x, λ) =

x0∫
x0−δ

−f(t) ∂
∂t
Lλ(t− x)dt =

0∫
−δ

−f(x0 + t)
∂

∂t
Lλ(x0 + t− x)dt

=

0∫
−δ

[f(x0)− f(x0 + t)]
∂

∂t
Lλ(x0 + t− x)dt− f(x0)

0∫
−δ

∂

∂t
Lλ(x0 + t− x)dt

=

0∫
−δ

[
f(x0)− f(x0 + t)

t
−BDf−(x0)

]
t
∂

∂t
Lλ(x0 + t− x)dt

+BDf−(x0)

0∫
−δ

t
∂

∂t
Lλ(x0 + t− x)dt− f(x0)

0∫
−δ

∂

∂t
Lλ(x0 + t− x)dt

= : I2,1(x, λ) + I2,2(x, λ) + I2,3(x, λ),

and

I3(x, λ) =

x0+δ∫
x0

f(t)
∂

∂t
Lλ(t− x)dt =

δ∫
0

f(x0 + t)
∂

∂t
Lλ(x0 + t− x)dt

=

δ∫
0

[f(x0 + t)− f(x0)]
∂

∂t
Lλ(x0 + t− x)dt+ f(x0)

δ∫
0

∂

∂t
Lλ(x0 + t− x)dt.

=

δ∫
0

[
f(x0 + t)− f(x0)

t
−BDf+(x0)

]
∂

∂t
Lλ(x0 + t− x)dt

+BDf+(x0)

δ∫
0

t
∂

∂t
Lλ(x0 + t− x)dt+ f(x0)

δ∫
0

∂

∂t
Lλ(x0 + t− x)dt

= : I3,1(x, λ) + I3,2(x, λ) + I3,3(x, λ),

Setting

F (t) :=
t∫

0

[
f(x0 + y)− f(x0)

y
−BDf+(x0)

]
dy,

then according to (3.1), for each ε > 0 there exists a δ > 0 such that

|F (t)| ≤ ε t.

for all 0 < t ≤ δ and

G(t) :=
0∫
t

[
f(x0)− f(x0 − y)

y
−BDf−(x0)

]
dy,

then according to (3.1), for each ε > 0 there exists a δ > 0 such that

|G(t)| ≤ ε |t|

for all −δ ≤ t < 0.
We now fix this δ and estimate I2(x, λ) and I3(x, λ), respectively.
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I3,1(x, λ) =

δ∫
0

[
t
∂

∂t
Lλ(x0 + t− x)

]
dF (t)

=

[
t
∂

∂t
Lλ(x0 + t− x)

]
F (t)

∣∣δ
0 −

δ∫
0

F (t)
∂

∂t
Lλ(x0 + t− x)dt

−
δ∫

0

F (t)t
∂2

∂t2
Lλ(x0 + t− x)dt

≤ εδ2
[
∂

∂t
Lλ(x0 + t− x)

]
δ

+ ε

δ∫
0

t

∣∣∣∣ ∂∂tLλ(x0 + t− x)
∣∣∣∣ dt

+ε

δ∫
0

t2
∣∣∣∣ ∂∂tLλ(x0 + t− x)

∣∣∣∣ dt.
Integration by parts and using (‡ e), it is easy to see that the right hand side of the last

inequality approaches to zero as (x, λ)→ (x0, λ0).
Using the similar method,

|I2,1(x, λ)| =

∣∣∣∣∣∣
0∫
−δ

[
f(x0)− f(x0 + t)

t
−BDf−(x0)

]
t
∂

∂t
Lλ(x0 + t− x)dt

∣∣∣∣∣∣
goes to zero as (x, λ) → (x0, λ0). Again integration by parts and using (3.1), one can easily
shown that

I2,3(x, λ) + I3,3(x, λ)→ 0

as (x, λ)→ (x0, λ0). For the terms I2,2(x, λ) and I3,2(x, λ), we can find the following equality.

I2,2(x, λ) + I3,2(x, λ) = BDf−(x0)

0∫
−δ

t
∂

∂t
Lλ(x0 + t− x)dt

+BDf+(x0)

δ∫
0

t
∂

∂t
Lλ(x0 + t− x)dt

= BDf−(x0)

x0∫
x0−δ

t
∂

∂t
Lλ(t− x)dt

+BDf+(x0)

x0+δ∫
x0

t
∂

∂t
Lλ(t− x)dt.

Integration by parts and using (3.18) yield

I2,2(x, λ) + I3,2(x, λ)→ N BDf+(x0) + (1−N)BDf−(x0).

The estimate − δ2 < x0 − x ≤ 0 is obtained in similar way. So this completes the proof.

Corollary 3.4. If we choose N = 1
2 in Theorem 3.3, then we obtain

lim
(x,λ)→(x0,λ0)

∂

∂x
Tλ(f ;x) =

BDf+(x0) +BDf−(x0)

2
.
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Corollary 3.5. Let f ∈ L1(a, b) has a symmetric Borel derivative (BDfs(x)) at x0. If the
hypothesis of Theorem 3.3 are satisfied, then

lim
(x,λ)→(x0,λ0)

∂

∂x
Tλ(f ;x) = BDsf(x0).

Example 3.6. As a particular case, let the function Kλ(t, u) be linear with respect to the second
variable, i.e.,

Kλ(t, u) = Dλ(t)u

where Dλ(t) satisfies all the conditions of (‡). This form has been using in Approximation
Theory since its beginning ( [3] ).

Example 3.7. Let consider the following function

Kλ(t, u) =
(
2λ2t u+H(u)

)
χ[0, 1

λ ](t),

where H(u) is a function independent of t, Λ = [1,∞) is a set of indices equipped with natural
topology and let an accumulation point λ0 of Λ be at infinity with regard to this topology. First
of all, note that Kλ(t, u) is a kernel, i.e., Kλ(t, 0) = 0.
It is seen that for every u ∈ R,

∂

∂x
Kλ(t− x, u) =

{
−2λ2 u , t− x ∈ [0, 1

λ ]

0 , t− x /∈ [0, 1
λ ]

. (3.20)

According to (3.20), we obtain ∂
∂xLλ(t− x) as

∂

∂x
Lλ(t− x) =

{
−2λ2 , t− x ∈ [0, 1

λ ]

0 , t− x /∈ [0, 1
λ ]

(3.21)

which implies

Lλ(z) =

{
2λ2 z , z ∈ [0, 1

λ ]

0 , z /∈ [0, 1
λ ]

.

In this case, one can easily seen that

lim
λ→∞

∫
R

Lλ(z)dz = 1 <∞, lim
λ→∞

∫
R \U

Lλ(z)dz = 0

for every U ∈ U(0) and

lim
λ→∞

[
sup
|z|≥δ

Lλ(z)

]
= 0

for every δ > 0. In addition, by (3.21), we deduce that Lλ(z), as a function of z, is non-
increasing on [0,∞) and non-decreasing on (−∞, 0] for each λ ∈ Λ.

Hence, all the conditions of (‡) are satisfied by the kernel function Kλ(t, u).

Example 3.8. In a similar way, we introduce some kind of nonlinear moment kernels on some
suitable sets, by setting

Kλ(t, u) = Lλ(t)u+Gλ(u),

where (Gλ) is family of functions independent of t. Such kind of kernels and their operator forms
in the theory of nonlinear integral operators were deeply investigated (see [1], [2]).
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