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Abstract In this paper we introduce and study a new subclass of meromorphically uniformly
convex functions with positive coefficients defined by a differential operator and obtain coeffi-
cient estimates, growth and distortion theorem, radius of convexity,integral transforms, convex
linear combinations, convolution properties and δ−neighborhoods for the class σp(%, υ, ς).

1 Introduction

Let Σ denote the class of the functions of the form

ϑ(z) =
1
z
+
∞∑
m=1

amz
m (1.1)

which are regular in domain E = {z ∈ C : 0 < |z| < 1} with a simple pole at the origin
with residue 1 there. Let Σs and Σ∗(%) and Σk(%), 0 ≤ % < 1, denote the subclasses of Σ

that are univalent, meromorphically starlike of order % and meromorphically convex of order %
respectively. Analytically ϑ(z) of the form (1.1) is in Σ∗(%) if and only if

Re

{
−zϑ

′(z)

ϑ(z)

}
> %, z ∈ E. (1.2)

Similarly, ϑ ∈ Σk(%) if and only if ϑ(z) is of the form (1.1) and satisfies

Re

{
−
(

1 +
zϑ′′(z)

ϑ′(z)

)}
> %, z ∈ E. (1.3)

It being understood that if % = 1 then ϑ(z) = 1
z is the only function which is Σ∗(1) and Σk(1).

The classes Σ∗(%) and Σk(%) have been extensively studied by Pommerenke [9], Clunie [1],
Royster [12] and others.

Since, to a certain extent the work in the meromorphic univalent case has paralleled that of
regular univalent case, it is natural to search for a subclass of Σs that has properties analogous to
those of T ∗(%). Juneja et al. [5] introduced the class Σp of functions of the form

ϑ(z) =
1
z
+
∞∑
m=1

amz
m, am ≥ 0, (1.4)

Σ
∗
p(%) = Σp ∩ Σ

∗(%).
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For functions ϑ(z) in the class Σp, we define a linear operator Dn
ς by the following form

D0
ςϑ(z) = ϑ(z)

D1
ςϑ(z) = (1− ς)ϑ(z) + ς

(z2ϑ(z))′

z
, ς ≥ 0

= (1 + ς)ϑ(z) + ςzϑ′(z) = Dςϑ(z)

D2
ςϑ(z) = Dς(D

1ϑ(z))

...

Dn
ς ϑ(z) = Dς(D

n−1
ς ϑ(z)) =

1
z
+
∞∑
m=1

[1 + ς(m+ 1)]namzm, for n ∈ N0 = 0, 1, 2, · · · . (1.5)

The classes Σ∗p and various other subclasses of Σ were studied rather extensively by Clunie [1]
and also see [9, 12, 14]. Motivated by works of Madhavi et al. [8], we define the following a
new subclass σp(%, υ, ς) of meromorphically uniformly convex functions in Σp by making use of
generalized the differential operator.

Definition 1.1. For −1 ≤ % < 1, ς > 0 and υ ≥ 1, we let σp(%, υ, ς) be the subclass of Σp

consisting of the form (1.4) and satisfying the analytic criterion

−Re
{
z(Dn

ς ϑ(z))
′

Dn
ς ϑ(z)

+ %

}
> υ

∣∣∣∣z(Dn
ς ϑ(z))

′

Dn
ς ϑ(z)

+ 1
∣∣∣∣ , (1.6)

Dn
ς ϑ(z) is given by (1.5) .

The function class σp(%, υ, ς) unifies well known classes of meromorphic uniformly convex
function with positive coefficients. To illustrate, we observe that the class σp(%, υ, 1) = σp(%, υ)
was studied by Madhavi et al. [8] .

The main object of the paper is to study some usual properties of the geometric function
theory such as coefficient bounds, growth and distortion properties, radius of convexity, convex
linear combination and convolution properties, integral operators and δ−neighbourhoods for the
class σp(%, υ, ς).

2 Coefficient inequality

In this section, we obtain the coefficient bounds of function ϑ(z) for the class σp(%, υ, ς).

Theorem 2.1. A function ϑ(z) of the form (1.4) is in σp(%, υ, ς) if

∞∑
m=1

[1+ ς(m+ 1)]n[(1+ υ)(m+ 1)ς + 1− %] |am| ≤ (1− %), − 1 ≤ % < 1 and υ ≥ 1. (2.1)

Proof. It sufficient to show that

υ

∣∣∣∣z(Dn
ς ϑ(z))

′

Dn
ς ϑ(z)

+ 1
∣∣∣∣+Re

{
z(Dn

ς ϑ(z))
′

Dn
ς ϑ(z)

+ 1
}
≤ (1− %).
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We have υ
∣∣∣∣z(Dn

ς ϑ(z))
′

Dn
ς ϑ(z)

+ 1
∣∣∣∣+Re

{
z(Dn

ς ϑ(z))
′

Dn
ς ϑ(z)

+ 1
}

≤(1 + υ)

∣∣∣∣z(Dn
ς ϑ(z))

′

Dn
ς ϑ(z)

+ 1
∣∣∣∣

≤
(1 + υ)

∞∑
m=1

[1 + ς(m+ 1)]n(m+ 1)ς|am||zm|

1
|z| −

∞∑
m=1

[1 + ς(m+ 1)]n|am||zm|

Letting z → 1 along the real axis, we obtain

≤
(1 + υ)

∞∑
m=1

[1 + ς(m+ 1)]n(m+ 1)ς|am|

1
|z| −

∞∑
m=1

[1 + ς(m+ 1)]n|am|
.

The above expression is bounded by (1− %) if

∞∑
m=1

[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %] |am| ≤ (1− %).

Hence the theorem is completed.

Corollary 2.2. Let the function ϑ(z) defined by (1.4) be in the class σp(%, υ, ς). Then

am ≤
(1− %)

∞∑
m=1

[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]
, (m ≥ 1). (2.2)

Equality holds for the function of the form

ϑm(z) =
1
z
+

(1− %)
[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]

zm. (2.3)

Remark 2.3.

(i) For the choice of ς = 1 in Theorem 2.1 and Corollary 2.2, we observed that the coefficient
estimates for the functions of the class,

|am| ≤
(1− %)

(m+ 2)n[(1 + υ)(m+ 1) + 1− %]

is coincide with Madhavi et al. [8] .

3 Distortion Theorems

In this section, we obtain the sharp for the distortion theorems of the form (1.4) .

Theorem 3.1. Let the function ϑ(z) defined by (1.4) be in the class σp(%, υ, ς). Then for 0 <
|z| = r < 1,

1
r
− (1− %)

(1 + 2ς)n[2ς(1 + υ) + 1− %]
r ≤ |ϑ(z)| ≤ 1

r
+

(1− %)
(1 + 2ς)n[2ς(1 + υ) + 1− %]

r (3.1)

with equality for the function

ϑ(z) =
1
z
+

(1− %)
(1 + 2ς)n[2ς(1 + υ) + 1− %]

z, at z = r, ir. (3.2)
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Proof. Suppose ϑ(z) is in σp(%, υ, ς). In view of Theorem 2.1, we have

(1 + 2ς)n[2ς(1 + υ) + 1− %]
∞∑
m=1

am ≤
∞∑
m=1

[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]

≤(1− %)

which evidently yields
∞∑
m=1

am ≤ 1−%
(1+2ς)n[2ς(1+υ)+1−%] .

Consequently, we obtain

|ϑ(z)| =

∣∣∣∣∣1z +
∞∑
m=1

amz
m

∣∣∣∣∣ ≤
∣∣∣∣1z
∣∣∣∣+ ∞∑

m=1

am|z|m

≤ 1
r
+ r

∞∑
m=1

am

≤ 1
r
+

1− %
(1 + 2ς)n[2ς(1 + υ) + 1− %]

r.

Also, |ϑ(z)| =

∣∣∣∣∣1z +
∞∑
m=1

amz
m

∣∣∣∣∣ ≥
∣∣∣∣1z
∣∣∣∣− ∞∑

m=1

am|z|m

≥ 1
r
− r

∞∑
m=1

am

≥ 1
r
− 1− %

(1 + 2ς)n[2ς(1 + υ) + 1− %]
r.

Hence the result (3.1) follows.

Theorem 3.2. Let the function ϑ(z) defined by (1.4) be in the class σp(%, υ, ς). Then for 0 <
|z| = r < 1,

1
r2 −

1− %
(1 + 2ς)n[2ς(1 + υ) + 1− %]

≤ |ϑ′(z)| ≤ 1
r2 +

1− %
(1 + 2ς)n[2ς(1 + υ) + 1− %]

.

The result is sharp, the extremal function being of the form (2.3)

Proof. From Theorem 2.1, we have

(1 + 2ς)n[2ς(1 + υ) + 1− %]
∞∑
m=1

mam

≤
∞∑
m=1

[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]

≤ (1− %)

which evidently yields
∞∑
m=1

mam ≤ 1−%
[1+2ς]n[2ς(1+υ)+1−%] .
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Consequently, we obtain

|ϑ′(z)| ≤

∣∣∣∣∣ 1
r2 +

∞∑
m=1

mamr
m−1

∣∣∣∣∣
≤ 1
r2 +

∞∑
m=1

mam

≤ 1
r2 +

(1− %)
(1 + 2ς)n[2ς(1 + υ) + 1− %]

.

Also, |ϑ′(z)| ≥

∣∣∣∣∣ 1
r2 −

∞∑
m=1

mamr
m−1

∣∣∣∣∣
≥ 1
r2 −

∞∑
m=1

mam

≥ 1
r2 +

(1− %)
(1 + 2ς)n[2ς(1 + υ) + 1− %]

.

This completes the proof.

Remark 3.3.

(i) For the choice of ς = 1 in Theorems 3.1 and 3.2, we observed that the sharp for the
distortion theorems for the functions of the class are coincide with Madhavi et al. [8] .

4 Class preserving integral operators

In this section, we consider the class preserving integral operator of the form (1.4) .

Theorem 4.1. Let the function ϑ(z) defined by (1.4) be in the class σp(%, υ, ς). Then

ϑ(z) = cz−c−1

z∫
0

tcf(t)dt =
1
z
+
∞∑
m=1

c

c+m+ 1
amz

m, c > 0 (4.1)

is in σp(δ, υ, ς), where

δ(%, υ, c, ς) =
[2ς(1 + υ) + (1− %)](c+ 2)− c(1− %)[2ς(1 + υ) + 1]

[2ς(1 + υ)(1− %)](c+ 2)− (1− %)c
. (4.2)

The result is sharp for ϑ(z) = 1
z +

(1−%)
(1+2ς)n[2ς(1+υ)+(1−%)]z.

Proof. Suppose ϑ(z) = 1
z +

∞∑
m=1

amz
m is in σp(%, υ, ς). We have

ϑ(z) = cz−c−1
z∫
0
tcf(t)dt = 1

z +
∞∑
m=1

c
c+m+1 amz

m, c > 0.

It is sufficient to show that

∞∑
m=1

[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− δ]
1− δ

c

c+m+ 1
am ≤ 1. (4.3)

Since ϑ(z) is in σp(%, υ, ς), we have

∞∑
m=1

[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]
1− %

|am| ≤ 1. (4.4)
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Thus (4.3) will be satisfied if
∞∑
m=1

[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− δ]
1− δ

c

c+m+ 1

≤
∞∑
m=1

[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]
1− %

.

Solving for δ, we obtain

δ ≤ [(1 + υ)(m+ 1)ς + 1− %](c+m+ 1)− c[(1 + υ)(m+ 1)ς + 1](1− %)
[(1 + υ)(m+ 1)ς + 1− %](c+m+ 1)− c(1− %)

= G(m) (4.5)

A simple computation will show that G(m) is increasing and G(m) ≥ G(1). Using this, the
result follows.

5 Convex linear combinations and convolution properties

In this section, we obtain sharp for ϑ(z) is meromorphically convex of order δ and necessary and
sufficient condition for ϑ(z) is in the class σp(%, υ, ς). And also proved that convolution is in the
class σp(%, υ, ς).

Theorem 5.1. If the function ϑ(z) = 1
z +

∞∑
m=1

amz
m is in σp(%, υ, ς) then ϑ(z) is meromorphi-

cally convex of order δ(0 ≤ δ < 1) in |z| < r = r(%, υ, δ), where

r(%, υ, δ) = inf
n≥1

{
(1− δ)(m+ 2)n[(1 + υ)(1 +m) + 1− %]

(1− %)m(m+ 2− δ)

} 1
m+1

.

The result is sharp.

Proof. Let ϑ(z) be in σp(%, υ, ς). Then, by Theorem 2.1, we have
∞∑
m=1

[1 + ς(m+ 1)]n[(1 + υ)(1 +m)ς + 1− %]|am| ≤ (1− %). (5.1)

It is sufficient to show that
∣∣∣2 + zϑ′′(z)

ϑ′(z)

∣∣∣ ≤ (1− δ) for |z| < r = r(%, υ, δ, ς), where r(%, υ, δ, ς) is
specified in the statement of the theorem. Then

∣∣∣∣2 +
zϑ′′(z)

ϑ′(z)

∣∣∣∣ =
∣∣∣∣∣∣∣∣
∞∑
m=1

m(m+ 1)amzm−1

−1
z2 +

∞∑
m=1

mamzm−1

∣∣∣∣∣∣∣∣ ≤
∞∑
m=1

m(m+ 1)am|z|m+1

1−
∞∑
m=1

mam|z|m+1
.

This will be bounded by (1− δ) if
∞∑
m=1

m(m+ 2− δ)
1− δ

am|z|m+1 ≤ 1. (5.2)

By (5.1), it follows that (5.2) is true if

m(m+ 2− δ)
1− δ

|z|m+1 ≤ [1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]
1− %

|am|, m ≥ 1

or |z| ≤
{
(1− δ)[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]

(1− %)m(m+ 2− δ)

} 1
m+1

. (5.3)

Setting |z| = r(%, υ, δ, ς) in (5.3), the result follows. The result is sharp for the function.

ϑm(z) =
1
z
+

(1− %)
[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]

zm, m ≥ 1.



On Certain Subclass · · · With Positive Coefficients 691

Theorem 5.2. Let ϑ0(z) =
1
z and ϑm(z) = 1

z +
(1−%)

[1+ς(m+1)]n[(1+υ)(m+1)ς+1−%]z
m, m ≥ 1. Then

ϑ(z) = 1
z +

∞∑
m=1

amz
m is in the class σp(%, υ, ς) if and only if it can be expressed in the form

ϑ(z) = ω0f0(z) +
∞∑
m=1

ωmϑm(z), where ω0 ≥ 0, ωm ≥ 0,m ≥ 1 and ω0 +
∞∑
m=1

ωm = 1.

Proof. Let ϑ(z) = ω0ϑ0(z)+
∞∑
m=1

ωmϑm(z) with ω0 ≥ 0, ωm ≥ 0,m ≥ 1 and ω0 +
∞∑
m=1

ωm = 1.

Then

ϑ(z) = ω0ϑ0(z) +
∞∑
m=1

ωmϑm(z)

=
1
z
+
∞∑
m=1

ωm
(1− %)

[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]
zm

Since
∞∑
m=1

[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]
(1− %)

ωm
(1− %)

[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]

=
∞∑
m=1

ωm = 1− ω0 ≤ 1.

By Theorem 2.1, ϑ(z) is in the class σp(%, υ, ς).
Conversely suppose that the function ϑ(z) is in the class σp(%, υ, ς), since

am ≤
(1− %)

[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]
zm,m ≥ 1.

ωm =
∞∑
m=1

[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]
(1− %)

am and ω0 = 1−
∞∑
m=1

ωm.

It follows that ϑ(z) = ω0ϑ0(z) +
∞∑
m=1

ωmϑm(z).

This completes the proof of the theorem.

For the functions ϑ(z) = 1
z+

∞∑
m=1

amz
m and g(z) = 1

z+
∞∑
m=1

bmz
m belongs to Σp,we denoted

by (ϑ ∗ g)(z) the convolution of ϑ(z) and g(z) and defined as

(ϑ ∗ g)(z) = 1
z
+
∞∑
m=1

ambmz
m

Theorem 5.3. If the function ϑ(z) = 1
z +

∞∑
m=1

amz
m and g(z) = 1

z +
∞∑
m=1

bmz
m are in the class

σp(%, υ, ς) then (ϑ ∗ g)(z) is in the class σp(%, υ, ς).

Proof. Suppose ϑ(z) and g(z) are in σp(%, υ, ς). By Theorem 2.1, we have

∞∑
m=1

[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]
(1− %)

am ≤ 1

and
∞∑
m=1

[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]
(1− %)

bm ≤ 1 .
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Since ϑ(z) and g(z) are regular are in E, so is (ϑ ∗ g)(z). Furthermore
∞∑
m=1

[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]
(1− %)

ambm

≤
∞∑
m=1

{
[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]

(1− %)

}2

ambm

≤

( ∞∑
m=1

[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]
(1− %)

am

)
( ∞∑
m=1

[1 + ς(m+ 1)]n[(1 + υ)(m+ 1)ς + 1− %]
(1− %)

bm

)
≤ 1.

Hence, by Theorem 2.1, (ϑ ∗ g)(z) is in the class σp(%, υ, ς).

Remark 5.4.

(i) For the choice of ς = 1 in Theorems 5.1, 5.2 and 5.3, we observed that the the results are
coincide with Madhavi et al. [8] .

6 Neighborhoods for the class σp(%, υ, γ, ς)

In this section, we define the δ−neighborhood of a function ϑ(z) and establish a relation between
δ−neighborhood and σp(%, υ, γ, ς) class of a function.

Definition 6.1. A function ϑ ∈ Σp is said to in the class σp(%, υ, γ, ς) if there exists a function
g ∈ σp(%, υ, ς)) such that ∣∣∣∣ϑ(z)g(z)

− 1
∣∣∣∣ < (1− γ), z ∈ E, 0 ≤ γ < 1. (6.1)

Following the earlier works on neighborhoods of analytic functions by Goodman [2] and
Ruschweyh [13]. We defined the δ−neighborhood of a function ϑ ∈ Σp by

Nδ(ϑ) =

{
g ∈ Σp : g(z) =

1
z
+
∞∑
m=1

bmz
m and

∞∑
m=1

m|am − bm| ≤ δ

}
(6.2)

Theorem 6.2. If g ∈ σp(%, υ, ς) and

γ = 1− δ[2ς(1 + υ) + 1− %]
2ς(1 + υ)

(6.3)

then Nδ(g) ⊂ σp(%, υ, γ, ς).

Proof. Let ϑ ∈ Nδ(g). Then we find from (6.2) that
∞∑
m=1

m|am − bm| ≤ δ (6.4)

which implies the coefficient of inequality
∞∑
m=1
|am − bm| ≤ δ

m , m ∈ N.

Since g ∈ σp(%, υ, ς), we have
∞∑
m=1

bm = 1−%
2ς(1+υ)+1−% .

So that
∣∣∣ϑ(z)g(z) − 1

∣∣∣ < ∞∑
m=1
|am−bm|

1−
∞∑

m=1
bm

≤ δ[2ς(1+υ)+1−%]
2ς(1+υ) = 1− γ, provided γ is given by (6.3).

Hence, by Definition 6.1, ϑ ∈ σp(%, υ, γ) for γ given by (6.3), which completes the proof of
theorem.
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Remark 6.3.

(i) For the choice of ς = 1 in Theorem 6.2, we observed that the the result is coincide with
Madhavi et al. [8] .
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