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Abstract We present an historical account of the study of derivations, generalized deriva-
tions, n-derivations, generalized n-derivation and other kinds of derivations in near-rings, based
on the work of several authors. Moreover, recent results on semigroup ideals and generalized
n-derivations on these topics have been discussed in details. Examples of various notions have
also been included.

1 Introduction

The present paper is an attempt to present an up-to-date account of work on derivations and its
various invariants in the setting of near-rings. The work has been presented in a manner suit-
able for everybody who have some basic knowledge in near-ring theory. In order to make the
treatment as self-contained as possible, and to bring together all the relevant material in a single
paper, we have included several references. Some times, many results have been unified in a
single theorem. Proper references of almost all the results are given. Let N be non empty set,
equipped with two binary operations say ’+’ and ’.’. N is called a left near-ring if (i)(N ,+)
is a group (not necessarily abelian) (ii)(N , .) is a semigroup and (iii)x.(y + z) = x.y + x.z
for all x, y, z ∈ N . Similarly a right near-ring can also be defined. A left near-ring N is called
zero-symmetric if 0.x = 0 for all x ∈ N ( recall that in a left near ring x.0 = 0 for all x ∈ N ).
Similar remarks hold for a right near-ring also. For a natural example of a near-ring, let (G,+)
be a group (not necessarily abelian). Consider S, the set of all mappings from G to G. Then S is
a zero-symmetric right near-ring with regard to the operations ′+′ and ′.′ defined as below:

(f + g)(x) = f(x) + g(x) for all x ∈ G,

(fg)(x) = f(g(x))for all x ∈ G.

where f, g ∈ EndG. It is to be noted that it is not a left near-ring.

Example 1.1. Let (C,+) be the usual group of complex numbers with regard to ordinary addition
of complex numbers. Let us define ′∗′ in C as following a∗b = |a|b for all a, b ∈ C. Then (C,+, ∗)
is a zero-symmetric left near-ring which is not a right near-ring. If ′∗′ is defined as a∗b = a|b| for
all a, b ∈ C. Then it can be easily seen that (C,+, ∗) is a zero-symmetric right near-ring which is
not a left near- ring.

Throughout the paper unless otherwise stated N will denote a zero-symmetric left near-ring.
N is called 3-prime near-ring if xNy = {0} implies x = 0 or y = 0. It is called semiprime
near-ring if xNx = {0} implies x = 0. Near-ring N is called n ( being an integer greater than
1) torsion free if nx = 0 implies x = 0. The symbol Z will represent the multiplicative center
of N i.e., Z = {x ∈ N | xy = yx for all y ∈ N}. As usual, for any x, y ∈ N , the symbol [x, y]
will denote the commutator xy − yx. (x, y) will indicate the additive commutator x+ y − x− y
and x ◦ y will represent the anti-commutator xy+ yx. The symbol C will represent the set of all
additive commutators of near- ring N , that is C = {x+ y − x− y | x, y ∈ N}. For terminology
one can see Pilz [38].
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2 Derivations in Near-Rings

The notion of derivation in rings is quite old and plays a significant role in various branches of
mathematics. It has got a tremendous development when in 1957, Posner [39] established two
very striking results on derivations in prime rings. Also there has been considerable interest in
investigating commutativity of rings, more often that of prime ring and semiprime rings admit-
ting suitable constrained derivations. Derivations in prime rings and semiprime rings have been
studied by several algebraists in various directions. Motivated by the concept of derivation in
rings Bell and Mason [24] introduced the concept of derivation in near-rings as following.

Definition 2.1. A derivation ′d′ on N is defined to be an additive mapping d : N → N satisfying
the product rule d(xy) = xd(y) + d(x)y for all x, y ∈ N .

Example 2.2. Let N = N1
⊕

N2, where N1 is a zero symmetric left near-ring and N2 is a ring
having derivation δ. Then d : N −→ N defined by d(x, y) = (0, δ(y)) for all x, y ∈ N is a
nonzero derivation of N , where N is a zero-symmetric left near- ring.

For an example of a derivation on noncommutative near-ring one can consider the following:

Example 2.3. Let us consider (C,+, ∗) where ′∗′ is defined as x ∗ y = |x|y for all x, y ∈ C, then
it can be easily seen that (C,+, ∗) is a zero-symmetric left near-ring which is not a right near

-ring. Assume N =

{(
a b

0 0

)
|a, b ∈ C

}
, then N is a zero-symmetric left near-ring which is

not a right near-ring. Define d : N −→ N as d

(
a b

0 0

)
=

(
0 a

0 0

)
. Then d is a non-zero

derivation on N .

In a left near-ring, right distributive property does not hold in general, the following lemmas
plays a vital role in further study. For any a, b, c ∈ N expanding d(a(bc)) and d((ab)c) and
comparing the relations so obtained we get the following (for reference see ([24], Lemma 1)).

Lemma 2.4. Let d be an arbitrary derivation on a near-ring N . Then N satisfies the following
partial distributive law:

(ad(b) + d(a)b)c = ad(b)c+ d(a)bc for all a, b, c ∈ N .

The study of derivation was initiated by H. E. Bell and G. Mason [24], pertaining to the 3-prime
near-rings and semiprime near-rings. Some basic properties of 3-prime near-rings are given
below which are helpful in the study of derivations in 3-prime near-rings:

• If z ∈ Z\{0}, then z is not a zero divisor.

• If Z contains a nonzero element z for which z + z ∈ Z, then (N ,+) is abelian.

• Let d be a nonzero derivation on N . Then xd(N ) = {0} implies x = 0 and d(N )x = {0}
implies x = 0.

• If N is 2-torsion free and d is a derivation on N such that d2 = 0, then d = 0.

In the year 1984 X.K.Wang ([41], Proposition 1) gave an equivalent definition of derivation on a
near-ring N as below and also obtained partial commutativity of addition and partial distributive
law in the near-ring N .

Definition 2.5. Let d be an arbitrary additive endomorphism of N . Then d is a derivation on N
if d(xy) = d(x)y + xd(y) for all x, y ∈ N .

Lemma 2.6. Let d be a derivation on N . Then N satisfies the following partial distributive law:

(d(x)y + xd(y))z = d(x)yz + xd(y)z for all x, y, z ∈ N .

Lemma 2.7. Let N be a near-ring with center Z, and let d be a derivation on N . Then d(Z) ⊆ Z.
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Major study in this area was carried out by Bell and Mason [24], Beidar, Fong and Wang [16]
etc. which consists of commutativity of addition and multiplication of 3-prime near-ring and
semiprime near-ring with constrained derivations. It has been also studied that under suitable
constrained derivations, 3-prime near-rings behave like rings.

Now we list several commutativity theorems, obtained by above authors for 3-prime near-rings,
admitting suitable constrained derivations as below.

Results given below have been proved by Bell and Mason [24].

Theorem 2.8. If a 3-prime near-ring N , admits a non trivial derivation satisfying either of the
following properties

(i) d(N ) ⊆ Z,

(ii) [d(x), d(y)] = 0 for all x, y ∈ N ,

then (N ,+) is abelian and if N is 2-torsion free as well, then N is a commutative ring.

Following results concerning commutativity of near-ring have been proved by Beidar, Fong and
Wang [16]

Theorem 2.9. Let N be 3-prime near-ring which admits derivations d1 and d2. Suppose N sat-
isfies any one of the following properties:

(i) d2
1 ̸= 0 ̸= d2

2 and d1(x)d2(y) = d2(y)d1(x) for all x, y ∈ N ,

(ii) 2N ̸= 0, d1 ̸= 0, d2 ̸= 0 and d1(x)d2(y) = d2(y)d1(x) for all x, y ∈ N .

Then N is a commutative ring.

Theorem 2.10. Let N be 3-prime near-ring with nonzero derivations d1 and d2 such that d1(x)d2(y) =
−d2(x)d1(y) for all x, y ∈ N . Then (N ,+) is abelian.

Very recently Boua and Oukhtite [25] investigated some differential identities which force a
3-prime near-ring to be a commutative ring and also gave the suitable examples, proving the
necessity of the 3-primeness condition.

Theorem 2.11. ([25], Theorem 2.2-2.3). Let N be a 3-prime near-ring. Suppose that N admits
a nonzero derivation d satisfying the following property, i.e; d([x, y]) = ±[x, y] for all x, y ∈ N .
Then N is a commutative ring.

Remark 2.12. The following example shows that the 3-primeness in the hypothesis of the above
theorem is essential even in the case of arbitrary rings.

Example 2.13. Let R be a commutative ring, which is not a zero ring and consider N ={(
0 0
x y

)
|0, x, y ∈ R

}
. If we define d : N −→ N by d

(
0 0
x y

)
=

(
0 0
x 0

)
, then

it is straightforward to check that d is a nonzero derivation of N . On the other hand, if a =(
0 0
r 0

)
, where 0 ̸= r, then aNa = {0} which proves that N is not 3-prime. Moreover, d

satisfies the condition d[A,B]) = [A,B] for all A,B ∈ N but N is not a commutative ring.

H. E. Bell, A. Boua, L. Oukhtite [22] studied the commutativity of 3-prime near-rings with
derivations, satisfying certain differential identities on 3-prime near-rings.

Theorem 2.14. ([22],Theorem 2.2-2.3). Let N be a 2-torsion free 3-prime near-ring. If N
admits a nonzero derivation d satisfying any one of the following properties:
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(i) [d(x), y] = [x, d(y)] for all x, y ∈ N ,

(ii) [d(x), y] = ±[d(x), d(y)] for all x, y ∈ N ,

(iii) [x, d(y)] = [d(x), d(y)] for all x, y ∈ N ,

(iv) [x, d(y)] = −[d(x), y] for all x, y ∈ N ,

then N is a commutative ring.

3 Generalized Derivations in Near-Rings

Matej Bresar [27] introduced the concept of generalized derivation in associative rings. This
concept covers the concept of derivation already known to us for ring theory. Later a lot of study
was done by Hvala, Golbasi, T. K. Lee etc. about generalized derivations in the setting of prime
rings and semiprime rings and several known results for derivation in prime and semiprime rings
were extended in the setting of generalized derivations in rings by above authors.

Motivated by the above concept, Golbasi[28] introduced the concept of generalized derivations
in near-rings as given below and studied this in the setting of 3-prime and semi prime near-rings.
Later in 2008, H. E. Bell[19] also studied this notion and derived some commutativity theorems
of 3-prime near-rings equipped with generalized derivation. The above authors also generalized
the several known results of derivations in 3-prime and semiprime near-rings.

Definition 3.1. Let N be a near-ring. An additive mapping f : N −→ N is called

(i) a right generalized derivation of N if there exists a derivation d of N such that f(xy) =
f(x)y + xd(y) for all x, y ∈ N .

(ii) a left generalized derivation of N if there exists a derivation d of N such that f(xy) =
d(x)y + xf(y) for all x, y ∈ N .

(iii) a generalized derivation of N if there exists a derivation d of N such that f(xy) = f(x)y+
xd(y) for all x, y ∈ N and f(xy) = d(x)y + xf(y) hold for all x, y ∈ N .

Example 3.2. Let S be any zero-symmetric left near-ring. Consider

N1 =

{(
0 a

0 b

)
|0, a, b ∈ S

}
. Then N1 is a zero-symmetric left near-ring with regard to

the matrix addition and multiplication. Define d, f : N1 −→ N1 as following d

(
0 a

0 b

)
=(

0 a

0 0

)
and f

(
0 a

0 b

)
=

(
0 0
0 b

)
. It can be easily seen that f is a right generalized

derivation of N1 with associated derivation d of N1 but it is not a left generalized derivation of
N1 with associated derivation d of N1.

Example 3.3. Consider N2 =

{(
a b

0 0

)
|0, a, b ∈ S

}
. Then N2 is a zero-symmetric left

near-ring with regard to the matrix addition and multiplication.. Define d, f : N2 −→ N2 as

following d

(
a b

0 0

)
=

(
0 a

0 0

)
and f

(
a b

0 0

)
=

(
0 b

0 0

)
. It can be noted that f

is a left generalized derivation of N2 with associated derivation d of N2 but f is not a right
generalized derivation of N2 with associated derivation d of N2.

Example 3.4. Consider N3 =


 0 x y

0 0 0
0 0 z

 |x, y, z ∈ S

 . Here N3 is a zero-symmetric left

near-ring with regard to the matrix addition and multiplication. Define d, f : N3 −→ N3 as
below,
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d

 0 x y

0 0 0
0 0 z

 =

 0 x 0
0 0 0
0 0 0

 and f

 0 x y

0 0 0
0 0 z

 =

 0 0 0
0 0 0
0 0 0

 . Then it can be

shown that f is a generalized derivation of N3 with associated derivation d of N3 .

Since in a left near-ring addition need not be commutative in general and right distributive prop-
erty does not hold. Gölbasi [28] proved some partial commutative law of addition and partial
right distributive law in the setting of left near-rings equipped with generalized derivation which
are given below ([28], Lemma 2.2-2.3):

• If f is a right generalized derivation of N with associated derivation d, then f(xy) =
xd(y) + f(x)y for all x, y ∈ N .

• If f is a left generalized derivation of N with associated derivation d, then f(xy) = xf(y)+
d(x)y for all x, y ∈ N .

• If f is a right generalized derivation of N with associated derivation d, then (f(x)y +
xd(y))z = f(x)yz + xd(y)z for all x, y, z ∈ N .

• If f is a generalized derivation of N with associated derivation d, then (d(x)y+xf(y))z =
d(x)yz + xf(y)z for all x, y, z ∈ N .

4 On n- derivations in near-rings

Recently K. H. Park [36] introduced the notion of an n-derivation and symmetric n-derivation,
where n is any positive integer in rings and extended several known results, earlier in the setting
of derivations in prime rings and semiprime rings. Motivated by the above notion in rings the
authors [5] introduced the notion of n-derivations in the setting of near-rings and generalized
several known results obtained earlier in the setting of 3-prime near-rings and semiprime near-
rings.

Definition 4.1. A map D : N ×N × · · · × N︸ ︷︷ ︸
n−times

−→ N is said to be permuting if the equation

D(x1, x2, · · · , xn) = D(xπ(1), xπ(2), · · · , xπ(n)) holds for all x1, x2, · · · , xn ∈ N and for every
permutation π ∈ Sn, where Sn is the permutation group on {1, 2, · · · , n}. A map d : N → N
defined by d(x) = D(x, x, · · · , x) for all x ∈ N where D : N ×N × · · · × N︸ ︷︷ ︸

n−times

→ N is a

permuting map, is called the trace of D.

Definition 4.2. Let n be any fixed positive integer. An n-additive (i.e.; additive in each argu-
ment) mapping D : N × N × · · · × N −→ N is called an n-derivation on N if the relations
D(x1, x2, · · · , xi−1, xix

′

i, xi+1, · · · , xn) = D(x1, x2, · · · , xi−1, xi, xi+1, · · · , xn)x
′

i +

xiD(x1, x2, · · · , xi−1, x
′

i, xi+1, · · · , xn) hold for all x1, x2, · · · , xi−1, xi, x
′

i, xi+1, · · · , xn ∈ N ,
i = 1, 2, 3, · · · , n. If in addition, D is a permuting map then all the above conditions are equiva-
lent and in this case D is called a permuting n-derivation of N i.e.; a permuting n-derivation of
N can also be defined as below.
An n-additive permuting mapping D : N×N×· · ·×N −→ N is called a permuting n-derivation
of N if D(x1, x2, · · · , xixi

′, · · · , xn) = D(x1, x2, · · · , xi, · · · , xn)xi
′+xiD(x1, x2, · · · , xi

′, · · · , xn)
holds for all x1, x2, · · · , xi, xi

′, · · · , xn ∈ N .

Example 4.3. Suppose that N is a commutative near-ring. Then

R =

{(
a b

0 0

)
| a, b, 0 ∈ N

}
is a non-commutative near-ring with regard to matrix addition and matrix multiplication. Define
D : R×R× · · · ×R︸ ︷︷ ︸

n−times

−→ R such that

D

((
a1 b1

0 0

)
,

(
a2 b2

0 0

)
, · · · ,

(
an bn

0 0

))
=

(
0 a1a2 · · · an
0 0

)
.
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It is easy to see that D is a permuting n-derivation of near-ring R.

Remark 4.4. By definition of n-derivation it is clear that a permuting n-derivation of N is also an
n-derivation but the converse need not be true in general. For justification focus on the following
example.

Example 4.5. Let R be a noncommutative ring and N1 a zero-symmetric left near-ring. Con-
sider S = R×N1. Then it is clear that S is a zero symmetric left near-ring with regard to matrix
addition and multiplication. Now suppose that

N =

{(
(a, b) (a

′
, b

′
)

(0, 0) (0, 0)

)
| (a, b), (a

′
, b

′
), (0, 0) ∈ S

}
.
It can be easily checked that N is a non-commutative zero-symmetric left near-ring with respect
to matrix addition and matrix multiplication. Define D : N ×N × · · · × N −→ N such that

D

((
(a1, b1) (a

′

1, b
′

1)

(0, 0) (0, 0)

)
,

(
(a2, b2) (a

′

2, b
′

2)

(0, 0) (0, 0)

)
, · · · ,

(
(an, bn) (a

′

n, b
′

n)

(0, 0) (0, 0)

))

=

(
(0, 0) (a1a2 · · · an, 0)
(0, 0) (0, 0)

)
.

It can be seen that D is an n-derivation of N , however it is not a permuting n-derivation of N .

Remark 4.6. In the above example, if we take R as a commutative ring, then D becomes a
permuting n-derivation of N also. Since N is not additively commutative, it is always difficult
to find the near-ring analogue of ring theoretic results. The following lemma felicitate our study
for n-derivations in near-rings.

Lemma 4.7. Let N be a near-ring. Then D is a permuting n-derivation of N if and only if
D(x1x

′

1, x2, · · · , xn) = x1D(x
′

1, x2, · · · , xn) +D(x1, x2, · · · , xn)x
′

1 for all x1, x1
′, x2, · · · ,

xn ∈ N .

In a left near-ring N , right distributive law does not hold in general, however, the following
partial distributive properties in N have been obtained in ([5], Lemma 2.4-2.6).

Theorem 4.8. Let N be a near-ring. Let D be a permuting n-derivation of N and d be the trace
of D. Then

(i) {D(x1, x2, · · · , xn)x
′

1 + x1D(x
′

1, x2, · · · , xn)}y =

D(x1, x2 · · · , xn)x
′

1y + x1D(x
′

1, x2, · · · , xn)y, for every x1, x
′

1, · · · , xn, y ∈ N .

(ii) {x1D(x
′

1, x2, · · · , xn) +D(x1, x2, · · · , xn)x1
′}y =

x1D(x
′

1, x2, · · · , xn)y +D(x1, x2, · · · , xn)x1
′y, for every x1, x

′

1, · · · , xn, y ∈ N .

(iii) {d(x)x1 + xD(x, x, · · · , x, x1)}y =

d(x)x1y + xD(x, x, · · · , x, x1)y, for every x, x1, x
′

1, · · · , xn, y ∈ N .

(iv) {xD(x, x, · · · , x, x1) + d(x)x1}y =

xD(x, x, · · · , x, x1)y + d(x)x1y for every x, x1, x
′

1, · · · , xn, y ∈ N .

(v) if N is 3-prime, D ̸= 0, and D(N ,N , · · · ,N )x = {0} where x ∈ N then x = 0.

(vi) if N is 3-prime, D ̸= 0, and xD(N ,N , · · · ,N ) = {0} where x ∈ N , then x = 0.

(vii) if N is 3-prime, D ̸= 0, then D(C,C, · · · , C) ̸= {0}, where C ̸= {0}.

Recently Öztürk and Jun ([35], Lemma 3.1) proved that in a 2-torsion free 3-prime near-ring
which admits a symmetric bi-additive mapping D if the trace d of D is zero, then D = 0.
Further, this result was generalized by K.H. Park and Y.S. Jun ([37], Lemma 2.2) for permuting
tri-additive mapping in 3!-torsion free 3-prime near-ring. We have extended this result, as below,
for permuting n-additive mapping in a n!-torsion free 3-prime near-ring under some constraints.



ON DERIVATION IN NEAR-RINGS: A SURVEY 117

Theorem 4.9. ([5], Theorem 3.1). Let N be n!-torsion free 3-prime near-ring and D be a
permuting n-additive mapping of N such that D(N ,N , · · · ,N ) ⊆ Z. If d(x) = 0, for all
x ∈ N , then D = 0.

In 1987 H.E.Bell([17], Theorem 2) proved that if a 2-torsion free zero-symmetric 3-prime near-
ring N admits a non zero derivation D for which D(N ) ⊆ Z, then N is a commutative ring.
Further, this result was generalized by K.H.Park and Y.S. Jun ([37], Theorem 3.1) in the year
2010 for permuting tri-derivation, who showed that if 3!-torsion free zero symmetric 3-prime
near-ring N admits a nonzero permuting tri-derivation D for which D(N ,N ,N ) ⊆ Z, then
N is a commutative ring. The following result shows that 2-torsion free and 3!-torsion free
restrictions in the above results used by Bell and Park are superfluous. In fact, for permuting n-
derivation in a 3-prime near-ring N we have obtained the following (see ([5], Theorem 3.2-3.4)):

Theorem 4.10. Let D be a nonzero permuting n-derivation of 3-prime near-ring N such that
D(N ,N , · · · ,N ) ⊆ Z. Then N is a commutative ring.

Theorem 4.11. Let N be a 3-prime near-ring and D1 and D2 be any two nonzero permuting n-
derivations of N . If [D1(N ,N , · · · ,N ), D2(N ,N , · · · ,N )] = {0}, then (N ,+) is an abelian
group.

Theorem 4.12. Let N be a 3-prime near-ring with nonzero permuting n-derivations D1 and D2
such that

D1(x1, x2, · · · , xn)D2(y1, y2, · · · , yn) = −D2(x1, x2, · · · , xn)D1(y1, y2, · · · , yn)

for all x1, x2, · · · , xn, y1, y2, · · · , yn ∈ N . Then (N ,+) is an abelian group.

Corollary 4.13. ([16], Lemma 2.1). Let N be a 3-prime near-ring with nonzero derivations d1
and d2 such that d1(x)d2(y) = −d2(x)d1(y) for all x, y ∈ N . Then (N ,+) is an abelian group.

Theorem 4.14. ([5], Theorem 3.7). Let N be a 3-prime near-ring and D be any nonzero per-
muting n-derivation of N . If K = {a ∈ N | [D(N ,N , · · · ,N ), a] = {0}},then

(i) a ∈ K implies either a ∈ Z or d(a) = 0,

(ii) d(K) ⊆ Z,

(iii) K is a semigroup under multiplication,

(iv) If there exists an element a ∈ K for which d(a) ̸= 0 and D(a2, a, · · · , a) ∈ Z, then (N ,+)
is an abelian group.

Theorem 4.15. ([5], Theorem 3.8). Let N be a 3-prime near-ring which admits a nonzero per-
muting n-derivation D such that D(C,C, · · · , C) ⊆ Z. Then N is a commutative ring, where
C ̸= {0}.

5 On Generalized n-Derivations in Near-rings

Motivated by the concept of generalized derivation in rings and near-rings the authors [10] gen-
eralized the concept of n-derivation of near-rings by introducing the notion of generalized n-
derivations in near-rings.

Definition 5.1. Let n be a fixed positive integer. An n-additive mapping F : N×N×· · ·×N −→
N is called a right generalized n-derivation of N with associated n-derivation D if the relations
F (x1, x2, · · · , xi−1, xix

′

i, xi+1, · · · , xn)

= F (x1, x2, · · · , xi−1, xi, xi+1, · · · , xn)x
′

i + xiD(x1, x2, · · · , xi−1, x
′

i, xi+1, · · · , xn)

hold for all x1, x2, · · · , xi−1, xi, x
′

i, xi+1, · · · , xn ∈ N , i = 1, 2, 3, · · · , n. If in addition, both
F and D are permuting maps then all the above conditions are equivalent and in this case F is
called a permuting right generalized n-derivation of N with associated permuting n-derivation
D. An n-additive mapping F : N ×N ×· · ·×N −→ N is called a left generalized n-derivation
of N with associated n-derivation D if the relations
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F (x1, x2, · · · , xi−1, xix
′

i, xi+1, · · · , xn)

= D(x1, x2, · · · , xi−1, xi, xi+1, · · · , xn)x
′

i + xiF (x1, x2, · · · , xi−1, x
′

i, xi+1, · · · , xn)

hold for all x1, x2, · · · , xi−1, xi, x
′

i, xi+1, · · · , xn ∈ N , i = 1, 2, 3, · · · , n. If in addition, both
F and D are permuting maps then all the above conditions are equivalent and in this case F
is called a permuting left generalized n-derivation of N with associated permuting n-derivation
D. An n-additive mapping F : N × N × · · · × N −→ N is called a generalized n-derivation
of N with associated n-derivation D if it is both a right generalized n-derivation as well as a
left generalized n-derivation of N with associated n-derivation D. If in addition, both F and D
are permuting maps then F is called a permuting generalized n-derivation of N with associated
permuting n-derivation D (see [10] for further reference). If N is a commutative ring, then it is
trivial to see that the set of all left generalized n-derivations of N is equal to the set of all right
generalized n-derivations of N .

Example 5.2. (i) Let S be a commutative near-ring. For an example of left generalized n-
derivation, consider

N1 =

{(
a b

0 0

)
| a, b, 0 ∈ S

}
is a noncommutative zero-symmetric left near-ring with re-

gard to matrix addition and matrix multiplication.
Define D1 : N1 ×N1 × · · · × N1︸ ︷︷ ︸

n−times

−→ N1 such that

D1

((
a1 b1

0 0

)
,

(
a2 b2

0 0

)
, · · · ,

(
an bn

0 0

))
=

(
0 a1a2 · · · an
0 0

)
.

It is easy to see that D1 is an n-derivation of N1. Define F1 : N1 ×N1 × · · · × N1 −→ N1 such
that

F1

((
a1 b1

0 0

)
,

(
a2 b2

0 0

)
, · · · ,

(
an bn

0 0

))
=

(
0 b1b2 · · · bn
0 0

)
.

It can be easily verified that F1 is a left generalized n-derivation of N1 with associated n-
derivation D1 but not a right generalized n-derivation of N1 with associated n-derivation D1.
(ii) For an example of right generalized n-derivation, consider

N2 =

{(
0 c

0 d

)
| c, d, 0 ∈ S

}
. It can be easily shown that N2 is a non-commutative zero

symmetric left near-ring with regard to matrix addition and matrix multiplication. Define D2 :
N2 ×N2 × · · · × N2︸ ︷︷ ︸

n−times

−→ N2 such that

D2

((
0 c1

0 d1

)
,

(
0 c2

0 d2

)
, · · · ,

(
0 cn

0 dn

))
=

(
0 c1c2 · · · cn
0 0

)
.

It is easy to see that D2 is an n-derivation of N2. Define F2 : N2 ×N2 × · · · × N2 −→ N2 such
that

F2

((
0 c1

0 d1

)
,

(
0 c2

0 d2

)
, · · · ,

(
0 cn

0 dn

))
=

(
0 0
0 d1d2 · · · dn

)
.

It can be easily verified that F2 is a right generalized n-derivation of N2 with associated n-
derivation D2 but not a left generalized n-derivation of N2 with associated n-derivation D2.
(iii) For an example of generalized n-derivation, consider

N3 =


 0 x y

0 0 0
0 0 z

 | x, y, z, 0 ∈ S

 . It can be easily seen that N3 is a non-commutative

zero symmetric left near-ring with regard to matrix addition and matrix multiplication. Define
D3 : N3 ×N3 × · · · × N3︸ ︷︷ ︸

n−times

−→ N3 such that

D3


 0 x1 y1

0 0 0
0 0 z1

 ,

 0 x2 y2

0 0 0
0 0 z2

 , · · · ,

 0 xn yn

0 0 0
0 0 zn


 =

 0 x1x2 · · ·xn 0
0 0 0
0 0 0

 .
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It is easy to see that D3 is an n-derivation of N3. Define F3 : N3 ×N3 × · · · × N3 −→ N3 such
that

F3


 0 x1 y1

0 0 0
0 0 z1

 ,

 0 x2 y2

0 0 0
0 0 z2

 , · · · ,

 0 xn yn

0 0 0
0 0 zn


 =

 0 0 0
0 0 0
0 0 0

 .

It can be easily verified that F3 is a generalized n-derivation (i.e.; both left generalized n-
derivation and right generalized n-derivation) of N3 with associated n-derivation D3.

In a left near-ring additive group (N ,+) need not be abelian and right distributive property
does not hold in general. The authors ([10], Lemma 2.6-2.11)proved the following results for
generalized n-derivations on near-rings which allows limited additive abelian property as well
as limited distributive properties:

• F is a right generalized n-derivation of N with associated n-derivation D if and only if
F (x1, x2, · · · , xix

′

i, · · · , xn) = xiD(x1, x2, · · · , x
′

i, · · · , xn) +

F (x1, x2, · · · , xi, · · · , xn)x
′

i hold for all x1, , x2, · · · , xi, x
′

i, · · ·xn ∈ N ,
i = 1, 2, · · · , n.

• If N admits a right generalized n-derivation F with associated n-derivation D of N , then
{F (x1, x2, · · · , xi, · · · , xn)x

′

i + xiD(x1, x2, · · · , x
′

i, · · · , xn)}y =

F (x1, x2, · · · , xi, · · · , xn)x
′

iy + xiD(x1, x2, · · · , x
′

i, · · · , xn)y, hold for all
x1, , x2, · · · , xi, x

′

i, · · · , xn, y ∈ N , i = 1, 2, · · · , n.
• If N admits a right generalized n-derivation F with associated n-derivation D of N , then
{xiD(x1, x2, · · · , x

′

i, · · · , xn) + F (x1, x2, · · · , xi, · · · , xn)x
′

i}y =

xiD(x1, x2, · · · , x
′

i, · · · , xn)y + F (x1, x2, · · · , xi, · · · , xn)x
′

iy hold for all
x1, , x2, · · · , xi, x

′

i, · · · , xn, y ∈ N , i = 1, 2, · · · , n.
• F is a left generalized n-derivation of N with associated n-derivation D if and only if
F (x1, x2, · · · , xix

′

i, · · · , xn) = xiF (x1, x2, · · · , x
′

i, · · · , xn) +

D(x1, x2, · · · , xi, · · · , xn)x
′

i, hold for all x1, , x2, · · · , xi, x
′

i, · · ·xn ∈ N ,
i = 1, 2, · · · , n.

• If N admits a generalized n-derivation F with associated n-derivation D of N , then
{D(x1, x2, · · · , xi, · · · , xn)x

′

i + xiF (x1, x2, · · · , x
′

i, · · · , xn)}y =

D(x1, x2, · · · , xi, · · · , xn)x
′

iy + xiF (x1, x2, · · · , x
′

i, · · · , xn)y, hold for all
x1, , x2, · · · , xi, x

′

i, · · · , xn, y ∈ N , i = 1, 2, · · · , n.
• If N admits a generalized n-derivation F with associated n-derivation D of N , then
{xiF (x1, x2, · · · , x

′

i, · · · , xn) +D(x1, x2, · · · , xi, · · · , xn)x
′

i}y =

xiF (x1, x2, · · · , x
′

i, · · · , xn)y +D(x1, x2, · · · , xi, · · · , xn)x
′

iy hold for all
x1, , x2, · · · , xi, x

′

i, · · · , xn, y ∈ N , i = 1, 2, · · · , n.

Recently Öznur Gölbasi([28], Theorem 2.6) proved that if N is a 3-prime near-ring with a
nonzero generalized derivation f such that f(N ) ⊆ Z, then (N ,+) is an abelian group. More-
over if N is 2-torsion free, then N is a commutative ring. The following result shows that
"2-torsion free restriction" in the above result used by Öznur Gölbasi is superfluous. In fact, for
generalized n-derivation in a prime near-ring N , we have obtained the following.

Theorem 5.3. ([10], Theorem 3.1). Let N be a 3-prime near-ring admitting a nonzero general-
ized n-derivation F with associated n-derivation D of N . If F (N ,N , · · · ,N ) ⊆ Z, then N is a
commutative ring.

Corollary 5.4. ([5], Theorem 3.2). Let N be a 3-prime near-ring admitting a nonzero permuting
n-derivation D such that D(N ,N , ...,N ) ⊆ Z, then N is a commutative ring.

Very recently Öznur Gölbasi ([30], Theorem 3.1) proved that if N is a semiprime near-ring and
f is a nonzero generalized derivation on N with an associated derivation d such that f(x)y =
xf(y) for all x, y ∈ N , then d = 0. While proving the theorem it has been assumed that f is a
right generalized derivation of N with associated derivation d. We have extended this result in
the setting of generalized n-derivation. In fact we proved the following :
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Theorem 5.5. ([10], Theorem 3.10). Let N be a semiprime near-ring admitting a generalized n-
derivation F with associated n-derivation D of N . If F (x1, x2, · · · , xn)y1 = x1F (y1, y2, · · · , yn)
for all x1, x2, · · · , xn, y1, y2, · · · , yn ∈ N , then D = 0.

Corollary 5.6. ([5], Theorem 3.6). Let N be a semiprime near-ring and D an n-derivation of
N . If D(x1, x2, · · · , xn)y1 = x1D(y1, y2, · · · , yn), for all x1, x2, · · · , xn, y1, y2,
· · · , yn ∈ N , then D = 0.

Theorem 5.7. ([10], Theorem 3.13). Let N be a 3-prime near-ring admitting a generalized n-
derivation F with associated n-derivation D of N such that D(Z,N , · · · ,N ) ̸= {0}. If G :
N ×N × · · ·N −→ N is a map such that
[F (N ,N , · · · ,N ), G(N ,N , · · · ,N )] = {0}, then G(N ,N , · · · ,N ) ⊆ Z.

Theorem 5.8. ([10], Theorem 3.14). Let N be a 3-prime near-ring admitting a generalized n-
derivation F with associated n-derivation D of N such that D(Z,N , · · · ,N ) ̸= {0}. If G is a
nonzero generalized n-derivation of N such that
[F (N ,N , · · · ,N ), G(N ,N , · · · ,N )] = {0}, then N is a commutative ring.

Theorem 5.9. ([10], Theorem 3.16). Let F1 and F2 be generalized n-derivations of 3-prime
near-ring N with associated nonzero n-derivations D1 and D2 of N respectively such that
[F1(N ,N , · · · ,N ), F2(N ,N , · · · ,N )] = {0}. Then (N ,+) is an abelian group.

Corollary 5.10. ([5],Theorem 3.3). Let N be a 3-prime near-ring and D1, D2 be any two
nonzero permuting n-derivations of N . If [D1(N ,N , · · · ,N ), D2(N ,N , · · · ,N )] = {0}, then
(N ,+) is an abelian group.

6 Semigroup ideals and generalized n-derivations in near-rings

A nonempty subset A of N is called semigroup left ideal (resp. semigroup right ideal) if NA ⊆ A
( resp. AN ⊆ A ) and if A is both a semigroup left ideal and a semigroup right ideal, it will
be called a semigroup ideal. Recently many authors have studied commutativity of addition and
ring behavior of 3-prime near-rings satisfying certain properties and identities involving deriva-
tions and generalized derivations on semigroup ideals ( see [2],[18],[32][33], where further ref-
erences can be found ). In the present section we study the commutativity of addition and ring
behavior of 3-prime near-rings satisfying certain properties and identities involving generalized
n-derivations on semigroup ideals. In fact, the results presented in this section generalize, extend,
compliment and improve several results obtained earlier on derivations, generalized derivations,
permuting n-derivations and generalized n-derivations for 3-prime near-rings; for example The-
orem 1.2 of [2], Theorems 3.2−3.4&3.7 of [5], Theorems 3.1, 3.11, 3.15, 3.16 of [10], Theorems
3.2 − 3.3 of [18] etc.- to mention a few only. We begin with the following theorem obtained in
([12], Theorem 3.1).

Theorem 6.1. Let N be a 3-prime near-ring and A1,A2, ...,An be nonzero semigroup ideals of
N . If it admits a nonzero generalized n-derivation F with associated n-derivation D of N such
that F (A1,A2, ...,An) ⊆ Z, then N is a commutative ring.

Corollary 6.2. ([10], Theorem 3.1). Let N be a 3-prime near-ring admitting a nonzero general-
ized n-derivation F with associated n-derivation D of N . If F (N ,N , · · · ,N ) ⊆ Z, then N is a
commutative ring.

The following example demonstrates that N to be 3-prime is essential in the hypothesis of the
above theorem.

Example 6.3. ([12], Example 3.1). Let Z be the usual ring of integers and (C,+, ∗) be the left
near-ring of complex numbers. Here ‘∗’ is defined by z1 ∗ z2 = |z1|.z2 for all z1, z2 ∈ C, where
‘+’ and ‘.’ denote the usual addition and multiplication of complex numbers. Assume N = Z×C
and A1 = m1Z×{0},A2 = m2Z×{0}, · · · ,An = mnZ×{0}, where m1,m2, · · · ,mn are differ-
ent positive integers. Then it can be easily verified that N is a zero-symmetric left near-ring with
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regard to componentwise addition and multiplication, having A1,A2, · · · ,An its nonzero semi-
group ideals. Define F : N ×N ×· · ·×N −→ N such that F ((a1, z1), (a2, z2), · · · , (an, zn)) =
(λa1a2 · · · an, 0), where λ is any integer. It is easy to show that N is a semiprime near-ring but
not a 3-prime near-ring and F is a nonzero generalized n-derivation of N with associated n-
derivation D = 0, the zero map from N ×N × · · · ×N to N such that F (A1,A2, · · · ,An) ⊆ Z.
However, N is not a commutative ring.

Theorem 6.4. ([12], Theorem 3.2). Let N be a 3-prime near-ring and A1,A2, · · · ,An nonzero
semigroup ideals of N . If it admits generalized n-derivations F and G with associated nonzero
n-derivations D and H of N respectively such that

F (x1, x2, · · · , xn)H(y1, y2, · · · , yn) = −G(x1, x2, · · · , xn)D(y1, y2, · · · , yn)

for all x1, y1 ∈ A1;x2, y2 ∈ A2; · · · ;xn, yn ∈ An, then (N ,+) is abelian.

Corollary 6.5. ([10], Theorem 3.15). Let F and G be generalized n-derivations of 3-prime near-
ring N with associated nonzero n-derivations D and H of N respectively such that
F (x1, x2, · · · , xn)H(y1, y2, · · · , yn) = −G(x1, x2, · · · , xn)D(y1, y2, · · · , yn)
for all x1, x2, · · · , xn, y1, y2, · · · , yn ∈ N . Then (N ,+) is an abelian group.

Let X and Y be nonempty subsets of N and a ∈ N . By the notations [X,Y ] and [X, a] we mean
the subsets of N defined by [X,Y ] = {[x, y] | x ∈ X, y ∈ Y } and [X, a] = {[x, a] | x ∈ X}
respectively.

Very recently A. Ali et al. ([2], Theorem 12) proved that if N is a 3-prime near-ring, admitting a
nonzero generalized derivation f with associated nonzero derivation d such that [f(A), f(A)] =
{0}, where A is a nonzero semigroup ideal of N , then (N ,+) is abelian. We have improved and
extended this result for generalized n-derivation in the setting of 3-prime near-rings. In fact we
obtained the following.

Theorem 6.6. ([12], Theorem 3.3). Let N be a 3-prime near-ring and A1,A2, · · · ,An nonzero
semigroup ideals of N . If it admits generalized n-derivations F1 and F2 with associated nonzero
n-derivations D1 and D2 of N respectively such that

[F1(A1,A2, · · · ,An), F2(A1,A2, · · · ,An)] = {0},

then (N ,+) is abelian.

Corollary 6.7. ([10], Theorem 3.16). Let F1 and F2 be generalized n-derivations of 3-prime
near-ring N with associated nonzero n-derivations D1 and D2 of N respectively such that
[F1(N ,N , · · · ,N ), F2(N ,N , · · · ,N )] = {0}. Then (N ,+) is an abelian group.

The following example shows that the restriction of 3-primeness imposed on the hypotheses of
Theorems 6.2 & 6.3 is not superfluous.

Example 6.8. ([12], Example 3.2). Let Q be the usual ring of real quaternions and (S3,+)
be the symmetric group of degree 3. Let S = Q × S3. Define multiplication ‘∗’ in S by
(q1, p1) ∗ (q2, p2) = (q1.q2, 0) for all (q1, p1), (q2, p2) ∈ S, where ‘.’ is the usual multiplication
of the ring Q and 0 stands for the identity of the group (S3,+). Then it can be easily seen that
(S,+, ∗) is a distributive near-ring, where ‘+’ stands for componentwise addition. Consider

N =


 0 x y

0 0 z

0 0 0

 | x, y, z, 0 ∈ S

 . It can be easily seen that N is a zero-symmetric left

near-ring with regard to matrix addition and matrix multiplication but not a 3-prime near-ring.
Define D1, D2 : N ×N × · · · × N︸ ︷︷ ︸

n−times

−→ N respectively as

D1


 0 x1 y1

0 0 z1

0 0 0

 ,

 0 x2 y2

0 0 z2

0 0 0

 , · · · ,

 0 xn yn

0 0 zn

0 0 0


 =

 0 0 x1x2 · · ·xn

0 0 0
0 0 0


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and

D2


 0 x1 y1

0 0 z1

0 0 0

 ,

 0 x2 y2

0 0 z2

0 0 0

 , · · · ,

 0 xn yn

0 0 zn

0 0 0


 =

 0 0 z1z2 · · · zn
0 0 0
0 0 0

 .

It is easy to see that D1 & D2 are nonzero n-derivations of N . If we take F1 = D2 & F2 = D1,
then it can be easily verified that F1 & F2 are nonzero generalized n-derivations of N with associ-

ated nonzero n-derivations D1 & D2 of N respectively. Let A =


 0 0 y

0 0 0
0 0 0

 | y, 0 ∈ S

 .

It is obvious to observe that A is a nonzero semigroup ideal of N . If we choose A1 = A2 =
· · · = An = A, then we have the following:
(i) F1(x1, x2, · · · , xn)D2(y1, y2, · · · , yn) = −F2(x1, x2, · · · , xn)D1(y1, y2, · · · , yn)
for all x1, y1 ∈ A1;x2, y2 ∈ A2; · · · ;xn, yn ∈ An and
(ii) [F1(A1,A2, · · · ,An), F2(A1,A2, · · · ,An)] = {0}. However, (N ,+) is not abelian.

Theorem 6.9. ([12], Theorem 3.4). Let N be a 3-prime near-ring admitting a generalized n-
derivation F with associated n-derivation D of N . If K = {a ∈ N | [F (u1, u2, · · · , un), a] = 0}
for all u1 ∈ A1, u2 ∈ A2, · · · , un ∈ An, where A1,A2, · · · ,An are nonzero semigroup ideals of
N and d stands for the trace of D, then a ∈ K implies either a ∈ Z or d(a) = 0.

Corollary 6.10. ([10], Theorem 3.11). Let N be a 3-prime near-ring admitting a generalized
n-derivation F with associated n-derivation D of N . If K = {a ∈ N | [F (N ,N , · · · ,N ), a] =
{0}} and d stands for the trace of D, then a ∈ K implies either a ∈ Z or d(a) = 0.

We close our discussion with the following example which justifies the existence of 3-primeness
in the hypothesis of the Theorem 6.4.

Example 6.11. ([12], Example 3.3). Consider N , F1, D1 and A1 = A2 = · · · ,= An = A as

discussed in the Example 6.2. Let us choose a =

 0 l 0
0 0 0
0 0 0

 , where l = (q, p) and 0 ̸= q ∈

Q, p ∈ S3. Then clearly a ∈ N and it can be easily shown that [F1(u1, u2, · · · , un), a] = 0 for all
u1 ∈ A1, u2 ∈ A2, · · · , un ∈ An. However a ̸∈ Z and d1(a) ̸= 0, where d1 stands for the trace
of D1.
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