Some inequalities relative to convex and close-to-convex functions involving q-derivative

Sh. Najafzadeh
Communicated by Deshna Loonker

MSC 2010 Classifications: Primary 30C45, 30C50.
Keywords and phrases: p-valent function, convex function, close-to-convex function.
Abstract. In this article, by using q-derivative, two subclasses of p-valent analytic functions are introduced. Some inequalities associated with convex and close-to-convex functions are obtained.

1 Introduction

Let \mathcal{A}_{p} denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{+\infty} a_{k} z^{k}, \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$. Gosper and Rahman [1], defined the q-derivative $(0<q<1)$ of a function f of the form $f(z)=z+\sum_{k=2}^{+\infty} a_{k} z^{k}$ by:

$$
\begin{equation*}
D_{q} f(z)=\frac{f(q z)-f(z)}{(q-1) z}, \quad(z \in \Delta) \tag{1.2}
\end{equation*}
$$

From (1.1) and (1.2), we get:

$$
\begin{equation*}
D_{q} f(z)=[p]_{q} z^{p-1}+\sum_{k=p+1}^{\infty} a_{k}[k]_{q} z^{k-1} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
[x]_{q}=\frac{1-q^{x}}{1-q}=1+q+\ldots+q^{x-1} \tag{1.4}
\end{equation*}
$$

As $q \rightarrow 1^{-}$, then $[p]_{q} \rightarrow p$ and $[k]_{q} \rightarrow k$, so we conclude:

$$
\lim _{q \rightarrow 1^{-}} D_{q} f(z)=f^{\prime}(z), \quad(z \in \Delta)
$$

see also [3].
Now, we define two subclasses of \mathcal{A}_{p} as follow.
Definition 1.1. A function $f(z) \in \mathcal{A}_{p}$ is said to be in the subclass $X_{p}(q)$ if it satisfies the inequality:

$$
\begin{equation*}
\left|\frac{1}{[p]_{q}} \frac{D_{q} f(z)}{z^{p-1}}-1\right|<1 \tag{1.5}
\end{equation*}
$$

where $z \in \Delta$ and $D_{q} f(z)$ is defined by (1.3).
A function $f(z) \in \mathcal{A}_{p}$ is said to be in the subclass $Y_{p}(q)$ if it is satisfies the inequality:

$$
\left|\frac{z\left[D_{q} f(z)\right]^{\prime}}{D_{q} f(z)}-p\right|<p .
$$

To prove the main theorems, we need the following lemma, due to Jack [2], (see also [4]).
Lemma 1.2. Let $w(z)$ be non-constant in Δ and $w(0)=0$. If $|w|$ attains its maximum value on the circle $|z|=r<1$ at z_{0}, then $z_{0} w^{\prime}\left(z_{0}\right)=t w\left(z_{0}\right)$, where $t \geqslant 1$ is a real number.

2 Main Results

In this section, we will prove two theorems involving inequalities on p-valent functions.
Theorem 2.1. If $f(z) \in \mathcal{A}_{p}$ satisfies the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left[D_{q} f(z)\right]^{\prime}}{D_{q} f(z)}-(p-1)\right\}<\frac{1}{2}, \tag{2.1}
\end{equation*}
$$

then $f(z) \in X_{p}(q)$.
Proof. Let $f(z) \in \mathcal{A}_{p}$, we define the function $w(z)$ by:

$$
\begin{equation*}
\frac{1}{[p]_{q}} \frac{D_{q} f(z)}{z^{p-1}}=1+w(z), \quad(z \in \Delta) \tag{2.2}
\end{equation*}
$$

With a sample calculation in Δ, we have $w(0)=0$. From (2.2), we obtain:

$$
\frac{1}{[p]_{q}} D_{q} f(z)=z^{p-1}+z^{p-1} w(z),
$$

or

$$
\frac{1}{[p]_{q}}\left[D_{q} f(z)\right]^{\prime}=(p-1) z^{p-2}+(p-1) z^{p-2} z w(z)+z^{p-1} w^{\prime}(z),
$$

or

$$
\begin{equation*}
\frac{1}{[p]_{q}} \frac{\left[D_{q} f(z)\right]^{\prime}}{z^{p-2}}=(p-1)(1+w(z))+z w^{\prime}(z) . \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3), we get:

$$
\begin{equation*}
\frac{z w^{\prime}(z)}{1+w(z)}=\frac{z\left[D_{q} f(z)\right]^{\prime}}{D_{q} f(z)}-(p-1) . \tag{2.4}
\end{equation*}
$$

Now, let for $z_{0} \in \Delta, \max _{|z| \leqslant\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1$, then by using the Jack's lemma and putting $w\left(z_{0}\right)=e^{i \theta} \neq-1$ in (2.4) we have:

$$
\begin{aligned}
\operatorname{Re}\left\{\frac{z\left[D_{q} f(z)\right]^{\prime}}{D_{q} f(z)}-(p-1)\right\} & =\operatorname{Re}\left\{\frac{z_{0} w^{\prime}\left(z_{0}\right)}{1+w\left(z_{0}\right)}\right\} \\
& =\operatorname{Re}\left\{\frac{t w\left(z_{0}\right)}{1+w\left(z_{0}\right)}\right\} \\
& =\operatorname{Re}\left\{\frac{t e^{i \theta}}{1+e^{i \theta}}\right\}=\frac{t}{2} \geqslant \frac{1}{2},
\end{aligned}
$$

which is a contradiction with (2.1). Thus we have $|w(z)|<1$ for all $z \in \Delta$. So from (2.2) we conclude:

$$
\left|\frac{1}{[p]_{q}} \frac{D_{q} f(z)}{z^{p-1}}-1\right|=|w(z)|<1,
$$

and this gives the result.
By letting $q \rightarrow 1^{-}$, we have the following corollary that related to close-to-close functions.

Corollary 2.2. If $f(z) \in \mathcal{A}_{p}$ satisfies the inequality:

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right\}<\frac{1}{2}, \quad(z \in \Delta)
$$

then $f(z)$ is p-valently close-to-close function with respect to the origin in Δ and $\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right|<p$.
Theorem 2.3. If $f(z) \in \mathcal{A}_{p}$ satisfies:

$$
\begin{equation*}
\operatorname{Re}\left\{1+z\left\{\frac{\left[D_{q} f(z)\right]^{\prime \prime}}{\left[D_{q} f(z)\right]^{\prime}}-\frac{\left[D_{q} f(z)\right]^{\prime}}{D_{q} f(z)}\right\}\right\}<\frac{1}{2} \tag{2.5}
\end{equation*}
$$

where $f(z) \in Y_{p}(q)$.
Proof. Let the function $f(z) \in \mathcal{A}_{p}$, we define the function $w(z)$ by

$$
\begin{equation*}
\frac{z\left[D_{q} f(z)\right]^{\prime}}{D_{q} f(z)}=p(1+w(z)), \quad(z \in \Delta) . \tag{2.6}
\end{equation*}
$$

It is easy to verify that $w(z)$ is analytic in Δ and $w(0)=0$. By (2.6) we have:

$$
z\left[D_{q} f(z)\right]^{\prime}=p D_{q} f(z)+p D_{q} f(z) w(z)
$$

or

$$
\left[D_{q} f(z)\right]^{\prime}+z\left[D_{q} f(z)\right]^{\prime \prime}=p\left[D_{q} f(z)\right]^{\prime}+p\left\{w^{\prime}(z) D_{q} f(z)+w(z)\left[D_{q} f(z)\right]^{\prime}\right\}
$$

or

$$
1+\frac{z\left[D_{q} f(z)\right]^{\prime \prime}}{\left[D_{q} f(z)\right]^{\prime}}=p(1+w(z))+p w^{\prime}(z) \frac{D_{q} f(z)}{\left[D_{q} f(z)\right]^{\prime}}
$$

By applying (2.6), we get:

$$
1+\frac{z\left[D_{q} f(z)\right]^{\prime \prime}}{\left[D_{q} f(z)\right]^{\prime}}=p\left(1+w(z)+\frac{z w^{\prime}(z)}{1+w(z)}\right.
$$

Now, let for a point $z_{0} \in \Delta, \max _{|z| \leqslant\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1$.
By Jack's lemma and putting $w\left(z_{0}\right)=e^{i \theta}$, we have:

$$
\begin{aligned}
\operatorname{Re}\left\{1+z\left\{\frac{\left[D_{q} f(z)\right]^{\prime \prime}}{\left[D_{q} f(z)\right]^{\prime}}-\frac{\left[D_{q} f(z)\right]^{\prime}}{D_{q} f(z)}\right\}\right\} & =\operatorname{Re}\left\{\frac{z_{0} w^{\prime}\left(z_{0}\right)}{1+w\left(z_{0}\right)}\right\} \\
& =\operatorname{Re}\left\{\frac{t w\left(z_{0}\right)}{1+w\left(z_{0}\right)}\right\} \\
& =t \operatorname{Re}\left\{\frac{e^{i \theta}}{1+e^{i \theta}}\right\}=\frac{t}{2} \geqslant \frac{1}{2}
\end{aligned}
$$

which is a contradiction with (2.6). Thus for all $z \in \Delta,|w(z)|<1$ and so from (2.6) we have:

$$
\left|\frac{z\left[D_{q} f(z)\right]^{\prime}}{D_{q} f(z)}-p\right|<p
$$

thus, the proof is complete.
By letting $q \rightarrow 1^{-}$, we have the following corollary that related to ...
Corollary 2.4. If $f(z) \in \mathcal{A}_{p}$, satisfies the inequality:

$$
\operatorname{Re}\left\{1+z\left[\frac{f^{\prime \prime \prime}}{f^{\prime \prime}}-\frac{f^{\prime \prime}}{f^{\prime}}\right]\right\}<\frac{1}{2}, \quad(z \in \Delta)
$$

then $f(z)$ is p-valently convex function with respect to the origin in Δ and

$$
\left|1+\frac{z f^{\prime \prime}}{f^{\prime}}-(p+1)\right|<p
$$

References

[1] G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia Math. Appl. 98(3), 282-285 (1991).
[2] I.S. Jack, Functions starlike and convex of order α, J. Lond. Math. Soc. 2(3), 469-474 (1971).
[3] Z. S. I. Mansour, Linear sequential q-difference equations of fractional order, Fract. Calc. Appl. Anal. 12(2), 159-178 (2009).
[4] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65(2), 289-305 (1978).

Author information

Sh. Najafzadeh, Department of Mathematics, Payame Noor University, Theran, Iran. E-mail: najafzadeh1234@yahoo.ie

Received: July 302019
Accepted: December 27, 2019

