Generalized derivations acting as homomorphisms or anti-homomorphisms on Lie ideals

Gurninder S. Sandhu and Deepak Kumar
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 16W25, 16N60; Secondary 13N15, 15A27.
Keywords and phrases: Prime ring, Semiprime ring, Lie ideal, Generalized derivation.

Abstract

Let R be a 2-torsion free semiprime ring with center $Z(R)$ and L be a non-zero square closed Lie ideal of R. A mapping $F: R \rightarrow R$ is said to be a generalized derivation of R if for all $u, v \in R, F(u+v)=F(u)+F(v)$ and $F(u v)=F(u) v+u d(v)$, where d is a derivation of R. In this note, we prove that if F acts as a homomorphism or as an anti-homomorphism on L, then d maps R into $Z(R)$. Also, we study the prime ring case in more general settings and consequently extend a theorem of Rehman [18].

1 Introduction

All through this paper, R denotes an associative ring with $\operatorname{char}(R) \neq 2$ and center $Z(R)$. Recall that a ring R in which 0 is a prime ideal is called a prime ring and if R has no non-zero nilpotent ideal then it is called a semiprime ring. For any $x, y \in R$, we denote the commutator $x y-y x$ by $[x, y]$. By a Lie ideal of R, we mean an additive subgroup L of R such that $[L, R] \subseteq L$. Evidently, every ideal of R is a Lie ideal but converse is not true. A Lie ideal L is said to be square closed if $u^{2} \in L$ for all $u \in L$. An additive mapping $d: R \rightarrow R$ is called a derivation of R if $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. For a fixed $a \in R$, the function $\phi_{a}: x \mapsto[a, x]$ is called an inner derivation associated with a, which is a well-known example of a derivation. For some $a, b \in R, \psi: x \mapsto a x+x b$ is said to be a generalized inner derivation of R. Now we see that $\psi(x y)=\psi(x) y+x \phi_{b}(y)$, where ϕ_{b} is the inner derivation of R associated with b. Brešar [7] observed these computations and thereafter introduced the notion of the generalized derivation. Let $F: R \rightarrow R$ be an additive mapping such that $F(x y)=F(x) y+x d(y)$ for all $x, y \in R$. Then F is called a generalized derivation R associated with a derivation d. In [14], Hvala developed a remarkable algebraic theory of generalized derivations.

Next, we consider a generalized derivation $F: R \rightarrow R$ such that $F(x y)=F(x) F(y)$ or $F(x y)=F(y) F(x)$ for all $x, y \in R$. Then F is said to be a generalized derivation acts as a homomorphism or as an anti-homomorphism on R. Bell and Kappe [6] studied these type of derivations very first time on prime rings. Precisely, they proved the following theorem:

Let R be a prime ring and U a nonzero right ideal of R. If d is a derivation of R, which acts as a homomorphism or as anti-homomorphism on U, then $d=0$.

Many authors extended this result in several ways, for up-to-date discussions we refer the reader to [1], [2], [3], [4], [5], [9], [17], [18], [21] and references therein. In this note, we shall prove the following theorems:

Theorem 1.1. Let R be a 2-torsion free semiprime ring, L a nonzero square-closed Lie ideal of R. Suppose that R admits a generalized derivation (F, d).
(i) If F acts as a homomorphism on L, then $d(R) \subseteq Z(R)$.
(ii) If F acts as an anti-homomorphism on L, then $d(R) \subseteq Z(R)$.

Theorem 1.2. Let R be a 2-torsion free prime ring, L a nonzero square-closed Lie ideal of R and $m, n \geq 1$ are fixed integers. Suppose R admits a generalized derivation (F, d).
(i) If $F\left(x^{m} y^{n}\right)=F\left(x^{m}\right) F\left(y^{n}\right)$ for all $x, y \in L$, then $d=0$ or $L \subseteq Z(R)$.
(ii) If $F\left(x^{m} y^{n}\right)=F\left(y^{n}\right) F\left(x^{m}\right)$ for all $x, y \in L$, then $d=0$ or $L \subseteq Z(R)$.

2 Preliminaries Results

The the commutator identities: $[x, y z]=y[x, z]+[x, y] z,[x y, z]=x[y, z]+[x, z] y$ and the following facts are useful in the main section:

Lemma 2.1. [[13], Corollary 2.1] Let R be a 2-torsion free semiprime ring, L a Lie ideal of R such that $L \nsubseteq Z(R)$ and let $a, b \in L$. (i) If $a L a=(0)$, then $a=0$. (ii) If $a L=(0)$ (or $L a=(0)$), then $a=0$. (iii) If L is square-closed and $a L b=(0)$, then $a b=0$ and $b a=0$.

Lemma 2.2. [[20], Lemma 2.5] Let R be a 2-torsion free semiprime ring, L a Lie ideal of R such that $L \nsubseteq Z(R)$. If L is square-closed then there exist a nonzero ideal $M=R[L, L] R$ of R such that $2 M \subseteq L$.

Lemma 2.3. [[16], REMARK 2.1] Let R be a ring, L a square-closed Lie ideal of R. Then $2 R[L, L] \subseteq L$ and $2[L, L] R \subseteq L$.

Lemma 2.4. Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Then $C_{R}(L)=Z(R)$.

Proof. Clearly, $Z(R) \subseteq C_{R}(L)$. It is easy to see that $C_{R}(L)$ is both a Lie ideal and a subring of R. Since $C_{R}(L)$ can not contain a nonzero ideal of R, in light of Herstein [[12], Lemma 1.3] $C_{R}(L) \subseteq Z(R)$. Hence, $C_{R}(L)=Z(R)$.

Lemma 2.5. [[19], THEOREM 3.1] Let d is a derivation of a 2-torsion free semiprime ring R and L be a square-closed Lie ideals of R. If d is centralizing on L, then d maps R into $Z(R)$.

3 Main Results

The following propositions can be considered as independent results in themselves.
Proposition 3.1. Let R be a 2-torsion free semiprime ring and L be a non-zero square-closed Lie ideal of R. If R admits a generalized derivation (F, d) which is centralizing on L, then $d(R) \subseteq Z(R)$.

Proof. By hypothesis, we have $[u, F(u)] \in Z(R)$ for all $u \in L$. Linearizing this relation w.r.t.u, we get $[u, F(v)]+[v, F(u)] \in Z(R)$ where $u, v \in L$. For some $r \in R$, we substitute $[v, r]$ for u and get $[[v, r], F(v)]+[v,[F(v), r]]+[v,[v, d(r)]] \in Z(R)$. That is,

$$
\begin{equation*}
[v,[F(v), r]]+[F(v),[r, v]]+[v,[v, d(r)]] \in Z(R) . \tag{3.1}
\end{equation*}
$$

By Jacobi's identity we must have

$$
\begin{equation*}
[v,[F(v), r]]+[F(v),[r, v]]+[r,[v, F(v)]]=0 . \tag{3.2}
\end{equation*}
$$

Combining Eq. (3.1) and (3.2) and using our hypothesis, we get $[[d(r), v], v] \in Z(R)$ for each $v \in L$ and $r \in R$. It can be written as $\left[\phi_{d(r)}(v), v\right] \in Z(R)$, where $\phi_{d(r)}: R \rightarrow R$ stands for the inner derivation of R associated with element $d(r)$. In view of Lemma 2.5, we find that $\phi_{d(r)}(R) \subseteq Z(R)$ i.e.; $[d(r), s] \subseteq Z(R)$ for all $r, s \in R$. By simple substitutions, we obtain $d(R) \subseteq Z(R)$, as desired.

Proposition 3.2. Let R be a 2-torsion free semiprime ring and L a non-zero Lie ideal of R. If R admits a derivation d such that $d(L)=(0)$, then $d(R) \subseteq Z(R)$.

Proof. By assumption, $d(u)=0$ for all $u \in L$. Replacing u by $[u, r]$, where $r \in R$, we get $d([u, r])=[u, d(r)]=0$. Replacing r by $r s$ in the last expression, we get $d(r)[u, s]+[u, r] d(s)=$ 0 . In particular, we get

$$
\begin{equation*}
d(R)[L, L]=(0) \tag{3.3}
\end{equation*}
$$

That means, $d(r)[u, v]=0$ for all $u, v \in L$ and $r \in R$. Replacing r by $r u$, we obtain $d(r) u[u, v]=$ 0 . By Filippis et al. [[10], Corollary 1.4], we get $d(R)[L, R]=(0)$ and $[d(R), L]=(0)$. In view of Lemma 2.4, we get the conclusion.

3.1 Proof of Theorem 1.1

(i) If possible, let us assume that $L \nsubseteq Z(R)$. By hypothesis, we have $F(x y)=F(x) F(y)$ for any $x, y \in L$. Substitute $2 y z$ for y, where $z \in L$, we find

$$
\begin{equation*}
F(x y z)=F(x) F(y z)=F(x) F(y) z+F(x) y d(z) \tag{3.4}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
F(x y z)=F(x y) z+x y d(z) \tag{3.5}
\end{equation*}
$$

Comparing (3.4), (3.5) and using our hypothesis, we get

$$
\begin{equation*}
(F(x)-x) y d(z)=0 \tag{3.6}
\end{equation*}
$$

Replace x by $2 x z$ in (3.6), we get $(F(x z)-x z) y d(z)=0$ where $x, y, z \in L$. On expanding the relation, we get

$$
\begin{equation*}
x d(z) y d(z)+(F(x)-x) z y d(z)=0 \tag{3.7}
\end{equation*}
$$

Replace y by $2 z y$ in (3.6) and we have

$$
\begin{equation*}
(F(x)-x) z y d(z)=0 \tag{3.8}
\end{equation*}
$$

On subtraction (3.8) from (3.7), we obtain

$$
\begin{equation*}
x d(z) y d(z)=0 \tag{3.9}
\end{equation*}
$$

for all $x, y, z \in L$. Replace x by $2 x z$ and y by $2 y z$ in (3.9), we obtain

$$
\begin{equation*}
x z d(z) y z d(z)=0 . \tag{3.10}
\end{equation*}
$$

Again, we substitute $2 z y$ for y in (3.9) and right multiply it by z, we find

$$
\begin{equation*}
x d(z) z y d(z) z=0 \tag{3.11}
\end{equation*}
$$

Substracting (3.10) from (3.11), we get

$$
\begin{equation*}
x[d(z), z] y[d(z), z]=0 \tag{3.12}
\end{equation*}
$$

for all $x, y, z \in L$. Replace y by $4 y x$ in (3.12), we get $2 x[d(z), z] L 2 x[d(z), z]=(0)$ for all $x, z \in L$. In light of Lemma 2.1, we obtain $x[d(z), z]=0$ for all $x, z \in L$. Again utilizing Lemma 2.1, we find $[d(z), z]=0$ for all $z \in L$. Hence, Lemma 2.5 completes the proof.
(ii) If possible assume that $L \nsubseteq Z(R)$. By hypothesis,

$$
\begin{equation*}
F(x y)=F(y) F(x) \text { for all } x, y \in L \tag{3.13}
\end{equation*}
$$

Replace x by $2 x y$ in (3.13), we obtain $2 F\left(x y^{2}\right)=2 F(y) F(x y)$. Using 2-torsion freeness of R, we get

$$
\begin{gathered}
F\left(x y^{2}\right)=F(y) F(x y) \\
F(x y) y+x y d(y)=F(y) F(x) y+F(y) x d(y)
\end{gathered}
$$

Using (3.13), we get $(x y-F(y) x) d(y)=0$ for all $x, y \in L$. By Lemma 2.2, we have $2 M \subseteq L$. Putting $x=2 m$, we obtain

$$
\begin{equation*}
(m y-F(y) m) d(y)=0 \tag{3.14}
\end{equation*}
$$

Replace m by $F(z) m$ in (3.14), where $z \in L$, we get

$$
\begin{equation*}
(F(z) m y-F(y) F(z) m) d(y)=0 \tag{3.15}
\end{equation*}
$$

On multiplying (3.14) by $F(z)$ from left side, we get

$$
\begin{equation*}
(F(z) m y-F(z) F(y) m) d(y)=0 \tag{3.16}
\end{equation*}
$$

Subtracting (3.15) from (3.16), we obtain $(F(z) F(y)-F(y) F(z)) m d(y)=0$ for all $y, z \in L$ and $m \in M$. Again using our hypothesis, we get

$$
\begin{equation*}
F([y, z]) m d(y)=0 \tag{3.17}
\end{equation*}
$$

Replace z by $2 z y$ in (3.17), we get $F([y, z y]) m d(y)=0$ for any $y, z \in L$ and $m \in M$.

$$
\begin{equation*}
F([y, z]) y m d(y)+[y, z] d(y) m d(y)=0 \quad \text { for all } y, z \in L \text { and } m \in M . \tag{3.18}
\end{equation*}
$$

Replace m by $y m$ in (3.17) and subtract from (3.18), we obtain $[y, z] d(y) m d(y)=0$. Since $R[L, L] \subseteq M$ so we substitute $r[y, z]$ instead of m, where $r \in R$ and $y, z \in L$, we get $[y, z] d(y) r[y, z] d(y)=0$. That is, $[y, z] d(y) R[y, z] d(y)=(0)$ where $y, z \in L$. Semiprimeness of R yields that

$$
\begin{equation*}
[y, z] d(y)=0 \text { for all } y, z \in L \tag{3.19}
\end{equation*}
$$

Linearizing the above relation we get

$$
\begin{equation*}
[x, z] d(y)=-[y, z] d(x) \tag{3.20}
\end{equation*}
$$

Replace z by $2 z u$ in (3.19), where $u \in L$, we get $2[y, z u] d(y)=0$ for all $y, z, u \in L$. Since R is 2-torsion free so we left with $[y, z] u d(y)=0$. By Lemma 2.3, we substitute $2 r[x, z]$ in place of u, where $r \in R$ and $x, z \in L$ in the last expression and obtain $[y, z] r[x, z] d(y)=0$. Using (3.20), we obtain that $[y, z] r[y, z] d(x)=0$. Replacing r by $r d(x)$, we get $[y, z] d(x) R[y, z] d(x)=$ (0). Since R is semiprime ring, so we get $[y, z] d(x)=0$. Again application of Lemma 2.2 implies that $\left[m, m_{1}\right] d(x)=0$, where $x \in L$ and $m, m_{1} \in M$. Substituting $d(x) m$ for m in the last expression and using it we get $\left[d(x), m_{1}\right] m d(x)=0$. From this, it easily follows that $\left[d(x), m_{1}\right] M\left[d(x), m_{1}\right]=(0)$ for each $x \in L$ and $m_{1} \in M$. Since every ideal of a semiprime ring is a semiprime ring itself, we get $\left[d(x), m_{1}\right]=0$ for all $x \in L$ and $m_{1} \in M$. Now, as $R[L, L] \subseteq M$ so we put $m=r[y, z]$ in the last relation, where $r \in R$ and $y, z \in L$, we find $[d(x), r[y, z]]=0$. On expanding this expression and using the fact that $[L, L] \subseteq M$ we obtain $[d(x), r][y, z]=0$ for all $x, y, z \in L$ and $r \in R$. Now, replace y by y^{2} in the last equation, we get $[d(x), r] y[y, z]=0$ for all $x, y, z \in L$ and $r \in R$. In view of corollary 1.4 in [10], we find

$$
\begin{equation*}
[d(x), r][y, s]=0 \text { for all } x, y \in L, r, s \in R . \tag{3.21}
\end{equation*}
$$

For any $p \in R$, replace s by $s p$ in (3.21), we obtain $[d(x), r] s[y, p]=0$ for all $x, y \in L$ and $r, s, p \in L$. In particular, we have $[d(x), x] R[d(x), x]=(0)$ for all $x \in L$. Since R is semiprime ring, we find $[d(x), x]=0$ for all $x \in L$. Hence the conclusion follows from Lemma 2.5.

Corollary 3.3. Let R be a 2-torsion free prime ring and L a nonzero square-closed Lie ideal of R. Suppose $F: R \rightarrow R$ be a generalized derivation associated with a derivation d.
(i) If F acts as a homomorphism on L, then either $d=0$ or $L \subseteq Z(R)$.
(ii) If F acts as an anti-homomorphism on L, then either $d=0$ or $L \subseteq Z(R)$.

Proof. By Theorem 1.1, we obtain $d(R)[L, R]=(0)$ i.e.; $d(r)[x, s]=0$ for any $r, s \in R$ and $x \in L$. Replacing r by $r_{1} r$, where $r_{1} \in R$, we get $d\left(r_{1}\right) R[x, r]=(0)$. By primeness of R we have either $d\left(r_{1}\right)=0$ or $[x, r]=0$. We set $A=\{r \in R: d(r)=0\}$ and $B=\{r \in R:[x, r]=0\}$, where $x \in L$. It is easy to see that both A and B are subgroups of $(R,+)$ and $R=A \cup B$. By Brauer's trick, we have either $A=R$ or $B=R$. Therefore, either $d=0$ or $L \subseteq Z(R)$. But $L \nsubseteq Z(R)$, so we must have $d=0$.

3.2 Proof of Theorem 1.2

If possible, assume that $L \nsubseteq Z(R)$. Let us consider first $F\left(x^{m} y^{n}\right)=F\left(x^{m}\right) F\left(y^{n}\right)$ for all $x, y \in$ L. By Lemma 2.2, every noncentral Lie ideal L of R contains a nonzero ideal $I=2 R[L, L] R$ of R. And therefore L contains a nonzero ideal say $I=2 R[L, L] R$ of R. With this, our assumption yields $F\left(x^{m} y^{n}\right)=F\left(x^{m}\right) F\left(y^{n}\right)$ for all $x, y \in I$. Let the set $A_{1}=\left\{x^{m}: x \in I\right\}$ and G_{1} be the additive subgroup of R generated by A_{1} and G_{2} be the additive subgroup generated by the set $A_{2}=\left\{y^{n}: x \in I\right\}$. By hypothesis, we have

$$
F(u v)-F(u) F(v)=0 \text { for all } u \in G_{1}, \quad v \in G_{2} .
$$

By Chuang [8], either $G_{1} \subseteq Z(R)$ or $\operatorname{char}(R)=2$ and R satisfies s_{4} identity, unless G_{1} contains a noncentral Lie ideal L_{1} of R. As we assumed R is of characteristic different from 2 and if $G_{1} \subseteq Z(R)$ i.e.; $x^{m} \in Z(R)$ for all $x \in I$. By Lee [15], I_{1}, I_{2}, R and U satisfies the same differential identities, thus we find $x^{m} \in Z(R)$ for all $x \in R$. Then a well-known result of Herstein [11] forces R to be commutative, a contradiction to our assumption.

Therefore, G_{1} contains a noncentral ideal L_{1} of R. Then, we have

$$
F(u v)-F(u) F(v)=0 \text { for all } u \in L_{1}, \quad v \in G_{2} .
$$

Similarly, there exists a noncentral Lie ideal L_{2} of G_{2} such that

$$
F(u v)-F(u) F(v)=0 \text { for all } u \in L_{1}, \quad v \in L_{2}
$$

In view of Herstein [[12], pg. 4-5], there exists a nonzero ideal I_{1} such that $0 \neq\left[I_{1}, R\right] \subseteq$ L_{1}. Similarly, there exists a nonzero ideal I_{2} such that $0 \neq\left[I_{2}, R\right] \subseteq L_{2}$. Thus, we obtain $F(u v)-F(u) F(v)=0$ for all $u \in\left[I_{1}, I_{1}\right]$ and $v \in\left[I_{2}, I_{2}\right]$. In light of Lee [15], I_{1}, I_{2}, R and U satisfies the same differential identities. So, we find $F(u v)-F(u) F(v)=0$ for all $u \in[R, R]$. Clearly, $[R, R]$ is a nonzero Lie ideal of R. Therefore, by case 1 of Theorem 1.2 in [17], we get either $d=0$ or $[R, R] \subseteq Z(R)$. The latter case implies commutativity of R, which is not possible. Hence, $d=0$.

In case, $F\left(x^{m} y^{n}\right)=F\left(y^{n}\right) F\left(x^{m}\right)$ for all $x, y \in L$. Analogously as above, we can obtain the same conclusions.
Acknowledgement: We would like to express our sincere gratitude to the anonymous referee(s) for their helpful suggestions, which increase the readability of the paper.

References

[1] A. Ali, D. Kumar, Derivations which acts as homomorphism and as anti-homomorphism in prime ring, Internat. Math. Forum 23(2), 1105-1110 (2007).
[2] A. Ali, D. Kumar, Generalized derivations as homomorphisms or as anti-homomorphisms in a prime ring, Hecettepe J. Math. Stat. 38(1), 17-20 (2009).
[3] A. Ali, N. Rehman, A. Shakir, On Lie ideals with derivations as homomorphism and anti-homomorphims, Acta Math. Hungar. 101(1-2), 79-82 (2003).
[4] S. Ali, On generalized left derivations in rings and Banach algebras, Aequation. Math. 81(2), 209-226 (2011).
[5] S. Ali, S. Huang, On generalized Jordan (α, β)-derivations that act as homomorphisms or antihomomorphisms, J. Algebra Comp. Appl. 1(1), 13-19 (2011).
[6] H. E. Bell, L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53, 339-346 (1989).
[7] M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33, 89-93 (1991).
[8] C. L. Chuang, The additive subgroup generated by a polynomial, Israel J. Math. 59(1), 98-106 (1987).
[9] B. Dhara, Generalized derivations acting as homomorphism or anti-homomorphism in semiprime rings, Bietr. Algebra Geom. 53(1), 203-209 (2012).
[10] V. D. Filippies, N. Rehman, A. Z. Ansari, Lie ideals and generalized derivations in semiprime rings, Irania J. Math. Sci. Info. 10(2), 45-54 (2015).
[11] I. N. Herstein, A Theorem on Rings, Canad. J. Math. 5, 238-241 (1953).
[12] I. N. Herstein, Topics in ring theory, Univ. of Chicago Press, Chicago 1969.
[13] M. Hongan, N. Rehman, R. M. AL-Omary, Lie ideals and Jordan triple derivations in rings, REND. SEM. MAT. UNIV. PADOVA. 125, 1-10 (2011).
[14] B. Hvala, Generalized derivations in rings, Commun. Algebra 26(4), 1147-1166 (1998).
[15] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sin. 27(8), 4057-4073 (1999).
[16] N. Rehman, A. Z. Ansari, Generalized left derivations acting as homomorphism and anti-homomorphism on Lie ideals of rings, J. Egypt. Math. Soc. 22, 327-329 (2014).
[17] N. Rehman, M. A. Raza, Generalized derivations as homomorphims or anti-homomorphims on Lie ideals, Arab. J. Math. Sci. 22, 22-28 (2014).
[18] N. Rehman, On generalized derivations as homomorphisms and anti-homomorphisms, Glas. Math. 39(59), 27-30 (2004).
[19] G. S. Sandhu, D. Kumar, Derivations satisfying certain algebraic identities on Lie ideals (submitted).
[20] G. S. Sandhu, D. Kumar, A study of derivable mappings of semiprime rings, Internat. J. Algebra Stat. 7(1-2), 19-26 (2018).
[21] Y. Wang and H. You, Derivations as homomorphisms or anti-hmomorphims on Lie ideals, Acta Math. Sinica. 23(6), 1149-1152 (2007).

Author information

Gurninder S. Sandhu and Deepak Kumar, Department of Mathematics, Punjabi University, Patiala, Punjab 147001, INDIA.
E-mail: gurninder_rs@pbi.ac.in

