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Abstract. The derivative of a function can be expressed in terms of integration over a small
neighborhood of the point of differentiation, so-called differentiation by integration method. In
this text a maximal generalization of existing results which use one-dimensional integrals is
presented together with some interesting non-analytic weight functions.

1 Introduction

Cornelius Lanczos in his work [1] published a method of differentiation by integration', where
the derivative of a function is approximated by an integral. The integral is performed over a
small interval around the point of differentiation with the approximation becoming exact in the
limit of the interval length approaching zero. For differentiable functions one has
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The expression is interesting from several aspects: it generalizes the ordinary derivative® and,
also, its modifications might be useful for numerical differentiation (see e.g. [3, 4]).

Since, the topic was addressed by several authors with noticeable growth of interest in the
last decade [3, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17]. The millennial work [7] is probably
the most interesting of them: the authors actually provide a very broad generalization of the
Lanczos’ formula for the first derivative and their approach can be further and straightforwardly
generalized to higher orders (as done in this article). Their text is, surprisingly, widely overlook
by later works with exception of [4, 9, 12], which, however, do not exploit the potential of it.

In what follows, the second section will be dedicated to the generalization of the Lanczos’
approach for the first derivative. The next section will cover the generalization to higher-order
derivatives and, in the fourth section, a short discussion will follow. A summary and conclusion
will constitute the last section.

Let us remark that generalizations based on multidimensional integrals can be found in liter-
ature (e.g. formula 2.31 in [17]). Unlike other approaches, they, presumably, do not represent a
special case of the generalization presented here and remain an independent way of generalizing
the Lanczos’ derivative.

2 First derivative

Let us restate the findings from [7]. The key observation which allows for large generalizations
is, that the approximation of the derivative can be seen as averaging the derivative over some

IThe first person to publish such a method was Cioranescu [2]. The name of the method is however usually associated
with Lanczos.
2Converges in situations, where the ordinary derivative is not defined.
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small interval [z — h,z( + h| around the point of differentiation x(. This average might be
understood as weighted average with a weight function wy,

zo+h
F (w0) ~ / wn (8) £ (8) dt, @)
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where/ wp, (t)dt = 1.
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Negative weights cannot be excluded, yet the condition 0 < wy, (¢) might be adopted if desired.
Because the weight functions are of the most interest here, a modified version of (2.1) will be
used throughout this text

[ (o) = /_] w (t) f' (xo + ht) dt,

so that the weight functions are defined on a “standard” interval [—1, 1]. One has
w (t) = hwy, (xo + ht) .
Using the integration by partes one arrives to
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£ (ao) % 5w (@) o+ hOL = [ (0) 5 G+ hi) .
~1
Two interesting observations can be done:
« If w is constant w (¢) = 0.5 then the standard definition of the derivative is recovered

(o +h) = f (20— )

fl (l'o) ~ oh

s If w(—1) = w (+1) = 0 then a differentiation by integration method is constructed

1
[ (o) = —%/lw’ (t) f (zo + ht) dt.

The usual Lanczos’ expression is obtained for

Indeed

1 h
w’(t):—%t — f’(mo)%;—h/_ltf(xo-l—ht)dt:%/_hzf(a:o—kz)dz.

At this point one can formulate the generalization: Any differentiable function w which satisfies
1
/ w(t)dt =1 andw(—1) = w(1) =0
—1

can be used for the differentiation by integration in the following manner

1
1 (o) ~ 7%/110’ (1) f (0 + ht) db,

where its derivative w’ appears.
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Let us define some useful terms: “kernel function” will from now on refer to the function
which is being integrated (together with function values) in the differentiation by integration
procedure® and let us note by a small zero those anti-derivatives of a function k& which take value
Zero at minus one

-n d -n —n+1
R O L

One can now address the question about a proper kernel function (inverse implication). From
what was shown one can deduce: k is a valid kernel function iff

1
(1) \t=+1=0and/ KTV () dt=1. 2.2)
—1

The first of the two conditions is equivalent to

/llk(t)dt:O.

Indeed, proceeding by integration by parts one observes (A = A’)

1! 1 1 ! ,
— 71)\(t)f(:c0+ht)dt:—E[A(t)f(xo+ht)]t:_l +[1A(t)f (zo + ht) dt.

If A(£1) # 0, one cannot make vanish the first term on the RHS for a general function f. If one
takes the limit - — 0 in the second term (using the continuity of f’) one arrives to
1

lim [ A() f (w0 + ht) dt = [ llA(t) £ (wo) dt = f' (o) [ 11/1(15) dt.

h—0 —1

One sees that a function with integral different from one provides a wrong value of the derivative.
Formulas (2.2) express sufficient and necessary conditions a kernel function has to fulfill, they
represent the largest possible generalization of the Lanczos’ approach.

3 Higher order derivatives

3.1 Main result

A repeated integration by parts allows for an immediate generalization

/ " (8) 1 (o ht) d =

1

1
_ % [ (1) 79 (20 + ht)ll - %L W (£) £ (20 + he) dt
= @ ot nn)] o [ (1) 7 (w4 )]
1
+ % /_ 1 w' (t) ) (zo + ht) dt

1 n 1 n—I1 1
= (h> /lw<")( ) f (z0 + ht) dt+z hk+1 { (t) fn=1=R) (xo+ht)}_l
- k=0

To make, for a general function f, the second term vanish, one has to require
w® (=1) =w® (1) =0forall k =0,1,...,n— 1. (3.1

Having this property, then, with an appropriate weight function

1
/ w(t)dt =1, (3.2)
—1

3In case of the first derivative the kernel function is w’.
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and assuming f(") is continuous, one interprets the first term as an approximation of the n-th
derivative

RSS! 1
lim <h1> [1w("> (t) f (wo + ht) dt:%ig})[lw(t) £ (2o + ht) dt

h—0
1
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Like at the end of the Sec. 2, one can inverse the whole procedure, start with the expression
fil w™ (t) f (xo + ht) dt and proceed to n repeated integrations by parts (integrate w™ and
differentiate f). As a result one can immediately conclude: If £ is to be a valid kernel for the
differentiation by integration in the formula

—1\" !
f“”(l“o)%(h) [ k@ s ot mya (3.3)

then 4
k(1) =0forallj=1,2,...,n

1
/ KM () dt =1,
—1

With these statements valid for any weight/kernel functions for which appropriate derivatives
or integrals exist, one can claim that, for the Lanczos’ derivative written in the from (3.3), the
generalization is maximal.

and

3.2 Examples

With the acquired knowledge one can propose some new, potentially interesting kernels and
weight functions. The idea of universality might be a compelling one, by which we mean
the independence on the order of the derivative (from now on noted n). Kernels have to be
n-dependent*, but one can look for n-independent weight functions. Such a universal weight
function has to fulfill the condition (3.1) for all derivatives, yet it cannot be zero so as to respect
the condition (3.2). Therefore it must be non-analytic at -1 and 1.

As the first example we propose

We = 1 exp LN with K =~ 0.4439938161680786.
K x2 — 1

With no explicit n-dependence in the weight function, this dependence comes from the differen-

tiation .
—-1\" 1 dn 1
) (o)~ (=2) L [ a ht) L exp ().
S ) (h> KL o ht) G exp { 7=
Explicit formulas for the first three derivatives are

’

2 ! t 1
I (wo) hiK/fldtf(zOJrht) T <t2—1)’

" 2 ! 34— 1 1
! (IO)NW[Idtf(z°+ht) (t1)4(t+1)4eXp<t2—1)’
t (6t° + 3t* — 10¢* + 3) ( 1 )

t—1)°t+1)° 2 —1

1"

4 1
f (xo)%m—K[Idtf(xo+ht)

n
4The LHS of (3.3) is n-dependent, so has to be the RHS. But, with the exception of (’Tl) , there are no other explicit
n-dependent factors on the RHS, thus the dependence must be hidden in & (t).
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Even more interesting example is a one with the shifted Fabius function [18]
WFEp (t) = Fb(t + 1)

The Fabius function (noted F'b) is non-analytic for all 0 < x and its behavior with respect to the
conditions (3.1, 3.2) can be deduced from the differential functional equation

FV () =2Fb(2z). (3.4)
One has
2 1 1
/ Fb(z)dz “=7 / 2Fb (22) dz = / FU (2)dz = [Fb(2)]72) = 1,
0 0 0

1 11

_ _ / _ _ = // —
0=Fb(0) = 5FV (0) = 5 1 Fb" (0) =....
n 1 n+1
Fb™ (2) = 2n+lFb< (1) =0,

where the very last equality (all derivatives vanishing at = 1) is the consequence of the sym-
metry condition Fo (1 — z) = 1 — Fb(x) and the behavior of derivatives at x = 0. When shifting
the Fabius function to the interval [—1, 1] all mentioned properties remain conserved (on the
shifted the interval). Equation (3.4) allows us to formulate the corresponding kernel functions in
a very elegant way, where the explicit dependence on derivatives is not present’

-1

n 1
™ (x0) = (h) 2%”<"+1>/_1Fb 2" (t + 1)] f (zo + ht) dt.

Value of the Fabius function for 1 < z can be very easily related to the value of this function on
the interval [0, 1]. Using an efficient method® for its evaluation on the interval [0, 1], one achieves
an effective method for computing kernel function values and thus the whole integral, and this
for any order of the derivative.

4 Discussion

One of the most cited results [8] generalizes the Lanczos’ derivative by using the Legendre
polynomials’. It might be interesting to check its behavior from the perspective of the presented
results. The authors of [8] propose (among others) the following form of the kernel function®

1"
kyn (z) = % (2n+ NP, (z),
with P, (x) being the Legendre polynomials. The latter can be defined by the Rodrigues’ formula
L
~ 2np) dan

P, (17) ($2*1)n.

Observing the inner bracket (going to zero for x = =+1) being raised to the n-th power, one
immediately sees that the condition (3.1) is obeyed. Next, one can study the integral of the
weight function

(=" |
— (2n + 1)!!2”7“ g (2= 1) da.
With partial results [22]

andF(n+;> =T

n!

! (2n+ 1)1

1
/_1 (2> = 1)"dz = Va (-1)" St

3One can notice that the expression is defined for any real value of n.

6Use of tabulated values, or recipes from [19, 20, 21].

7A similar result was in the same year published by [9].

8The factor (—1)™ is here to cancel the same factor in (3.3) from in front of the integral.
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one finds that also the condition (3.2) is respected.

Several other realizations of the differentiation by integration can be found in the literature,
most of them with a higher technical complexity than the previous one. From what was shown,
all of these representations (based on one-dimensional integrals) have to comply with the restric-
tions (3.1) and (3.2).

This text focuses on the main result of generalizing the Lanczos’ derivative and does not
address specific issues of precision and rapidity of convergence in case of a numerical imple-
mentation and related questions of the kernel function preference. With the kernel function
being completely general (possibly non-analytic everywhere) one can hardly rely on standard
tools for error estimates (i.e. Taylor series). In any specific context the recipes existing in the
literature are to be used.

5 Summary, conclusion

In this text the result published in [7] was generalized to higher-order derivatives and, assuming
pattern (3.3), this generalization is maximal. Restrictions (3.1) and (3.2) allow for a very broad
family of functions, which might make the search for well performing kernels for numerical
purposes more efficient.
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