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Abstract For Temperley-Lieb algebras of type B, we construct their Gröbner-Shirshov bases
and the corresponding standard monomials, which give another combinatorial interpretation for
the fully commutative elements.

1 Introduction

Originally, the Temperley-Lieb algebra appears in the context of statistical mechanics [19], and
later its structure has been studied in connection with knot theory, where it is known to be a
quotient of the Hecke algebra of type A [8].

Our approach to understanding the structure of Temperley-Lieb algebras is from the non-
commutative Gröbner basis theory, called the Gröbner-Shirshov basis theory, which provides a
powerful tool for understanding the structure of (non)associative algebras and their representa-
tions, especially in computational aspects. With the ever-growing power of computers, it is now
viewed as a universal engine behind algebraic or symbolic computation.

The main interest of the notion of Gröbner-Shirshov bases stems from Shirshov’s Compo-
sition Lemma and his algorithm [15] for Lie algebras and independently from Buchberger’s
algorithm [4] of computing Gröbner bases for commutative algebras. In [2], Bokut applied Shir-
shov’s method to associative algebras, and Bergman mentioned the diamond lemma for ring
theory [1].

The Gröbner-Shirshov bases for Coxeter groups of classical and exceptional types were com-
pletely determined in [3, 12, 13, 18]. The cases for Hecke algebras and Temperley-Lieb algebras
of type A were calculated in [9].

In this paper, we deal with Temperley-Lieb algebras of type B, extending the result in [9,
§6]. By completing the relations coming from a presentation of the Temperley-Lieb algebra, we
compute its Gröbner-Shirshov basis to obtain the corresponding set of standard monomials. The
explicit multiplication table between the monomials follows naturally. We remark that the set
of standard monomials we constructed as a Gröbner-Shirshov basis corresponds to that of fully
commutative elements which indexes a basis of the Temperley-Lieb algebra [6, 17].

2 Basic Definitions and Notations

In this section, we recall a basic theory of Gröbner-Shirshov bases for associative algebras so as
to make the paper self-contained. There will be some properties listed without proofs which are
well-known and necessary for this paper.

Let X be a set and let ⟨X⟩ be the free monoid of associative words on X. We denote the
empty word by 1 and the length (or degree) of a word u by l(u). We define a total-order < on
⟨X⟩, called a monomial order as follows ;

if x < y implies axb < ayb for all a, b ∈ ⟨X⟩.
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Fix a monomial order < on ⟨X⟩ and let F⟨X⟩ be the free associative algebra generated by
X over a field F. Given a nonzero element p ∈ F⟨X⟩, we denote by p the monomial (called
the leading monomial) appearing in p, which is maximal under the ordering <. Thus p =
αp +

∑
βiwi with α, βi ∈ F, wi ∈ ⟨X⟩, α ̸= 0 and wi < p for all i. If α = 1, p is said to

be monic.
Let S be a subset of monic elements in F⟨X⟩, and let I be the two-sided ideal of F⟨X⟩

generated by S. Then we say that the algebra A = F⟨X⟩/I is defined by S.

Definition 2.1. Given a subset S of monic elements in F⟨X⟩, a monomial u ∈ ⟨X⟩ is said to be
S-standard (or S-reduced) if u ̸= asb for any s ∈ S and a, b ∈ ⟨X⟩. Otherwise, the monomial u
is said to be S-reducible.

Lemma 2.2 ([1, 2]). Every p ∈ F⟨X⟩ can be expressed as

p =
∑

αiaisibi +
∑

βjuj , (2.1)

where αi, βj ∈ F, ai, bi, uj ∈ ⟨X⟩, si ∈ S, aisibi ≤ p, uj ≤ p and uj are S-standard.

Remark. The term
∑

βjuj in the expression (2.1) is called a normal form (or a remainder) of p
with respect to the subset S (and with respect to the monomial order <). In general, a normal
form is not unique.

As an immediate corollary of Lemma 2.2, we obtain:

Proposition 2.3. The set of S-standard monomials spans the algebra A = F⟨X⟩/I defined by
the subset S, as a vector space over F.

Let p and q be monic elements in F⟨X⟩ with leading monomials p and q. We define the
composition of p and q as follows.

Definition 2.4. (a) If there exist a and b in ⟨X⟩ such that pa = bq = w with l(p) > l(b), then the
composition of intersection is defined to be (p, q)w = pa− bq.

(b) If there exist a and b in ⟨X⟩ such that a ̸= 1, apb = q = w, then the composition of
inclusion is defined to be (p, q)a,b = apb− q.

Let p, q ∈ F⟨X⟩ and w ∈ ⟨X⟩. We define the congruence relation on F⟨X⟩ as follows: p ≡ q
mod (S;w) if and only if p− q =

∑
αiaisibi, where αi ∈ F, ai, bi ∈ ⟨X⟩, si ∈ S, aisibi < w.

Definition 2.5. A subset S of monic elements in F⟨X⟩ is said to be closed under composition if

(p, q)w ≡ 0 mod (S;w) and (p, q)a,b ≡ 0 mod (S;w) for all p, q ∈ S, a, b ∈ ⟨X⟩ when-
ever the compositions (p, q)w and (p, q)a,b are defined.

The following theorem is a main tool for our results in the subsequent sections.

Theorem 2.6 ([1, 2]). Let S be a subset of monic elements in F⟨X⟩. Then the following condi-
tions are equivalent :

(a) S is closed under composition.

(b) For each p ∈ F⟨X⟩, a normal form of p with respect to S is unique.

(c) The set of S-standard monomials forms a linear basis of the algebra A = F⟨X⟩/I defined
by S.

Definition 2.7. A subset S of monic elements in F⟨X⟩ is a Gröbner-Shirshov basis if S satisfies
one of the equivalent conditions in Theorem 2.6. In this case, we say that S is a Gröbner-Shirshov
basis for the algebra A defined by S.

Let us now turn our attention to some combinatorial concepts for better understanding of the
proof of our main theorem 4.2.
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Definition 2.8. Let W be a Coxeter group. An element w is said to be fully commutative if
any reduced word for w can be obtained from any other by interchange of adjacent commuting
generators.

Stembridge [16] classified all of the Coxeter groups that have finitely many fully commutative
elements. His results completed the work of Fan [5], who had done this for the simply-laced
types. In the same paper [5], Fan showed that the fully commutative elements parameterized
natural bases for corresponding quotients of Hecke algebras. In type An, these give rise to
the Temperley–Lieb algebras (see [8]). Fan and Stembridge also enumerated the set of fully
commutative elements. In particular, they showed the following.

Proposition 2.9 ([5, 17]). Let Cn be the nth Catalan number, i.e. Cn = 1
n+1(

2n
n ). Then the

numbers of fully commutative elements in the Coxeter group of types An, Dn and Bn are given
as follows: 

Cn+1 if the type is An,
n+3

2 × Cn − 1 if the type is Dn,

(n+ 2)× Cn − 1 if the type is Bn.

It is known by Kleshchev and Ram’s work [11] that homogeneous representations of KLR
algebras can be constructed from the fully commutative elements which are defined as reduced
words having no subword of the form sisi±1si.

Motivated from their work, Feinberg and Lee computed in the article [7] the sets of reduced
words of fully commutative elements of type Dn. In their work, we first decompose the set
of fully commutative elements into disjoint subsets called packets, denoting the k-th packet by
PD(n, k). Then each packet is in turn represented as a partition of its subsets called collections
depending on the shapes of suffixes of the words. Doing this process, Feinberg and Lee found
that all collections of a packet PD(n, k) have the same cardinality and each collection contains
exactly C(n, k) elements, thus finally obtained the following formula : ([7, Cor. 2.14])

n∑
k=0

C(n, k)|PD(n, k)| =
n+ 3

2
Cn − 1 (2.2)

where Cn is the nth Catalan number, C(n, k) is the (n, k)-entry of the Catalan triangle, and
|PD(n, k)| is the number of elements in the (n, k)-packet PD(n, k).

We remark that the number n+3
2 Cn − 1 on the right-hand side of the above formula is the

dimension of the Temperley-Lieb algebra of type Dn.
We also note that using the exact values of |PD(n, k)| in (2.2) ([7, Prop. 2.9]), we can have

the following useful expansion :

2n−2 − 1 +
n−2∑
k=1

n− k + 1
n+ 1

(
n+ k

n

)
2n−k−2 +

2
n+ 1

(
2n
n

)
=

n+ 3
2

Cn − 1.

Kim-Lee-Oh [10] also obtained an analogous formula for type Bn as well as the exact cardi-
nality of each packet PB(n, k) :

n∑
k=0

C(n, k)|PB(n, k)| = (n+ 2)Cn − 1, (2.3)

which is the dimension of the Temperley-Lieb algebra of type Bn.

3 Review of results for the Temperley-Lieb algebra of type An−1

First, we review the results on Temperley-Lieb algebras T (An−1) (n ≥ 2). Define T (An−1) to
be the associative algebra over the complex field C, generated by X = {E1, E2, . . . , En−1} with
defining relations:

E2
i = δEi for 1 ≤ i ≤ n− 1,

RT (An−1) : EiEj = EjEi for i > j + 1 (commutative relations),

EiEjEi = Ei for j = i± 1,
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where δ ∈ C is a parameter. Our monomial order < is taken to be the degree-lexicographic order
with

E1 < E2 < · · · < En−1.

We write Ei,j = EiEi−1 · · ·Ej for i ≥ j (hence Ei,i = Ei). By convention Ei,i+1 = 1 for i ≥ 1.

Proposition 3.1. ([9, Proposition 6.2]) The Temperley-Lieb algebra T (An−1) has a Gröbner-
Shirshov basis as follows:

E2
i − δEi for 1 ≤ i ≤ n− 1,

R̂T (An−1) : EiEj − EjEi for i > j + 1, (3.1)

Ei,jEi − Ei−2,jEi for i > j,

EjEi,j − EjEi,j+2 for i > j.

The corresponding R̂T (An−1)-standard monomials are of the form

Ei1,j1Ei2,j2 · · ·Eip,jp (0 ≤ p ≤ n− 1) (3.2)

where
1 ≤ i1 < i2 < · · · < ip ≤ n− 1, 1 ≤ j1 < j2 < · · · < jp ≤ n− 1,

i1 ≥ j1, i2 ≥ j2, . . . , ip ≥ jp

(the case of p = 0 is the monomial 1). We denote the set of R̂T (An−1)-standard monomials
by MT (An−1) and the number |MT (An−1)| of R̂T (An−1)-standard monomials is the nth Catalan
number,

Cn :=
1

n+ 1

(
2n
n

)
.

Example 3.2. Note that |MT (A3)| = C4 = 14. Explicitly, the R̂T (A3)-standard monomials are as
follows:

1, E1, E2,1, E2, E1E2, E3,1, E3,2, E3,

E1E3,2, E1E3, E2,1E3,2, E2,1E3, E2E3, E1E2E3.

Remark. (1) One interesting point of considering standard monomials is that the product of two
standard monomials becomes a standard monomial up to a scalar multiple. As an example, if we
multiply E1E2 by E2,1E3,2 in the previous example then we obtain

(E1E2)(E2,1E3,2) = δE1E2E1E3,2 = δE1E3,2,

a multiple of another standard monomial E1E3,2. For another one, the multiplication of E2,1 by
E3,1 leads us to have

E2,1E3,1 = E2(E1E3,1) = E2(E1E3) = E2,1E3

by the Gröbner-Shirshov basis (3.1).
(2) One can also notice that the number of standard monomials equals the number of fully

commutative elements, which is the dimension of the Temperley-Lieb algebra of type A.

4 Gröbner-Shirshov bases for the Temperley-Lieb algebras of type Bn

Let T (Bn) (n ≥ 2) be the Temperley-Lieb algebra of type Bn, that is, the associative algebra
over the complex field C, generated by X = {E0, E1, . . . , En−1} with defining relations:

E2
i = δEi for 0 ≤ i ≤ n− 1,

RT (Bn) : EiEj = EjEi for i > j + 1, (4.1)

EiEjEi = Ei for j = i± 1, i, j > 0,

EiEjEiEj = 2EiEj for {i, j} = {0, 1},
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where δ ∈ C is a parameter. .
Fix our monomial order < to be the degree-lexicographic order with

E0 < E1 < · · · < En−1.

We write Ei,j = EiEi−1 · · ·Ej for i ≥ j ≥ 0, and Ei,j = EiEi+1 · · ·Ej for i ≤ j. By
convention, Ei,i+1 = 1 and Ei+1,i = 1 for i ≥ 0.

Lemma 4.1. The following relation holds in T (Bn):

Ei,0E
1,jEi = Ei−2,0E

1,jEi

for i > j + 1 ≥ 1.

Proof. Since 2 ≤ i ≤ n− 1 and 0 ≤ j ≤ i− 2, we calculate that

Ei,0E
1,jEi = (EiEi−1Ei)Ei−2,0E

1,j = EiEi−2,0E
1,j = Ei−2,0E

1,jEi

by the commutative relations and EiEi−1Ei = Ei.

Let R̂T (Bn) be the set of defining relations (4.1) combined with (3.1) and the relation in
Lemma 4.1. From this, we define MT (Bn) by the set of R̂T (Bn)-standard monomials. Among
the monomials in MT (Bn), we consider the monomials which are not R̂T (An−1)-standard. That
is, we take only R̂T (Bn)-standard monomials which are not of the form (3.2). This set is denoted
by M0

T (Bn)
. Note that each monomial in M 0

T (Bn)
contains E0. We decompose the set M 0

T (Bn)

into two parts as follows :
M0

T (Bn)
= M0+

T (Bn)
⨿M0−

T (Bn)

where the monomials in M0+
T (Bn)

are of the form

E0Ei1,j1Ei2,j2 · · ·Eip,jp (0 ≤ p ≤ n− 1) (4.2)

with
1 ≤ i1 < i2 < · · · < ip ≤ n− 1, 0 ≤ j1 ≤ j2 ≤ · · · ≤ jp ≤ n− 1,

i1 ≥ j1, i2 ≥ j2, . . . , ip ≥ jp, and

jk > 0 (1 ≤ k < p) implies jk < jk+1

(the case of p = 0 is the monomial E0), and the monomials in M0−
T (Bn)

are of the form

E′
i1,j1

Ei2,j2 · · ·Eip,jp (1 ≤ p ≤ n− 1)

with
E′

i,j = Ei,0E
1,j

and the same restriction on i’s and j’s as above. It can be easily checked that M0
T (Bn)

is the set

of R̂T (Bn)-standard monomials which are not R̂T (An−1)-standard.

To each monomial E0Ei1,0Ei2,0 · · ·Eik,0Eik+1,jk+1 · · ·Eip,jp in M0+
T (Bn)

with jk+1 > 0, we can
associate a unique path

(0, 0) → (i1, 0) → (i2, 0) → · · · → (ik, 0) → (ik+1, jk+1) → · · · → (ip, jp) → (n, n).

Here, a path consists of moves to the east or to the north, not above the diagonal in the lattice
plane. The move from (i, j) to (i′, j′) (i < i′ and j < j′) is a concatenation of eastern moves
followed by northern moves. As an example, the monomial E0E1,0E2,1 ∈ M0+

T (B3)
corresponds

to
(0, 0) → (1, 0) → (2, 1) → (3, 3).

Counting the number of elements in M0
T (Bn)

, we obtain the following theorem.
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Theorem 4.2. The algebra T (Bn) has a Gröbner-Shirshov basis R̂T (Bn) with respect to our
monomial order <:

E2
i − δEi for 0 ≤ i ≤ n− 1,

EiEj − EjEi for i > j + 1,

R̂T (Bn) : Ei,jEi − Ei−2,jEi for i > j > 0,

EjEi,j − EjEi,j+2 for i > j > 0.

EiEjEiEj − 2EiEj for {i, j} = {0, 1},
Ei,0E

1,jEi − Ei−2,0E
1,jEi for i > j + 1 ≥ 1.

The cardinality of the set MT (Bn), i.e. the set of R̂T (Bn)-standard monomials, is

dim T (Bn) = (n+ 2)Cn − 1.

Proof. First, we consider a mapping

ϕ : M0+
T (Bn)

\ {E0} → M0−
T (Bn)

defined by ϕ(E0Ei1,j1Ei2,j2 · · ·Eip,jp) = E′
i1,j1

Ei2,j2 · · ·Eip,jp . Then this map is a bijection. In
order to compute |M0

T (Bn)
|, it is enough to count the the number of elements in M0+

T (Bn)
. For

this, we consider the following procedure.
In the lattice plane, we plot the sequence of points (i1, j1), (i2, j2), . . . , (ip, jp) corresponding

to the monomial E0Ei1,j1Ei2,j2 · · ·Eip,jp in (4.2). Set ℓ > 0 to be the largest i such that (i, 0)
belongs to the sequence of plotted points. Then the number of sequences of plotted points
between (ℓ, 0) and (n, n) is the number of paths from (ℓ+ 1, 0) and (n, n) .

Counting the number of these paths, we have(
2n− ℓ− 1

n

)
−
(

2n− ℓ− 1
n+ 1

)
=

ℓ+ 2
n+ 1

(
2n− ℓ− 1

n

)
.

Thus the number of monomials of the form E0Ei1,0 · · ·Eip,jp (4.2) is

n−1∑
ℓ=1

ℓ+ 2
n+ 1

(
2n− ℓ− 1

n

)
2ℓ−1,

which is the same quantity as 1
2

(∑n−2
k=0 C(n, k)|PB(n, k)|+ 1

)
= n−1

2 Cn, as we have men-
tioned in (2.3) as well as in [7, Corollary 2.14].

Therefore we have
|M0+

T (Bn)
| = Cn + n−1

2 Cn = n+1
2 Cn.

Then, the number of R̂T (Bn)-standard monomials becomes

|MT (An−1)|+ 1 + 2|M0+
T (Bn)

\ {E0}| = Cn + 1 + 2
(
n+1

2 Cn − 1
)
,

which gives exactly the number equal to

dim T (Bn) = (n+ 2)Cn − 1

as mentioned in [17, §5] and [6, §7]. Theorem 2.6 yields that R̂T (Bn) is a Gröbner-Shirshov
basis for T (Bn).

Example 4.3. (1) We enumerate the R̂T (B3)-standard monomials containing E0:

E0, E0E1,0, E1,0, E0E1, E
′
1, E0E2,0, E2,0, E0E2,1, E

′
2,1, E0E2, E

′
2,

E0E1,0E2,0, E1,0E2,0, E0E1,0E2,1, E1,0E2,1, E0E1,0E2, E1,0E2, E0E1E2, E
′
1E2.

(2) The product of two R̂T (B3)-standard monomials is a scalar multiple of a standard mono-
mial. For instance, we multiply E0E1,0E2,0 by E2 from the left:

E2(E0E1,0E2,0) = E0E2,0E2,0 = E0E0E2E1,0 = δE0E2,0.
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Remark. (1) Our monomials in MT (Bn) are fully commutative, in the sense of [17, §5]. Note
that the number of non-identity fully commutative top monomials is (2n

n )− 1 = |M0
T (Bn)

|.
(2) We observe that the elements in (4.2) are in 1-1 correspondence with semistandard tableaux

having at most two columns with entries in {1, 2, . . . , n−1}. By the conjugate of Pieri’s formula
connecting Schur polynomials with elementary symmetric polynomials (See [14, I.(5.17)]), that
is, sµer =

∑
λ sλ (the sum is over all partitions λ such that λ − µ is a vertical r-strip), we get

that the righthand side of the case of µ = 1r(or µ = 1r+1) is the sum of monomials associated
to semistandard tableaux having at most two columns. So we count the number of monomials to
obtain that

|M0+
T (Bn)

|=
∑n−1

r=0 (n−1
r )

2
+

∑n−2
r=0 (n−1

r+1)(
n−1
r )

=
∑n−1

r=0 ( n
r+1)(

n−1
r ) = (2n−1

n−1 ) =
1
2(

2n
n ) =

n+1
2 Cn.

The latter part of this formula is also computed in [17, §5].
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