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Abstract Let A and B be two unital rings and let M be a unital (A,B)-bimodule such that
M is faithful as a left A-module and also as a right B-module. Consider the triangular ring

T =

(
A M

0 B

)
and let 1 be its identity. It is shown that for a surjective additive mapping

Φ : T → T , Φ is a ring isomorphism if and only if Φ(1) = 1 and Φ(x)Φ(y) = 0 ⇔ xy = 0 for
all x, y ∈ T .

1 Introduction

Throughout this paper, all rings considered are associative and have identity. Let A and B be
two rings. Recall that a left A-module (resp., a right B-module) M is said to be faithful if for
any a ∈ A, aM = {0} (resp., for any b ∈ B, Mb = {0}) implies a = 0 (resp., b = 0).

Let Φ : A → B be an additive mapping. We say that Φ preserves zero-products in both
directions if Φ satisfies the following condition:

(*): x1x2 = 0 if and only if Φ(x1)Φ(x2) = 0 for all x1, x2 ∈ A.

Let A and B be two unital rings and let M be a unital (A,B)-bimodule which is faithful as a
left A-module as well as a right B-module. The set

Tri(A,M,B) =

{(
a m

0 b

)
: a ∈ A,m ∈ M, b ∈ B

}

is a unital associative ring under the usual matrix operations. Each ring which is isomorphic to
Tri(A,M,B) is called a triangular ring. It is well known that upper triangular matrix rings and
block upper triangular matrix rings are triangular rings.

Our research was motivated by the following results. Many research works have been done on
linear maps preserving the spectrum [1], square-zero matrices [5] and zero-products [2, 3, 4, 5, 6]
on many kinds of algebras. For example, from [2, Corollary 4.3], it follows that if A and B are
unital rings such that A contains a noncentral idempotent and B is a prime ring, then any bijective
mapping h : A → B such that h(1) = 1 and h satisfies the property x1x2 = 0 ⇒ h(x1)h(x2) = 0
for all x1, x2 ∈ A is a ring isomorphism.

The aim of this paper is to prove that for a triangular ring T , any surjective additive mapping
Φ : T → T that preserves identity and zero-products in both directions is a ring isomorphism.

2 The results

The following is our main result.

Theorem 2.1. Let T = Tri(A,M,B) be a triangular ring. Let 1 be the identity of T and let
Φ : T → T be a surjective additive mapping. Then Φ(1) = 1 and Φ preserves zero-products in
both directions if and only if Φ is bijective and Φ(xy) = Φ(x)Φ(y) for all x, y ∈ T .
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To prove this theorem, we need the following lemmas. We begin with the following trivial
one.

Lemma 2.2. Let A and B be two rings and let Φ : A → B be an additive mapping. Then
Φ(−x) = −Φ(x) for all x in A.

The following result is presumably well known (see, for example, [6, Lemma 2.1]) but is
included for completeness.

Lemma 2.3. Let A and B be two rings with identities 1A and 1B, respectively. Let Φ : A → B
be an additive mapping such that Φ(1A) = 1B and Φ preserves zero-products in both directions.
Then:

(a) Φ is injective.
(b) Φ(u) = Φ(u)2 for all idempotents u in A.

Proof. (a) Let x, x′ ∈ A such that Φ(x) = Φ(x′). Then Φ(x) + Φ(−x′) = 0 by Lemma 2.2.
As Φ is an additive mapping, we have Φ(x − x′) = 0. So Φ(x − x′)Φ(1A) = 0. Since Φ
preserves zero-products in both directions, it follows that x − x′ = (x − x′)1A = 0. Therefore
Φ is injective.

(b) Let u be an idempotent in A. Since u(1A − u) = 0, it follows that Φ(u)Φ(1A − u) = 0.
As Φ(1A) = 1B, we have Φ(u) = Φ(u)2 by Lemma 2.2. This completes the proof.

The next lemma is a straightforward generalization of [6, Lemma 2.2]. We notice that their
proofs are similar in spirit.

Lemma 2.4. Let A and B be two rings with identities 1A and 1B, respectively. Let Φ : A → B
be an additive mapping such that Φ(1A) = 1B and Φ(x)Φ(y) = 0 for all x, y ∈ A with xy = 0.
Then Φ(uxv) = Φ(u)Φ(x)Φ(v) for all x in A and all idempotents u, v in A.

Proof. Let x be an element in A and let u be an idempotent in A. Note that (1A − u)ux =
u(1A − u)x = 0. By hypothesis, we have Φ(1A − u)Φ(ux) = 0 and Φ(u)Φ((1A − u)x) = 0.
As Φ(1A) = 1B, we conclude that Φ(ux) = Φ(u)Φ(ux) and Φ(u)Φ(x) = Φ(u)Φ(ux) (see
Lemma 2.2). It follows that

Φ(ux) = Φ(u)Φ(x)

for all x in A and all idempotents u in A. In the same manner we can see that

Φ(xv) = Φ(x)Φ(v)

for all x in A and all idempotents v in A. Thus,

Φ(uxv) = Φ(u)Φ(xv) = Φ(u)Φ(x)Φ(v)

for all x in A and all idempotents u, v in A. This proves the lemma.

Proof of Theorem 2.1. The sufficiency is straightforward. The necessity will be organized in a
sequence of claims. We will use the following notation

e =

(
1A 0
0 0

)
and f = 1 − e =

(
0 0
0 1B

)
. Here 1, 1A and 1B are identities of T , A

and B, respectively. It is easily seen that fT e = 0 and so any element t ∈ T may be represented
as

t = (e+ f)t(e+ f) = ete+ etf + ftf.

Also, note that eT e and fT f are subrings of T and eT f is an (eT e, fT f)-bimodule which is
faithful as a left eT e-module and also as a right fT f -module.

Assume that Φ(1) = 1 and Φ preserves zero-products in both directions. By Lemma 2.3(a),
Φ is bijective. It is easy to check that Φ−1 : T → T is an additive mapping preserving identity
and zero-products in both directions. Let g, h ∈ T such that g = Φ−1(e) and h = Φ−1(f). From
Lemma 2.3(b), it follows that g2 = g and h2 = h. Since fe = 0, we have Φ−1(f)Φ−1(e) = 0.
Hence hg = 0.
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Claim 1. We have xg = gxg and hx = hxh for all x ∈ T .
Let x ∈ T and let y = Φ(x) ∈ T . Then Φ−1(y) = x. Note that

ye = (e+ f)ye = eye+ fye = eye.

From Lemma 2.4, it follows that

Φ−1(ye) = Φ−1(eye) = Φ−1(e)Φ−1(y)Φ−1(e). (1)

Applying again Lemma 2.4 and using the fact Φ−1(1) = 1, we get

Φ−1(ye) = Φ−1(1ye) = Φ−1(1)Φ−1(y)Φ−1(e) = Φ−1(y)Φ−1(e). (2)

Therefore,
Φ−1(y)Φ−1(e) = Φ−1(e)Φ−1(y)Φ−1(e). (3)

That is, xg = gxg. Similarly, we can show that hx = hxh.

Claim 2. For all x, t ∈ T , we have

Φ(xgth) = Φ(x)Φ(gth) (4)

and
Φ(gthx) = Φ(gth)Φ(x). (5)

Let x and t be elements in T . Since hg = 0, g + gth is an idempotent in T . Replacing u by
1 and v by g + gth in Lemma 2.4, we get

Φ(x(g + gth)) = Φ(x)Φ(g + gth).

Hence,
Φ(xg) + Φ(xgth) = Φ(x)Φ(g) + Φ(x)Φ(gth).

As Φ(xg) = Φ(x)Φ(g) (see Lemma 2.4), we have Φ(xgth) = Φ(x)Φ(gth).
Similarly, replacing u by g+gth and v by 1 in Lemma 2.4, we obtain Φ(gthx) = Φ(gth)Φ(x).

Claim 3. We have [Φ(xy)− Φ(x)Φ(y)]eT f = 0 for all x, y ∈ T .
Let x, y and t be elements in T . As Φ is surjective, there exists s ∈ T such that Φ(s) = t.

Replacing x by xy and t by s in Eq. (4), we have

Φ(xygsh) = Φ(xy)Φ(gsh). (6)

On the other hand, it follows from claim 1 and Eq. (4) that

Φ(xygsh) = Φ(xgygsh)

= Φ(x)Φ(gygsh)

= Φ(x)Φ(ygsh)

= Φ(x)Φ(y)Φ(gsh). (7)

Combining Eqs. (6) and (7), we conclude that

[Φ(xy)− Φ(x)Φ(y)]Φ(gsh) = 0.

By Lemma 2.4, we have
Φ(gsh) = Φ(g)Φ(s)Φ(h) = etf.

Hence,
[Φ(xy)− Φ(x)Φ(y)]etf = 0.

This is our claim.
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To complete the proof of Theorem 2.1, let x and y be elements in T . Since e2 = e, we have
[e(Φ(xy)−Φ(x)Φ(y))e]eT f = 0 by claim 3. Since eT f is a faithfull left eT e-module, we have

e(Φ(xy)− Φ(x)Φ(y))e = 0. (8)

Similarly, by claim 1 and Eq. (5), we can see that

etf [Φ(xy)− Φ(x)Φ(y)] = 0

for all x, y, t ∈ T . As f2 = f , we obtain

eT f [f(Φ(xy)− Φ(x)Φ(y))f ] = 0.

Since eT f is a faithfull right fT f -module, we get

f(Φ(xy)− Φ(x)Φ(y))f = 0 (9)

Now by Lemma 2.4 and Eqs. (4) and (5), we have

eΦ(xy)f = Φ(g)Φ(xy)Φ(h)

= Φ(gxyh)

= Φ(gx1yh)

= Φ(gx(g + h)yh)

= Φ(gxgyh) + Φ(gxhyh)

= Φ(gx)Φ(gyh) + Φ (gxh)Φ(yh)

= eΦ(x)eΦ(y)f + eΦ(x)fΦ(y)f

= eΦ(x)(e+ f)Φ(y)f

= eΦ(x)Φ(y)f.

This implies that
e [Φ(xy)− Φ(x)Φ(y)] f = 0. (10)

Combining Lemma 2.2 with Eqs. (8), (9) and (10), we conclude that

Φ(xy)− Φ(x)Φ(y) = e[Φ(xy)− Φ(x)Φ(y)]e

+e[Φ(xy)− Φ(x)Φ(y)]f

+f [Φ(xy)− Φ(x)Φ(y)]f

= 0.

Consequently, Φ(xy) = Φ(x)Φ(y) for all x, y ∈ T . This completes the proof. 2
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