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Abstract Let R be an Euclidean field. In this note we characterise when the quadratic mod-
ules of R[[X]] are Archimedean, which of them are orderings and we give the biggest element.

1 Introduction

Let A be a commutative ring with unit. A quadratic module in A is a subset M of A such
that 1 ∈ M , M + M ⊆ M and A2M ⊆ M where A2 = {x2; x ∈ A}. Such a set is a
preordering of A if MM ⊆ M . We do not exclude the case −1 ∈ M . The ring A contains a
smallest quadratic module, namely, the set

∑
A2 consisting of all sums of squares of elements

of A. The ring A itself is the biggest quadratic module of A. If g1, · · · , gr ∈ A, the set B =∑
A2 +(

∑
A2)g1 + · · ·+(

∑
A2)gr is the smallest quadratic module containing g1, · · · , gr. It is

called the quadratic module generated by g1, · · · , gr and it is denoted by QM(g1, · · · , gr). The

set C =

{∑
σϵgϵ; ϵ = (ϵ1, · · · , ϵr) ∈ {0, 1}r, σϵ ∈

∑
A2, gϵ =

∏r
i=1 g

ϵi
i

}
is the smallest

preordering of A containing g1, · · · , gr. It is called the preordering generated by g1, · · · , gr
and it is denoted by PO(g1, · · · , gr). It coincides with the quadratic module generated by the
products gϵ1

1 . . . gϵrr , where ϵi = 0, 1 and (ϵ1, . . . , ϵr) ̸= (0, . . . , 0). We have QM(g1, · · · , gr) ⊆
PO(g1, · · · , gr) and for all g ∈ A, QM(g) = PO(g). For example QM(1) = PO(1) =

∑
A2

and if 2 is a unit in A then QM(−1) = PO(−1) = A. The notion of quadratic module has been
studied extensively in [5] and a brief description of the quadratic modules in the ring R[[X]]
appears in Chapter 9, page 128. In [1], the authors consider an Euclidean field R and classify all
the quadratic modules in the ring R[[X]]. This is probably one of the very few nontrivial cases
where an overview of all quadratic modules of a ring can be given. In [1, Theorem 4.1], they
proved that every quadratic module of R[[X]] is a preordering. They showed in [1, Theorem 2.3]
that the partially ordered set of all monogenic (with one generator) quadratic modules has the
following diagram.

PO(−1) = A

� | �
PO(X) PO(−X2) PO(−X)

| � | � |
PO(X3) PO(−X4) PO(−X3)

| � | � |
PO(X5) PO(−X6) PO(−X5)

| � | � |
...

...
...

|
� �

PO(1) = A2
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Following the terminology used in [1], we call these chains of preorderings the left, central and
right columns of the diagram displayed above. We call PO(−1) = A the top and PO(1) = A2

the bottom of the diagram. Notice that the bottom is not a member of any column. In the present
note, we continue the study of the quadratic modules in the ring R[[X]]. A field R is called
Euclidean if it is formally real and for every x ∈ R either x or −x is a square. So it has a unique
(total) ordering with positive cone R2. Real closed fields are Euclidean. For example, R and the
algebraic closure Q of Q in R are Euclidean.

2 Results

Let A be a commutative ring with one and M a quadratic module of A. Then M is said to be
Archimedean if for any element f ∈ A there is n ∈ N such that n− f ∈ M . An ordered field R
is said to be Archimedean if for any positive element a ∈ R there is n ∈ N such that a ≤ n.

Theorem 2.1. Let R be an Euclidean field and A = R[[X]]. The following are equivalent
1. The field R is Archimedean.
2. All the quadratic modules of A are Archimedean.
3. The quadratic module A2 is Archimedean.

Proof. ′′(1) =⇒ (2)′′ Let f = a0 + a1X + . . . ∈ R[[X]] and M a quadratic module of A. If
a0 < 0 then −a0 = b2 with b ∈ R∗. By [1, Proposition 2.2], 0 − f = b2 − a1X − . . . ∈ A2 ⊆ M .
If a0 ≥ 0 there is n ∈ N such that a0 < n, so n− a0 = c2 with c ∈ R∗. By [1, Proposition 2.2],
n− f = c2 − a1X − . . . ∈ A2 ⊆ M .
′′(2) =⇒ (3)′′ Clear. ′′(3) =⇒ (1)′′ Let a ∈ R with a ≥ 0. Since R is Euclidean there is b ∈ R
such that a = b2 ∈ R2 ⊂ A2. But A2 is an archimedean quadratic module. Then there is n ∈ N
such that n− a ∈ A2. So n− a ∈ R2 and a ≤ n. 2
Example. All the quadratic modules of R[[X]] and Q[[X]] are Archimedean.

Remark 2.2. If R is an Euclidean non Archimedean field, then the only Archimedean quadratic
module of A = R[[X]] is A itself. Indeed, there is r ∈ R such that for all n ∈ N, n < r. So
n− r = −a2

n with an ∈ R∗. Let M be a quadratic module of R[[X]] and suppose that n− r ∈ M
for some n ∈ N. Then −1 = ( 1

an
)2(−a2

n) ∈ A2M ⊆ M and R[[X]] = PO(−1) ⊆ M .

Example. By [3, Theorem], the field R = R((T 1
∞ )) =

∞∪
n:1

R((T 1
n )) of Puiseux series with

coefficients in R is real closed and non Archimedean. All the proper quadratic modules of
R[[X]] are non Archimedean.

Let Q be a quadratic module of R[[X]]. If Q contains a monogenic quadratic module from
the left column of the diagram in the introduction, we denote the union of all these submodules
by Ql. Otherwise we put Ql = A2. We call Ql the left component of Q. In the same way we
define the central component Qc and the right component Qr of Q.

Theorem 2.3. Let R be an Euclidean field. The biggest proper quadratic module (preordering)
of R[[X]] is Q = R2 +XR[[X]].

Proof. First, note that Q = PO(X)+PO(−X)+PO(−X2) = QM(X,−X,−X2). Indeed, by
[1, Lemma 2.4] with A = R[[X]], we have

(
PO(X)+PO(−X)

)
+PO(−X2) = (A2 +AX)+

(A2 + AX2) = A2 + AX = R[[X]]2 + XR[[X]] = R2 + XR[[X]] = Q. Now, let Q′ be any
proper quadratic module of R[[X]]. Then Q′

g ⊆ PO(X), Q′
d ⊆ PO(−X) and Q′

c ⊆ PO(−X2).
By [1, Proposition 3.2], Q′ = Q′

g +Q′
d +Q′

c ⊆ Q. 2
Let A be a commutative ring with one. An ordering of A is a subset P of A such that

P + P ⊆ P , PP ⊆ P , P ∪ −P = A and P ∩ −P is a prime ideal of A.

Theorem 2.4. Let R be an Euclidean field. The only orderings of A = R[[X]] are PO(X) =
A2 +A2X , PO(−X) = A2 −A2X and Q = R2 +XR[[X]]. Moreover PO(X) ∩ −PO(X) =
PO(−X) ∩ −PO(−X) = (0) and Q ∩ −Q = XR[[X]] is the maximal ideal of R[[X]].
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Proof. 1) Since −Q = −R2 +XR[[X]] and R = R2 ∪ −R2, it is clear that Q ∪ −Q = R[[X]]
and Q ∩ −Q = XR[[X]]. Then Q is an ordering. We can also note that by [4, Theorem 5.1.3,
page 85], every proper preordering is contained in an ordering. By Theorem 2.3, Q must be an
ordering.
Now, let P = PO(X) = A2+A2X. An element of P ∩−P has the form f2+g2X = −h2−k2X
with f, g, h, k ∈ R[[X]]. Then f2 + h2 = −(g2 + k2)X. The left hand if it is nonzero, its order
is even and its first coefficient is positive. But the right hand if it is nonzero, its order is odd
and its first coefficient is negative. So f2 + h2 = g2 + k2 = 0 and since R((X)) is ordered then
f = g = h = k = 0 and P ∩−P = (0) a prime ideal of R[[X]]. Let 0 ̸= f ∈ R[[X]], f = aXdg2

with a ∈ R∗ and g ∈ R[[X]]. If a > 0, so a square and d is even then f ∈ A2 ⊆ P . If a > 0 and
d is odd then f ∈ A2X ⊆ P . If a < 0 and d is even then f ∈ −A2 ⊆ −P . If a < 0 and d is odd
then f ∈ −A2X ⊆ −P . We conclude that A = P ∪ −P and P is an ordering on A.
Let i : R[[X]] −→ R[[X]] be the automorphism introduced in [1, p. 76] and defined by
i(f(X)) = f(−X). Then PO(−X)) = i(PO(X)) is an ordering on R[[X]].
2) We will prove that PO(X), PO(−X) and Q are the only orderings of A. The prime spectrum
Spec(R[[X]]) = {(0), XR[[X]]}. The quotient ring R[[X]]/(0) ≃ R[[X]] has a quotient field
R((X)) with exactly two orderings, extending the unique ordering of R. One for which X > 0
and one for which X < 0. See [2, p. 11]. The quotient ring R[[X]]/XR[[X]] ≃ R is an
Euclidean field, with a single ordering. By [4, Proposition 5.1.1 page 83], the set of orderings of
R[[X]] is one to one with the set

{
(P, P̄ )

}
where P ∈ Spec(R[[X]]) and P̄ is an ordering on the

quotient field of R[[X]]/P . The second set is of cardinality 3. Then the only orderings of R[[X]]
are PO(X), PO(−X) and Q. 2

Remark 2.5. 1) It is well known that orderings on fields are maximal, which is not the case on
rings. See [4, Example 5.2 (2) page 86]. Theorem 2.3 gives another example. Indeed, PO(X)
and PO(−X) are strictly contained in R2 +XR[[X]].
2) The ordering R2 + XR[[X]] is the natural extension of the unique ordering of R to R[[X]],
defined by f(X) = a0 + a1X + . . . ≥ 0 if and only if a0 ≥ 0.
3) The domain R[[X]] has three orderings but its quotient field R((X)) only two orderings.

We close this note by the following

Proposition 2.6. Let K be a field which is not formally real with characteristic different from 2.
Then the only quadratic module of K[[X]] is K[[X]].

Proof. Let M be a quadratic module of K[[X]]. Then −1 ∈
∑

K2 ⊆
∑

K[[X]]2 ⊆ M . So
K[[X]] = QM(−1) ⊆ M . 2

Remark 2.7. Let K be a field of characteristic 2. Then K[[X]] has at least two quadratic modules

K[[X]] and
∑

K[[X]]2 = K[[X]]2 =
{ ∞∑

i:0

a2
iX

2i, ai ∈ K
}

.
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