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Abstract Let R be a 2-torsion free semiprime ring with center Z(R) and L be a non-zero
square closed Lie ideal of R. A mapping F : R→ R is said to be a generalized derivation of R if
for all u, v ∈ R, F (u+ v) = F (u) + F (v) and F (uv) = F (u)v+ ud(v), where d is a derivation
of R. In this note, we prove that if F acts as a homomorphism or as an anti-homomorphism on
L, then d maps R into Z(R). Also, we study the prime ring case in more general settings and
consequently extend a theorem of Rehman [18].

1 Introduction

All through this paper, R denotes an associative ring with char(R) ̸= 2 and center Z(R). Recall
that a ring R in which 0 is a prime ideal is called a prime ring and if R has no non-zero nilpotent
ideal then it is called a semiprime ring. For any x, y ∈ R, we denote the commutator xy − yx
by [x, y]. By a Lie ideal of R, we mean an additive subgroup L of R such that [L,R] ⊆ L.
Evidently, every ideal of R is a Lie ideal but converse is not true. A Lie ideal L is said to be
square closed if u2 ∈ L for all u ∈ L. An additive mapping d : R → R is called a derivation of
R if d(xy) = d(x)y + xd(y) for all x, y ∈ R. For a fixed a ∈ R, the function ϕa : x 7→ [a, x] is
called an inner derivation associated with a, which is a well-known example of a derivation. For
some a, b ∈ R, ψ : x 7→ ax + xb is said to be a generalized inner derivation of R. Now we see
that ψ(xy) = ψ(x)y+xϕb(y), where ϕb is the inner derivation of R associated with b. Brešar [7]
observed these computations and thereafter introduced the notion of the generalized derivation.
Let F : R→ R be an additive mapping such that F (xy) = F (x)y+xd(y) for all x, y ∈ R. Then
F is called a generalized derivation R associated with a derivation d. In [14], Hvala developed a
remarkable algebraic theory of generalized derivations.

Next, we consider a generalized derivation F : R → R such that F (xy) = F (x)F (y) or
F (xy) = F (y)F (x) for all x, y ∈ R. Then F is said to be a generalized derivation acts as a
homomorphism or as an anti-homomorphism on R. Bell and Kappe [6] studied these type of
derivations very first time on prime rings. Precisely, they proved the following theorem:

Let R be a prime ring and U a nonzero right ideal of R. If d is a derivation of R, which acts
as a homomorphism or as an anti-homomorphism on U, then d = 0.

Many authors extended this result in several ways, for up-to-date discussions we refer the
reader to [1], [2], [3], [4], [5], [9], [17], [18], [21] and references therein. In this note, we shall
prove the following theorems:

Theorem 1.1. Let R be a 2-torsion free semiprime ring, L a nonzero square-closed Lie ideal of
R. Suppose that R admits a generalized derivation (F, d).

(i) If F acts as a homomorphism on L, then d(R) ⊆ Z(R).

(ii) If F acts as an anti-homomorphism on L, then d(R) ⊆ Z(R).

Theorem 1.2. Let R be a 2-torsion free prime ring, L a nonzero square-closed Lie ideal of R
and m,n ≥ 1 are fixed integers. Suppose R admits a generalized derivation (F, d).

(i) If F (xmyn) = F (xm)F (yn) for all x, y ∈ L, then d = 0 or L ⊆ Z(R).

(ii) If F (xmyn) = F (yn)F (xm) for all x, y ∈ L, then d = 0 or L ⊆ Z(R).
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2 Preliminaries Results

The the commutator identities: [x, yz] = y[x, z] + [x, y]z, [xy, z] = x[y, z] + [x, z]y and the
following facts are useful in the main section:

Lemma 2.1. [ [13], COROLLARY 2.1] Let R be a 2-torsion free semiprime ring, L a Lie ideal
of R such that L ̸⊆ Z(R) and let a, b ∈ L. (i) If aLa = (0), then a = 0. (ii) If aL = (0) (or
La = (0)), then a = 0. (iii) If L is square-closed and aLb = (0), then ab = 0 and ba = 0.

Lemma 2.2. [[20], LEMMA 2.5] Let R be a 2-torsion free semiprime ring, L a Lie ideal of R
such that L ̸⊆ Z(R). If L is square-closed then there exist a nonzero ideal M = R[L,L]R of R
such that 2M ⊆ L.

Lemma 2.3. [[16], REMARK 2.1] Let R be a ring, L a square-closed Lie ideal of R. Then
2R[L,L] ⊆ L and 2[L,L]R ⊆ L.

Lemma 2.4. Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Then
CR(L) = Z(R).

Proof. Clearly, Z(R) ⊆ CR(L). It is easy to see that CR(L) is both a Lie ideal and a subring
of R. Since CR(L) can not contain a nonzero ideal of R, in light of Herstein [[12], Lemma 1.3]
CR(L) ⊆ Z(R). Hence, CR(L) = Z(R).

Lemma 2.5. [[19], THEOREM 3.1] Let d is a derivation of a 2-torsion free semiprime ring R
and L be a square-closed Lie ideals of R. If d is centralizing on L, then d maps R into Z(R).

3 Main Results

The following propositions can be considered as independent results in themselves.

Proposition 3.1. Let R be a 2-torsion free semiprime ring and L be a non-zero square-closed
Lie ideal of R. If R admits a generalized derivation (F, d) which is centralizing on L, then
d(R) ⊆ Z(R).

Proof. By hypothesis, we have [u, F (u)] ∈ Z(R) for all u ∈ L. Linearizing this relation w.r.t.u,
we get [u, F (v)] + [v, F (u)] ∈ Z(R) where u, v ∈ L. For some r ∈ R, we substitute [v, r] for u
and get [[v, r], F (v)] + [v, [F (v), r]] + [v, [v, d(r)]] ∈ Z(R). That is,

[v, [F (v), r]] + [F (v), [r, v]] + [v, [v, d(r)]] ∈ Z(R). (3.1)

By Jacobi’s identity we must have

[v, [F (v), r]] + [F (v), [r, v]] + [r, [v, F (v)]] = 0. (3.2)

Combining Eq. (3.1) and (3.2) and using our hypothesis, we get [[d(r), v], v] ∈ Z(R) for each
v ∈ L and r ∈ R. It can be written as [ϕd(r)(v), v] ∈ Z(R), where ϕd(r) : R → R stands
for the inner derivation of R associated with element d(r). In view of Lemma 2.5, we find that
ϕd(r)(R) ⊆ Z(R) i.e.; [d(r), s] ⊆ Z(R) for all r, s ∈ R. By simple substitutions, we obtain
d(R) ⊆ Z(R), as desired.

Proposition 3.2. Let R be a 2-torsion free semiprime ring and L a non-zero Lie ideal of R. If R
admits a derivation d such that d(L) = (0), then d(R) ⊆ Z(R).

Proof. By assumption, d(u) = 0 for all u ∈ L. Replacing u by [u, r], where r ∈ R, we get
d([u, r]) = [u, d(r)] = 0. Replacing r by rs in the last expression, we get d(r)[u, s]+[u, r]d(s) =
0. In particular, we get

d(R)[L,L] = (0) (3.3)

That means, d(r)[u, v] = 0 for all u, v ∈ L and r ∈ R.Replacing r by ru,we obtain d(r)u[u, v] =
0. By Filippis et al. [[10], Corollary 1.4], we get d(R)[L,R] = (0) and [d(R), L] = (0). In view
of Lemma 2.4, we get the conclusion.
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3.1 Proof of Theorem 1.1

(i) If possible, let us assume that L ̸⊆ Z(R). By hypothesis, we have F (xy) = F (x)F (y) for
any x, y ∈ L. Substitute 2yz for y, where z ∈ L, we find

F (xyz) = F (x)F (yz) = F (x)F (y)z + F (x)yd(z) (3.4)

On the other hand, we have
F (xyz) = F (xy)z + xyd(z) (3.5)

Comparing (3.4), (3.5) and using our hypothesis, we get

(F (x)− x)yd(z) = 0 (3.6)

Replace x by 2xz in (3.6), we get (F (xz)− xz)yd(z) = 0 where x, y, z ∈ L. On expanding the
relation, we get

xd(z)yd(z) + (F (x)− x)zyd(z) = 0 (3.7)

Replace y by 2zy in (3.6) and we have

(F (x)− x)zyd(z) = 0 (3.8)

On subtraction (3.8) from (3.7), we obtain

xd(z)yd(z) = 0 (3.9)

for all x, y, z ∈ L. Replace x by 2xz and y by 2yz in (3.9), we obtain

xzd(z)yzd(z) = 0. (3.10)

Again, we substitute 2zy for y in (3.9) and right multiply it by z, we find

xd(z)zyd(z)z = 0 (3.11)

Substracting (3.10) from (3.11), we get

x[d(z), z]y[d(z), z] = 0 (3.12)

for all x, y, z ∈ L. Replace y by 4yx in (3.12), we get 2x[d(z), z]L2x[d(z), z] = (0) for all
x, z ∈ L. In light of Lemma 2.1, we obtain x[d(z), z] = 0 for all x, z ∈ L. Again utilizing
Lemma 2.1, we find [d(z), z] = 0 for all z ∈ L. Hence, Lemma 2.5 completes the proof.

(ii) If possible assume that L ̸⊆ Z(R). By hypothesis,

F (xy) = F (y)F (x) for all x, y ∈ L. (3.13)

Replace x by 2xy in (3.13), we obtain 2F (xy2) = 2F (y)F (xy). Using 2-torsion freeness of R,
we get

F (xy2) = F (y)F (xy)

F (xy)y + xyd(y) = F (y)F (x)y + F (y)xd(y)

Using (3.13), we get (xy − F (y)x)d(y) = 0 for all x, y ∈ L. By Lemma 2.2, we have 2M ⊆ L.
Putting x = 2m, we obtain

(my − F (y)m)d(y) = 0 (3.14)

Replace m by F (z)m in (3.14), where z ∈ L, we get

(F (z)my − F (y)F (z)m)d(y) = 0 (3.15)

On multiplying (3.14) by F (z) from left side, we get

(F (z)my − F (z)F (y)m)d(y) = 0 (3.16)
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Subtracting (3.15) from (3.16), we obtain (F (z)F (y) − F (y)F (z))md(y) = 0 for all y, z ∈ L
and m ∈M . Again using our hypothesis, we get

F ([y, z])md(y) = 0 (3.17)

Replace z by 2zy in (3.17), we get F ([y, zy])md(y) = 0 for any y, z ∈ L and m ∈M .

F ([y, z])ymd(y) + [y, z]d(y)md(y) = 0 for all y, z ∈ L and m ∈M . (3.18)

Replace m by ym in (3.17) and subtract from (3.18), we obtain [y, z]d(y)md(y) = 0. Since
R[L,L] ⊆ M so we substitute r[y, z] instead of m, where r ∈ R and y, z ∈ L, we get
[y, z]d(y)r[y, z]d(y) = 0. That is, [y, z]d(y)R[y, z]d(y) = (0) where y, z ∈ L. Semiprimeness of
R yields that

[y, z]d(y) = 0 for all y, z ∈ L. (3.19)

Linearizing the above relation we get

[x, z]d(y) = −[y, z]d(x) (3.20)

Replace z by 2zu in (3.19), where u ∈ L, we get 2[y, zu]d(y) = 0 for all y, z, u ∈ L. Since R is
2-torsion free so we left with [y, z]ud(y) = 0. By Lemma 2.3, we substitute 2r[x, z] in place of u,
where r ∈ R and x, z ∈ L in the last expression and obtain [y, z]r[x, z]d(y) = 0 . Using (3.20),
we obtain that [y, z]r[y, z]d(x) = 0. Replacing r by rd(x), we get [y, z]d(x)R[y, z]d(x) =
(0). Since R is semiprime ring, so we get [y, z]d(x) = 0. Again application of Lemma 2.2
implies that [m,m1]d(x) = 0, where x ∈ L and m,m1 ∈ M . Substituting d(x)m for m in
the last expression and using it we get [d(x),m1]md(x) = 0. From this, it easily follows that
[d(x),m1]M [d(x),m1] = (0) for each x ∈ L and m1 ∈ M . Since every ideal of a semiprime
ring is a semiprime ring itself, we get [d(x),m1] = 0 for all x ∈ L and m1 ∈ M. Now, as
R[L,L] ⊆ M so we put m = r[y, z] in the last relation, where r ∈ R and y, z ∈ L, we find
[d(x), r[y, z]] = 0. On expanding this expression and using the fact that [L,L] ⊆ M we obtain
[d(x), r][y, z] = 0 for all x, y, z ∈ L and r ∈ R. Now, replace y by y2 in the last equation, we get
[d(x), r]y[y, z] = 0 for all x, y, z ∈ L and r ∈ R. In view of corollary 1.4 in [10], we find

[d(x), r][y, s] = 0 for all x, y ∈ L, r, s ∈ R. (3.21)

For any p ∈ R, replace s by sp in (3.21), we obtain [d(x), r]s[y, p] = 0 for all x, y ∈ L and
r, s, p ∈ L. In particular, we have [d(x), x]R[d(x), x] = (0) for all x ∈ L. Since R is semiprime
ring, we find [d(x), x] = 0 for all x ∈ L. Hence the conclusion follows from Lemma 2.5.

Corollary 3.3. Let R be a 2-torsion free prime ring and L a nonzero square-closed Lie ideal of
R. Suppose F : R→ R be a generalized derivation associated with a derivation d.

(i) If F acts as a homomorphism on L, then either d = 0 or L ⊆ Z(R).

(ii) If F acts as an anti-homomorphism on L, then either d = 0 or L ⊆ Z(R).

Proof. By Theorem 1.1, we obtain d(R)[L,R] = (0) i.e.; d(r)[x, s] = 0 for any r, s ∈ R and
x ∈ L. Replacing r by r1r, where r1 ∈ R, we get d(r1)R[x, r] = (0). By primeness of R we have
either d(r1) = 0 or [x, r] = 0. We set A = {r ∈ R : d(r) = 0} and B = {r ∈ R : [x, r] = 0},
where x ∈ L. It is easy to see that both A and B are subgroups of (R,+) and R = A ∪ B. By
Brauer’s trick, we have either A = R or B = R. Therefore, either d = 0 or L ⊆ Z(R). But
L * Z(R), so we must have d = 0.

3.2 Proof of Theorem 1.2

If possible, assume that L ̸⊆ Z(R). Let us consider first F (xmyn) = F (xm)F (yn) for all x, y ∈
L. By Lemma 2.2, every noncentral Lie ideal L of R contains a nonzero ideal I = 2R[L,L]R of
R. And therefore L contains a nonzero ideal say I = 2R[L,L]R of R. With this, our assumption
yields F (xmyn) = F (xm)F (yn) for all x, y ∈ I. Let the set A1 = {xm : x ∈ I} and G1 be the
additive subgroup of R generated by A1 and G2 be the additive subgroup generated by the set
A2 = {yn : x ∈ I}. By hypothesis, we have

F (uv)− F (u)F (v) = 0 for all u ∈ G1, v ∈ G2.
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By Chuang [8], either G1 ⊆ Z(R) or char(R) = 2 and R satisfies s4 identity, unless G1 contains
a noncentral Lie ideal L1 of R. As we assumed R is of characteristic different from 2 and if
G1 ⊆ Z(R) i.e.; xm ∈ Z(R) for all x ∈ I. By Lee [15], I1, I2, R and U satisfies the same
differential identities, thus we find xm ∈ Z(R) for all x ∈ R. Then a well-known result of
Herstein [11] forces R to be commutative, a contradiction to our assumption.

Therefore, G1 contains a noncentral ideal L1 of R. Then, we have

F (uv)− F (u)F (v) = 0 for all u ∈ L1, v ∈ G2.

Similarly, there exists a noncentral Lie ideal L2 of G2 such that

F (uv)− F (u)F (v) = 0 for all u ∈ L1, v ∈ L2.

In view of Herstein [[12], pg. 4-5], there exists a nonzero ideal I1 such that 0 ̸= [I1, R] ⊆
L1. Similarly, there exists a nonzero ideal I2 such that 0 ̸= [I2, R] ⊆ L2. Thus, we obtain
F (uv) − F (u)F (v) = 0 for all u ∈ [I1, I1] and v ∈ [I2, I2]. In light of Lee [15], I1, I2, R and U
satisfies the same differential identities. So, we find F (uv) − F (u)F (v) = 0 for all u ∈ [R,R].
Clearly, [R,R] is a nonzero Lie ideal of R. Therefore, by case 1 of Theorem 1.2 in [17], we
get either d = 0 or [R,R] ⊆ Z(R). The latter case implies commutativity of R, which is not
possible. Hence, d = 0.

In case, F (xmyn) = F (yn)F (xm) for all x, y ∈ L. Analogously as above, we can obtain the
same conclusions.
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