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Abstract. In this article, by using q–derivative, two subclasses of p–valent analytic functions
are introduced. Some inequalities associated with convex and close-to-convex functions are
obtained.

1 Introduction

Let Ap denote the class of functions f(z) of the form

f(z) = zp +
+∞∑
k=p+1

akz
k, (1.1)

which are analytic in the unit disk ∆ = {z ∈ C : |z| < 1}. Gosper and Rahman [1], defined the

q–derivative (0 < q < 1) of a function f of the form f(z) = z +
+∞∑
k=2

akz
k by:

Dqf(z) =
f(qz)− f(z)

(q − 1)z
, (z ∈ ∆). (1.2)

From (1.1) and (1.2), we get:

Dqf(z) = [p]qz
p−1 +

∞∑
k=p+1

ak[k]qz
k−1, (1.3)

where

[x]q =
1− qx

1− q
= 1 + q + . . .+ qx−1. (1.4)

As q → 1−, then [p]q → p and [k]q → k, so we conclude:

lim
q→1−

Dqf(z) = f ′(z), (z ∈ ∆),

see also [3].
Now, we define two subclasses of Ap as follow.

Definition 1.1. A function f(z) ∈ Ap is said to be in the subclass Xp(q) if it satisfies the in-
equality: ∣∣∣∣ 1

[p]q

Dqf(z)

zp−1 − 1
∣∣∣∣ < 1, (1.5)

where z ∈ ∆ and Dqf(z) is defined by (1.3).
A function f(z) ∈ Ap is said to be in the subclass Yp(q) if it is satisfies the inequality:∣∣∣∣z[Dqf(z)]′

Dqf(z)
− p

∣∣∣∣ < p.
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To prove the main theorems, we need the following lemma, due to Jack [2], (see also [4]).

Lemma 1.2. Let w(z) be non-constant in ∆ and w(0) = 0. If |w| attains its maximum value on
the circle |z| = r < 1 at z0, then z0w

′(z0) = tw(z0), where t > 1 is a real number.

2 Main Results

In this section, we will prove two theorems involving inequalities on p–valent functions.

Theorem 2.1. If f(z) ∈ Ap satisfies the inequality

Re
{z[Dqf(z)]′

Dqf(z)
− (p− 1)

}
<

1
2
, (2.1)

then f(z) ∈ Xp(q).

Proof. Let f(z) ∈ Ap, we define the function w(z) by:

1
[p]q

Dqf(z)

zp−1 = 1 + w(z), (z ∈ ∆). (2.2)

With a sample calculation in ∆, we have w(0) = 0. From (2.2), we obtain:

1
[p]q

Dqf(z) = zp−1 + zp−1w(z),

or

1
[p]q

[Dqf(z)]
′ = (p− 1)zp−2 + (p− 1)zp−2zw(z) + zp−1w′(z),

or

1
[p]q

[Dqf(z)]′

zp−2 = (p− 1)(1 + w(z)) + zw′(z). (2.3)

From (2.2) and (2.3), we get:

zw′(z)

1 + w(z)
=

z[Dqf(z)]′

Dqf(z)
− (p− 1). (2.4)

Now, let for z0 ∈ ∆, max
|z|6|z0|

|w(z)| = |w(z0)| = 1, then by using the Jack’s lemma and putting

w(z0) = eiθ 6= −1 in (2.4) we have:

Re
{z[Dqf(z)]′

Dqf(z)
− (p− 1)

}
= Re

{ z0w
′(z0)

1 + w(z0)

}
= Re

{ tw(z0)

1 + w(z0)

}
= Re

{ teiθ

1 + eiθ

}
=

t

2
>

1
2
,

which is a contradiction with (2.1). Thus we have |w(z)| < 1 for all z ∈ ∆. So from (2.2) we
conclude: ∣∣∣∣ 1

[p]q

Dqf(z)

zp−1 − 1
∣∣∣∣ = |w(z)| < 1,

and this gives the result.

By letting q → 1−, we have the following corollary that related to close-to-close functions.
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Corollary 2.2. If f(z) ∈ Ap satisfies the inequality:

Re
{

1 +
zf ′′(z)

f ′(z)
− p
}
<

1
2
, (z ∈ ∆),

then f(z) is p –valently close-to-close function with respect to the origin in ∆ and | f
′(z)
zp−1 −p| < p.

Theorem 2.3. If f(z) ∈ Ap satisfies:

Re
{

1 + z
{ [Dqf(z)]′′

[Dqf(z)]′
− [Dqf(z)]′

Dqf(z)

}}
<

1
2
, (2.5)

where f(z) ∈ Yp(q).

Proof. Let the function f(z) ∈ Ap, we define the function w(z) by

z[Dqf(z)]′

Dqf(z)
= p(1 + w(z)), (z ∈ ∆). (2.6)

It is easy to verify that w(z) is analytic in ∆ and w(0) = 0. By (2.6) we have:

z[Dqf(z)]
′ = pDqf(z) + pDqf(z)w(z),

or

[Dqf(z)]
′ + z[Dqf(z)]

′′ = p[Dqf(z)]
′ + p{w′(z)Dqf(z) + w(z)[Dqf(z)]

′},

or

1 +
z[Dqf(z)]′′

[Dqf(z)]′
= p(1 + w(z)) + pw′(z)

Dqf(z)

[Dqf(z)]′
.

By applying (2.6), we get:

1 +
z[Dqf(z)]′′

[Dqf(z)]′
= p(1 + w(z) +

zw′(z)

1 + w(z)
.

Now, let for a point z0 ∈ ∆, max
|z|6|z0|

|w(z)| = |w(z0)| = 1.

By Jack’s lemma and putting w(z0) = eiθ, we have:

Re
{

1 + z
{ [Dqf(z)]′′

[Dqf(z)]′
− [Dqf(z)]′

Dqf(z)

}}
= Re

{ z0w
′(z0)

1 + w(z0)

}
= Re

{ tw(z0)

1 + w(z0)

}
= tRe

{ eiθ

1 + eiθ

}
=

t

2
>

1
2
,

which is a contradiction with (2.6). Thus for all z ∈ ∆, |w(z)| < 1 and so from (2.6) we have:∣∣∣∣z[Dqf(z)]′

Dqf(z)
− p

∣∣∣∣ < p,

thus, the proof is complete.

By letting q → 1−, we have the following corollary that related to ...

Corollary 2.4. If f(z) ∈ Ap, satisfies the inequality:

Re
{

1 + z
[f ′′′
f ′′
− f ′′

f ′

]}
<

1
2
, (z ∈ ∆),

then f(z) is p –valently convex function with respect to the origin in ∆ and

|1 +
zf ′′

f ′
− (p+ 1)| < p.
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