Some inequalities relative to convex and close-to-convex functions involving *q*-derivative

Sh. Najafzadeh

Communicated by Deshna Loonker

MSC 2010 Classifications: Primary 30C45, 30C50.

Keywords and phrases: p-valent function, convex function, close-to-convex function.

Abstract. In this article, by using q-derivative, two subclasses of p-valent analytic functions are introduced. Some inequalities associated with convex and close-to-convex functions are obtained.

1 Introduction

Let \mathcal{A}_p denote the class of functions f(z) of the form

$$f(z) = z^{p} + \sum_{k=p+1}^{+\infty} a_{k} z^{k},$$
(1.1)

which are analytic in the unit disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$. Gosper and Rahman [1], defined the *q*-derivative (0 < *q* < 1) of a function *f* of the form $f(z) = z + \sum_{k=2}^{+\infty} a_k z^k$ by:

$$D_q f(z) = \frac{f(qz) - f(z)}{(q-1)z}, \quad (z \in \Delta).$$
(1.2)

From (1.1) and (1.2), we get:

$$D_q f(z) = [p]_q z^{p-1} + \sum_{k=p+1}^{\infty} a_k [k]_q z^{k-1},$$
(1.3)

where

$$[x]_q = \frac{1 - q^x}{1 - q} = 1 + q + \dots + q^{x - 1}.$$
(1.4)

As $q \to 1^-$, then $[p]_q \to p$ and $[k]_q \to k$, so we conclude:

$$\lim_{q \to 1^-} D_q f(z) = f'(z), \qquad (z \in \Delta),$$

see also [3].

Now, we define two subclasses of A_p as follow.

Definition 1.1. A function $f(z) \in A_p$ is said to be in the subclass $X_p(q)$ if it satisfies the inequality:

$$\left|\frac{1}{[p]_q}\frac{D_q f(z)}{z^{p-1}} - 1\right| < 1, \tag{1.5}$$

where $z \in \Delta$ and $D_q f(z)$ is defined by (1.3).

A function $f(z) \in \mathcal{A}_p$ is said to be in the subclass $Y_p(q)$ if it is satisfies the inequality:

$$\left|\frac{z[D_q f(z)]'}{D_q f(z)} - p\right| < p.$$

To prove the main theorems, we need the following lemma, due to Jack [2], (see also [4]).

Lemma 1.2. Let w(z) be non-constant in Δ and w(0) = 0. If |w| attains its maximum value on the circle |z| = r < 1 at z_0 , then $z_0w'(z_0) = tw(z_0)$, where $t \ge 1$ is a real number.

2 Main Results

In this section, we will prove two theorems involving inequalities on *p*-valent functions.

Theorem 2.1. If $f(z) \in A_p$ satisfies the inequality

$$\operatorname{Re}\left\{\frac{z[D_q f(z)]'}{D_q f(z)} - (p-1)\right\} < \frac{1}{2},\tag{2.1}$$

then $f(z) \in X_p(q)$.

Proof. Let $f(z) \in \mathcal{A}_p$, we define the function w(z) by:

$$\frac{1}{[p]_q} \frac{D_q f(z)}{z^{p-1}} = 1 + w(z), \qquad (z \in \Delta).$$
(2.2)

With a sample calculation in Δ , we have w(0) = 0. From (2.2), we obtain:

$$\frac{1}{[p]_q}D_qf(z) = z^{p-1} + z^{p-1}w(z),$$

or

$$\frac{1}{[p]_q}[D_q f(z)]' = (p-1)z^{p-2} + (p-1)z^{p-2}zw(z) + z^{p-1}w'(z),$$

or

$$\frac{1}{[p]_q} \frac{[D_q f(z)]'}{z^{p-2}} = (p-1)(1+w(z)) + zw'(z).$$
(2.3)

From (2.2) and (2.3), we get:

$$\frac{zw'(z)}{1+w(z)} = \frac{z[D_q f(z)]'}{D_q f(z)} - (p-1).$$
(2.4)

Now, let for $z_0 \in \Delta$, $\max_{|z| \leq |z_0|} |w(z)| = |w(z_0)| = 1$, then by using the Jack's lemma and putting $w(z_0) = e^{i\theta} \neq -1$ in (2.4) we have:

$$\begin{split} \operatorname{Re} \left\{ \frac{z[D_q f(z)]'}{D_q f(z)} - (p-1) \right\} &= \operatorname{Re} \left\{ \frac{z_0 w'(z_0)}{1 + w(z_0)} \right\} \\ &= \operatorname{Re} \left\{ \frac{t w(z_0)}{1 + w(z_0)} \right\} \\ &= \operatorname{Re} \left\{ \frac{t e^{i\theta}}{1 + e^{i\theta}} \right\} = \frac{t}{2} \geqslant \frac{1}{2}, \end{split}$$

which is a contradiction with (2.1). Thus we have |w(z)| < 1 for all $z \in \Delta$. So from (2.2) we conclude:

$$\left|\frac{1}{[p]_q}\frac{D_q f(z)}{z^{p-1}} - 1\right| = |w(z)| < 1,$$

and this gives the result.

By letting $q \rightarrow 1^-$, we have the following corollary that related to close-to-close functions.

Corollary 2.2. If $f(z) \in A_p$ satisfies the inequality:

$$\operatorname{Re}\left\{1+\frac{zf''(z)}{f'(z)}-p\right\}<\frac{1}{2},\qquad(z\in\Delta),$$

then f(z) is p-valently close-to-close function with respect to the origin in Δ and $|\frac{f'(z)}{z^{p-1}} - p| < p$. **Theorem 2.3.** If $f(z) \in A_p$ satisfies:

$$\operatorname{Re}\left\{1+z\left\{\frac{[D_q f(z)]''}{[D_q f(z)]'}-\frac{[D_q f(z)]'}{D_q f(z)}\right\}\right\}<\frac{1}{2},$$
(2.5)

where $f(z) \in Y_p(q)$.

Proof. Let the function $f(z) \in \mathcal{A}_p$, we define the function w(z) by

$$\frac{z[D_q f(z)]'}{D_q f(z)} = p(1 + w(z)), \qquad (z \in \Delta).$$
(2.6)

It is easy to verify that w(z) is analytic in Δ and w(0) = 0. By (2.6) we have:

$$z[D_q f(z)]' = pD_q f(z) + pD_q f(z)w(z),$$

or

$$[D_q f(z)]' + z[D_q f(z)]'' = p[D_q f(z)]' + p\{w'(z)D_q f(z) + w(z)[D_q f(z)]'\},$$

or

$$1 + \frac{z[D_q f(z)]''}{[D_q f(z)]'} = p(1 + w(z)) + pw'(z) \frac{D_q f(z)}{[D_q f(z)]'}$$

By applying (2.6), we get:

$$1 + \frac{z[D_q f(z)]''}{[D_q f(z)]'} = p(1 + w(z) + \frac{zw'(z)}{1 + w(z)}.$$

Now, let for a point $z_0 \in \Delta$, $\max_{|z| \leq |z_0|} |w(z)| = |w(z_0)| = 1$.

By Jack's lemma and putting $w(z_0) = e^{i\theta}$, we have:

$$\begin{aligned} \operatorname{Re}\left\{1 + z \left\{\frac{[D_q f(z)]''}{[D_q f(z)]'} - \frac{[D_q f(z)]'}{D_q f(z)}\right\}\right\} &= \operatorname{Re}\left\{\frac{z_0 w'(z_0)}{1 + w(z_0)}\right\} \\ &= \operatorname{Re}\left\{\frac{t w(z_0)}{1 + w(z_0)}\right\} \\ &= t \operatorname{Re}\left\{\frac{e^{i\theta}}{1 + e^{i\theta}}\right\} = \frac{t}{2} \geqslant \frac{1}{2}, \end{aligned}$$

which is a contradiction with (2.6). Thus for all $z \in \Delta$, |w(z)| < 1 and so from (2.6) we have:

$$\left| \frac{z[D_q f(z)]'}{D_q f(z)} - p \right| < p,$$

thus, the proof is complete.

By letting $q \to 1^-$, we have the following corollary that related to ... Corollary 2.4. If $f(z) \in A_p$, satisfies the inequality:

$$\operatorname{Re}\left\{1+z\Big[\frac{f^{\prime\prime\prime}}{f^{\prime\prime}}-\frac{f^{\prime\prime}}{f^{\prime}}\Big]\right\}<\frac{1}{2},\qquad(z\in\Delta),$$

then f(z) is p-valently convex function with respect to the origin in Δ and

$$|1 + \frac{zf''}{f'} - (p+1)| < p.$$

References

- [1] G. Gasper and M. Rahman, *Basic hypergeometric series*, Encyclopedia Math. Appl. **98(3)**, 282–285 (1991).
- [2] I.S. Jack, Functions starlike and convex of order α , J. Lond. Math. Soc. 2(3), 469–474 (1971).
- [3] Z. S. I. Mansour, *Linear sequential q-difference equations of fractional order*, Fract. Calc. Appl. Anal. **12(2)**, 159–178 (2009).
- [4] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65(2), 289–305 (1978).

Author information

Sh. Najafzadeh, Department of Mathematics, Payame Noor University, Theran, Iran. E-mail: najafzadeh1234@yahoo.ie

Received: July 30 2019 Accepted: December 27, 2019