COPRIMELY STRUCTURED MODULES

Zehra Bilgin and Kürsat Hakan Oral

(Communicated by A. Mamouni)

MSC 2010 Classifications: Primary 13A15, ; Secondary 13C13, 13C99.

Keywords and phrases: Coprimely structured rings, multiplication modules, coprimely structured modules.

Abstract Let R be a commutative ring with identity. A prime submodule P of an R-module M is called coprimely structured if, whenever P is coprime to each element of an arbitrary family of submodules of M, the intersection of the family is not contained in P. An R-module M is called coprimely structured provided each prime submodule of M is coprimely structured. In this paper, properties of coprimely structured modules are examined. Severals results for coprimely structured finitely generated modules and coprimely structured multiplication modules are obtained.

1 Introduction

Throughout this paper, all rings are commutative and with identity. Coprimely structured rings are introduced in [11]. In this paper, we generalize this concept to the class of modules. Let R be a ring. A prime submodule Q of an R-module M is called coprimely structured if for each family $\{N_i\}_{i \in I}$ of submodules of R whenever $N_i + Q = M$ for each $i \in I$, we have $\bigcap_{i \in I} N_i \not\subseteq Q$. M is called a copimely structured module if each of its prime submodules is coprimely structured. In Section 2, definitions and general results are given. Direct sums of modules are examined and a sufficient condition for a direct sum of coprimely structured modules being coprimely structured is stated [Theorem 2.7].

In Section 3, finitely generated modules are discussed. For a finitely generated module, it can be decided whether the module is coprimely structured or not by examining only maximal ideals instead of all prime ideals [Theorem 3.1]. The property of an R-module's being coprimely structured is transported to its localization in case of R is local and the module is a finitely generated distributive R-module [Theorem 3.4].

An *R*-module *M* is called a multiplication module if each submodule *N* of *M* is of the form *IM* for some ideal *I* of *R*. Multiplication modules are studied widely in the literature, see [1, 5]. In the category of multiplication modules, many properties of coprimely structured modules can be characterized. The radical of an ideal *I* of *R* is defined as the intersection of all prime ideals that contain *I*. Similarly, the radical of a submodule *N*, rad(N), of a module *M* is the intersection of all prime submodules of *M* that contains *N*. When *R* is viewed as a module over itself, the definitions of the radical of an ideal and the radical of a submodule coincide. In [2], the product of two submodules N = IM and K = JM of a multiplication *R*-module *M* is defined as (IJ)M. Accordingly, the product of two elements $m, m' \in M$ is defined as the product of the submodules Rm and Rm'. Using this definition, it is proved in [2] that

$$rad(N) = \{m \in M : m^k \subseteq N \text{ for some } k \ge 0\}$$

for a submodule N of a multiplication R-module M. Section 4 is reserved for multiplication modules. A family $\{N_i\}_{i \in I}$ of submodules of a multiplication R-module M is said to satisfy property (*) if for each $x \in M$, there is an $n \in \mathbb{N}$ such that $x \in \operatorname{rad}(N_i)$ implies $x^n \subseteq N_i$. With the aid of the property (*), it is possible to characterize coprimely structured multiplication modules in terms of prime submodules and maximal submodules [Theorem 4.5]. Besides, the property (*) is proved to be useful to give a sufficient condition for a module to be coprimely structured provided a particular quotient of the module is coprimely structured [Theorem 4.6]. In case of M is a finitely generated faithful multiplication R-module, M is coprimely structured if and only if R is coprimely structured [Theorem 4.7]. In Section 5, the relation between the property (*) and finitely generated multiplication modules is examined. In particular, if R is a principal ideal ring and M is a finitely generated faithful multiplication module, this property can be used to obtain information about M's being zerodimensional [Theorem 5.3].

2 Coprimely Structured Modules

In this section, we define coprimely structured modules and investigate some basic properties of them. Also we consider the relation between coprimely structured modules and strongly 0-dimensional modules.

Definition 2.1. Let M be an R-module and $\{N_i\}_{i \in I}$ a family of submodules of M. A prime submodule P of M is said to be a coprimely structured submodule of M if $N_i + P = M$, for all $i \in I$, implies $\bigcap_{i \in I} N_i \notin P$. An R-module M is called a coprimely structured module if every prime submodule of M is coprimely structured.

Note that not every module is a coprimely structured module. Here is an example:

Example 2.2. Let $R = \mathbb{Z}$, $M = \mathbb{Z} \times \mathbb{Z}$. Conside the family of submodules $\{N_n = n\mathbb{Z} \times n\mathbb{Z} : n \in \mathbb{N}, n \text{ odd }\}$ of M. We have $\bigcap_{\substack{n \in \mathbb{N} \\ n \text{ odd }}} N_n = (0)$. Observe that $2\mathbb{Z} \times 2\mathbb{Z}$ is a prime submodule of M and $\bigcap_{\substack{n \in \mathbb{N} \\ n \text{ odd }}} N_n \subset 2\mathbb{Z} \times 2\mathbb{Z}$. However, for each $n \in \mathbb{N}$, n odd, we have $N_n + 2\mathbb{Z} \times 2\mathbb{Z} = M$. Thus M is not coprimely structured.

Theorem 2.3. Every homomorphic image of a coprimely structured module is coprimely structured.

Proof. Let M be a coprimely structured R-module, and M' an R-module. Let $f : M \to M'$ be an R-module homomorphism. Assume that for a family of submodules $\{N'_i\}_{i \in I}$ and a prime submodule P' of f(M), the inclusion $\bigcap_{i \in I} N'_i \subseteq P'$ holds. Then there exist a family of submodules $\{N_i\}_{i \in I}$ of M and a prime submodule P of M such that each N_i and P contain kerf, and for all $i \in I$, the equalities $f(N_i) = N'_i$ and f(P) = P' hold. Then

$$f(\bigcap_{i\in I} N_i) \subseteq \bigcap_{i\in I} f(N_i) = \bigcap_{i\in I} N'_i \subseteq P' = f(P)$$

and hence $\bigcap_{i \in I} N_i \subseteq P$. As M is coprimely structured, there exists $j \in I$ such that $N_j + P \neq M$. Since both N_j and P contain kerf, we conclude that $N'_j + P' = f(N_j + P) \neq f(M)$. Thus f(M) is coprimely structured.

Corollary 2.4. Let M be an R-module and N a submodule of M. If M is coprimely structured, so is M/N.

A prime submodule P of an R-module M is called a strongly prime submodule provided for any family $\{N_i\}_{i \in I}$ of submodules of M, the inclusion $\bigcap_{i \in I} N_i \subseteq P$ implies $N_j \subseteq P$ for some $j \in I$. An R-module M is a strongly 0-dimensional module if each of its prime submodules is strongly prime. Strongly 0-dimensional multiplication modules are introduced and studied in [10]. The following theorem states the relation between coprimely structured modules and strongly 0-dimensional modules.

Theorem 2.5. Every strongly 0-dimensional *R*-module is coprimely structured.

Proof. Let M be a strongly 0-dimensional R-module, $\{N_i\}_{i \in I}$ a family of submodules of M and P a prime submodule of M. Suppose that the equation $N_i + P = M$ is satisfied for all $i \in I$. Assume that $\bigcap_{i \in I} N_i \subseteq P$. Since M is strongly 0-dimensional, there exists $j \in I$ such that $N_j \subseteq P$. Then we have $M = N_j + P = P$ which is a contradiction. Therefore $\bigcap_{i \in I} N_i \not\subseteq P$.

By Theorem 2.3, if a direct sum is coprimely structured so is each of its direct summands. We are to investigate when the converse is true. In [7, 2.1], Erdogdu characterizes the submodule structure of direct sum of two modules. For two *R*-modules *M* and *N*, if Ann(x) + Ann(y) = R for each $x \in M$ and $y \in N$, then every submodule of $M \oplus N$ is of the form $A \oplus B$ for some submodule *A* of *M* and some submodule *B* of *N*. We generalize this result to an arbitrary direct sum. **Lemma 2.6.** Let M_i , $i \in I$, be *R*-modules. The following are equivalent:

- (i) $Ann(m_i) + Ann(m_i) = R$ for each $m_i \in M_i$ and $i \neq j$.
- (ii) Each submodule of $\bigoplus_{i \in I} M_i$ is of the form $\bigoplus_{i \in I} N_i$, where N_i is a submodule of M_i for each $i \in I$.

Proof. (i) \Rightarrow (ii) Suppose that Ann (m_i) + Ann (m_i) = R for each $m_i \in M_i$ and $i \neq j$. We first prove that $\operatorname{Ann}((m_{i_1}, ..., m_{i_{n-1}})) + \operatorname{Ann}(m_{i_n}) = R$ for each $n \in \mathbb{N}$, $m_{i_j} \in M_{i_j}$ and $1 \leq j \leq n$. Let $n \in \mathbb{N}$. We prove the statement by induction on n. Let $m_i \in M_i$. For n = 2 the result follows from the assumption. Let n = 3. By assumption, we have 1 = a + b = c + d where $a \in \operatorname{Ann}(m_1), c \in \operatorname{Ann}(m_2)$ and $b, d \in \operatorname{Ann}(m_3)$. Then

$$1 = (a + b)(c + d) = ac + ad + bc + bd.$$

Since $ac \in Ann((m_1, m_2))$ and $ad + bc + bd \in Ann(m_3)$ we have

$$\operatorname{Ann}((m_1, m_2)) + \operatorname{Ann}(m_3) = R$$

Let n = k. Assume that $Ann((m_{i_1}, ..., m_{i_{l-1}})) + Ann(m_{i_l}) = R$ for $2 \le l \le k-1, i_j \in \{1, ..., k\}$. Then,

$$Ann((m_{i_1}, ..., m_{i_{k-2}}, m_{i_{k-1}})) + Ann(m_{i_k})$$

= Ann((((m_{i_1}, ..., m_{i_{k-2}}), m_{i_{k-1}})) + Ann(m_{i_k})
= R

since, by assumption, we have

$$Ann((m_{i_1}, ..., m_{i_{k-2}})) + Ann(m_{i_k}) = R$$

and $\operatorname{Ann}(m_{i_{k-1}}) + \operatorname{Ann}(m_{i_k}) = R.$

Now, let N be a submodule of $M = \bigoplus_{i \in I} M_i$. Let $n \in N$. Then $n = \sum_{i \in I} m_i$, where $m_{i_1}, ..., m_{i_k}$ are nonzero and $m_i = 0$ for $i \neq i_1, ..., i_k$. For each $l \in \{1, ..., k\}$,

$$1 = a_l + b_l$$

where $a_l \in Ann(((m_{i_1}, ..., m_{i_{l-1}}, m_{i_{l+1}}, ..., m_{i_k})))$ and $b_l \in Ann(m_{i_l})$. Then

$$1 = \prod_{l=1}^{k} (a_l + b_l) = (a_1 b_2 \dots b_k + a_2 b_1 b_3 \dots b_k + \dots + a_k b_1 \dots b_{k-1}) + b_1 \dots b_k + \left(\sum_{2 \le r} a_{t_1} \dots a_{t_r} b_{s_1} \dots b_{s_p} \right).$$

Observe that the terms in the second line of the right hand side are contained in Ann (m_{i_l}) for each $l \in \{1, ..., k\}$. On the other hand, for each $j \in \{1, ..., k\}$, we have

$$(a_j b_1 \dots b_{j-1} b_{j+1} \dots b_k) n = (a_j b_1 \dots b_{j-1} b_{j+1} \dots b_k) \iota_{i_j}(m_{i_j}) \in N \cap \iota_{i_j}(M_{i_j})$$

where $\iota_i: M_i \to \bigoplus_{i \in I} M_i$ is the *i*th natural injection. Hence

$$n = 1.n = \left[\prod_{l=1}^{k} (a_l + b_l)\right] n = \sum_{i \in I} c_i$$

where $c_{i_1} = (a_1 b_2 \dots b_k) m_{i_1}$, $c_{i_2} = (a_2 b_1 b_3 \dots b_k) m_{i_2}, \dots, c_{i_k} = (a_k b_1 \dots b_{k-1}) m_{i_k}$ and $c_i = 0$ for $i \in I - \{i_1, ..., i_k\}$. Then $n \in \bigoplus_{i \in I} (N \cap \iota_i(M_i)) \subseteq N$. Therefore $N = \bigoplus_{i \in I} (N \cap \iota_i(M_i))$. (ii) \Rightarrow (i)Assume that N is a submodule of $M = \bigoplus_{i \in I} M_i$. Then, by assumption, $N = \prod_{i \in I} M_i$.

 $\bigoplus_{i \in I} N_i$ for some submodule N_i of M_i for each $i \in I$. Observe that

$$N \cap \iota_i(M_i) = \left(\bigoplus_{i \in I} N_i\right) \cap \iota_i(M_i) = \iota_i(N_i).$$

Hence $N = \bigoplus_{i \in I} N_i = \bigoplus_{i \in I} (N \cap \iota_i(M_i))$. Let $i, j \in I$ and $m_i \in M_i, m_j \in M_j$. Set $a = \sum_{k \in I} a_k \in M$ where $a_i = m_i, a_j = m_j$ and $a_k = 0$ for $k \neq i, j$. Since Ra is a submodule of M, by the above argument $Ra = \bigoplus_{i \in I} (Ra \cap \iota_i(M_i))$. Then $a = \sum_{k \in I} n_k$ where $n_k \in Ra \cap \iota_k(M_k)$. Set $b = \sum_{k \in I} b_k \in M$ where $b_i = m_i, b_j = n_j$ and $b_k = 0$ for $k \neq i, j$. Then $a - b = \sum_{k \in I} a_k - \sum_{k \in I} b_k = \sum_{k \in I} n_k - \sum_{k \in I} b_k$. Comparing the corresponding indices, we obtain $n_i - m_i = 0$ and $m_j - n_j = 0$. Hence $m_i = n_i$ and $m_j = n_j$. For each $k \in I$, since $\iota_k(n_k) \in Ra \cap \iota_k(M_k)$, there exists $r_k \in R$ such that $r_k a = \iota_k(n_k) \in \iota_k(M_k)$. In particular, $\iota_j(n_j) = r_j a$. Using the equalities $n_i = m_i$ and $n_j = m_j$, we get $r_j m_i = 0$ and $m_j = r_j m_j$. Then $r_j \in Ann(m_i)$ and $1 - r_j \in Ann(m_j)$. Therefore

$$1 = r_j + (1 - r_j) \in \operatorname{Ann}(m_i) + \operatorname{Ann}(m_j)$$

and hence $\operatorname{Ann}(m_i) + \operatorname{Ann}(m_j) = R$.

Theorem 2.7. Let M_i , $i \in I$, be coprimely structured *R*-modules and assume that $Ann(m_i) + Ann(m_j) = R$ for each, $m_i \in M_i$, $i, j \in I$, $i \neq j$. Then $M = \bigoplus_{i \in I} M_i$ is coprimely structured.

Proof. Let N_{λ} , $\lambda \in \Lambda$, be a family of submodules and P a prime submodule of M such that $\bigcap_{\lambda \in \Lambda} N_{\lambda} \subseteq P$. By Lemma 2.6, each submodule of M is of the form $\bigoplus_{i \in I} N_i$ where N_i is a submodule of M_i for each $i \in I$. Then for each $\lambda \in \Lambda$, for each $i \in I$, there exists $N_{i,\lambda}$, submodule of M_i such that $N_{\lambda} = \bigoplus_{i \in I} N_{i,\lambda}$ and there exists P_i , submodule of M_i , such that $P = \bigoplus_{i \in I} P_i$. Since P is prime, there exists a unique $k \in I$ such that $P_k \neq M_k$. Let $r \in R$, $m \in M_k$. Assume that $rm \in P_k$ and $m \notin P_k$. Set $a = \sum_{i \in I} a_i$ where $a_k = m$ and $a_i = 0$ for $i \neq k$. Then $ra \in P$ and $a \notin P$. Since P is prime, $r \in (P : M)$. Then $rM_k \subseteq P_k$ and hence we conclude that $r \in (P_k : M_k)$. Therefore P_k is a prime submodule of M_k . We have

$$\bigoplus_{i \in I} \left(\bigcap_{\lambda \in \Lambda} N_{i,\lambda} \right) \subseteq \bigcap_{\lambda \in \Lambda} \left(\bigoplus_{i \in I} N_{i,\lambda} \right) = \bigcap_{\lambda \in \Lambda} N_{\lambda} \subseteq P = \bigoplus_{i \in I} P_i$$

Then, we have $\bigcap_{\lambda \in \Lambda} N_{k,\lambda} \subseteq P_k$. Since M_k is coprimely structured, there exists $\gamma \in \Lambda$ such that $N_{k,\gamma} + P_k \neq M_k$. Therefore

$$N_{\gamma} + P = (N_{k,\gamma} + P_k) \oplus \left(\bigoplus_{i \in I \ i \neq k} N_{i,\gamma}\right) + \left(\bigoplus_{i \in I \ i \neq k} P_i\right) \neq M_k + \left(\bigoplus_{i \in I \ i \neq k} M_i\right) = M \quad .$$

Thus, M is coprimely structured.

Example 2.8. Let $R = \mathbb{Z}$ and $M = \bigoplus_{p \text{ prime}} \mathbb{Z}_p$. Then M is an R-module. For each prime number p, \mathbb{Z}_p , being finite, is coprimely structured. Let p and q be two different prime numbers. Since p and q are coprime, there exists x and y in \mathbb{Z} such that px + qy = 1. For each $m_p \in \mathbb{Z}_p$ and $m_q \in \mathbb{Z}_q$, since $px \in \text{Ann}(m_p)$ and $qy \in \text{Ann}(m_q)$ we have $1 \in \text{Ann}(m_p) + \text{Ann}(m_q)$. Therefore, by Theorem 2.7, M is coprimely structured.

3 Coprimely Structured Property on Finitely Generated Modules

It is known that every proper submodule of a finitely generated *R*-module is contained in a maximal submodule, [3, 2.8]. Provided we work on the class of finitely generated modules, it is enough to consider maximal submodules to decide whether a module is coprimely structured, or not. The following theorem states this result.

Theorem 3.1. Let M be a finitely generated R-module. If every maximal submodule of M is coprimely structured, then M is coprimely structured.

Proof. Assume that every maximal submodule of M is coprimely structured. Let $\{N_i\}_{i \in I}$ be a family of submodules of M and P a prime submodule of M satisfying $\bigcap_{i \in I} N_i \subseteq P$. Since M is finitely generated, the submodule P is contained in a maximal submodule K of M. Then $\bigcap_{i \in I} N_i \subseteq K$, and since K is coprimely structured, there exists $j \in I$ such that $N_j + K \neq M$. Then $N_j + P \neq M$. Thus, we conclude that M is coprimely structured.

Lemma 3.2. Let M be a finitely generated R-module. The following are equivalent:

- (i) M is coprimely structured.
- (ii) Every maximal submodule K of M is strongly prime.
- (iii) For any maximal submodule K and any family $\{N_i\}_{i \in I}$ of submodules of M, $K + N_i = M$, for all $i \in I$, implies $K + \bigcap_{i \in I} N_i = M$.

Proof. (i) \Rightarrow (ii) Let $\{N_i\}_{i \in I}$ be a family of submodules of M and K a maximal submodule of M satisfying $\bigcap_{i \in I} N_i \subseteq K$. Since M is coprimely structured, $N_j + K \neq M$ for some $j \in I$. Then $N_j \subseteq K$ and hence K is strongly prime.

(ii) \Rightarrow (iii) Let $\{N_i\}_{i \in I}$ be a family of submodules of M and K a maximal submodule of M such that $K + N_i = M$ holds for each $i \in I$. We have $N_i \not\subseteq K$ for each $i \in I$. Since K is strongly prime, we obtain $\bigcap_{i \in I} N_i \not\subseteq K$. This implies $K + \bigcap_{i \in I} N_i = M$.

(iii) \Rightarrow (i) Let $\{N_i\}_{i\in I}$ be a family of submodules of \overline{M} and P a prime submodule of M satisfying $\bigcap_{i\in I} N_i \subseteq P$. Since M is finitely generated, the submodule P is contained in a maximal submodule K of M. Then we have $\bigcap_{i\in I} N_i \subseteq K$, and hence $K + \bigcap_{i\in I} N_i \neq M$. This implies $P + N_j \subseteq K + N_j \neq M$ for some $j \in I$. Therefore M is coprimely structured. \Box

It is proved in [10, 2.4] that a strongly 0-dimensional multiplication module is zero-dimensional. Actually, the proof is valid if we drop the assumption that the module is a multiplication module.

Theorem 3.3. Let *M* be a finitely generated *R*-module. Then *M* is a zero-dimensional coprimely structured module if and only if *M* is a strongly 0-dimensional module.

Proof. Follows from Theorem 2.5 and Lemma 3.2.

An *R*-module *M* is said to be a distributive module if the lattice of submodules of *M* is distributive, that is, for any submodules A, B, C of *M*, the equality $A \cap (B + C) = (A \cap B) + (A \cap C)$ holds. In [12, 2.4], Stephenson proved that for a local ring *R* and a distributive *R*-module *M*, submodules of *M* are comparable. For a comprehensive study on distributive modules the reader may refer to [7, 12].

Theorem 3.4. Let R be a local ring and M a finitely generated distributive module. Let S be a multiplicatively closed subset of R. If M is coprimely structured then $S^{-1}M$ is coprimely structured.

Proof. Let $\{N_i\}_{i \in I}$ be a family of submodules and P a prime submodule of $S^{-1}M$. Then for some family $\{K_i\}_{i \in I}$ of submodules and some prime submodule Q of M we have $N_i = S^{-1}K_i$ and $P = S^{-1}Q$. Assume that $\bigcap_{i \in I} N_i \subseteq P$. Then

$$S^{-1}\left(\bigcap_{i\in I}K_i\right)\subseteq\bigcap_{i\in I}S^{-1}K_i=\bigcap_{i\in I}N_i\subseteq P=S^{-1}Q.$$

Hence $\bigcap_{i \in I} K_i \subseteq Q$. Since M is coprimely structured, we have $K_j + Q \neq M$ for some $j \in I$. Since M is finitely generated, there exists a maximal submodule K of M such that $K_j + Q \subseteq K$. As $K_j \subseteq K$, there exists a minimal prime submodule Q_j of M such that $K_j \subseteq Q_j \subseteq K$. Then $Q_j + Q \subseteq K$. Since R is local and M is distributive, either $Q_j \subseteq Q$ or $Q \subseteq Q_j$. Then $S^{-1}Q_j \subseteq S^{-1}Q$ or $S^{-1}Q \subseteq S^{-1}Q_j$. Hence we obtain $N_j + P \neq S^{-1}M$. Therefore $S^{-1}M$ is coprimely structured.

4 Coprimely Structured Multiplication Modules

In this section we study some properties of coprimely structured multiplication modules. An R-module M is called a multiplication module if each submodule N of M is of the form IM for some ideal I of R As finitely generated modules, nonzero multiplication modules admits the property that every proper submodule is contained in a maximal submodule, by [1, 2.5], we have the following theorems on multiplication modules similar to results on finitely generated modules mentioned above. The proofs are exactly the same, and hence omitted.

Theorem 4.1. Let M be a multiplication R-module. If every maximal submodule of M is coprimely structured, then M is coprimely structured.

Lemma 4.2. Let M be a multiplication R-module. The following are equivalent:

- (i) M is coprimely structured.
- (ii) Every maximal submodule K of M is strongly prime.
- (iii) For any maximal submodule K and any family $\{N_i\}_{i \in I}$ of submodules of M, $K + N_i = M$, for all $i \in I$, implies $K + \bigcap_{i \in I} N_i = M$.

Theorem 4.3. Let M be a zero-dimensional multiplication R-module. Then M is coprimely structured if and only if M is strongly 0-dimensional.

Next, we prove a theorem that gives a characterization of coprimely structured multiplication modules in terms of families of prime submodules and maximal submodules. To this aim, we state some definitions and notations. For a submodule N of M, the radical of N, denoted by rad(N), is defined as the intersection of all prime submodules of M that contain N. In [2, 3.3], Ameri defines the product of two submodules N = IM and K = JM of a multiplication R-module M as (IJ)M. Accordingly, the product of two elements $m, m' \in M$ is defined as the product of the submodules Rm and Rm'. It is shown in [2, 3.13] that $rad(N) = \{m \in M : m^k \subseteq N \text{ for some } k \ge 0\}$ for a submodule N of a multiplication R-module M.

A family $\{N_i\}_{i \in I}$ of submodules of a multiplication R-module M is said to satisfy property (*) if for each $x \in M$, there is an $n \in \mathbb{N}$ such that $x \in \operatorname{rad}(N_i)$ implies $x^n \subseteq N_i$. We note that if we consider R as a module over itself, this property is the same as the condition A2 in [4, 7]. Accordingly, the following lemma is a generalization of [6, 2].

Lemma 4.4. A family $\{N_i\}_{i \in I}$ of submodules of a multiplication *R*-module *M* satisfies the property (*) if and only if for each subset $J \subseteq I$,

$$\operatorname{rad}(\bigcap_{i\in J} N_i) = \bigcap_{i\in J} \operatorname{rad}(N_i).$$

Proof. Let $\{N_i\}_{i\in I}$ be a family of submodules of a multiplication R-module M. Assume that the family $\{N_i\}_{i\in I}$ satisfies the property (*). Let J be a subset of I. The inclusion $\operatorname{rad}(\bigcap_{i\in J}N_i) \subseteq \bigcap_{i\in J}\operatorname{rad}(N_i)$ always holds. For the reverse inclusion let $x \in \bigcap_{i\in J}\operatorname{rad}(N_i)$. Then for all $i \in J$ we have $x \in \operatorname{rad}(N_i)$. Since $\{N_i\}_{i\in I}$ satisfies the property (*), there exists an $n \in \mathbb{N}$ such that $x^n \subseteq N_i$ for each $i \in J$. This implies $x^n \subseteq \bigcap_{i\in J}N_i$. Hence we obtain $x \in \operatorname{rad}(\bigcap_{i\in J}N_i)$. Conversely, assume for each subset J of I, that the equation $\operatorname{rad}(\bigcap_{i\in J}N_i) = \bigcap_{i\in J}\operatorname{rad}(N_i)$ holds. Let $x \in M$ and set $J = \{i \in I : x \in \operatorname{rad}(N_i)\}$. Then $x \in \bigcap_{i\in J}\operatorname{rad}(N_i) = \operatorname{rad}(\bigcap_{i\in J}N_i)$. Therefore there is an $n \in \mathbb{N}$ such that $x^n \in \bigcap_{i\in J}N_i$. Since $\bigcap_{i\in J}N_i \subseteq N_i$ for each $i \in J$, we conclude that $x^n \subseteq N_i$ for each $i \in J$. Therefore $\{N_i\}_{i\in I}$ satisfies the property (*).

Theorem 4.5. Let M be a multiplication R-module. If M is coprimely structured, then for any family $\{P_i\}_{i \in I}$ of prime submodules and any maximal submodule K of M, the inclusion $\bigcap_{i \in I} P_i \subseteq K$ implies $P_j \subseteq K$ for some $j \in I$. The converse is true if the property (*) is satisfied by any family of submodules of M.

Proof. Assume that M is coprimely structured. Let $\{P_i\}_{i \in I}$ be a family of submodules of M and K a maximal submodule of M such that $\bigcap_{i \in I} P_i \subseteq K$. We have $P_j + K \neq M$ for some $j \in I$. Thus $P_j \subseteq K$. Conversely, assume that the property (*) is satisfied by any family of submodules of M. Further, assume, for any family $\{P_i\}_{i \in I}$ of prime submodules and any maximal submodule K of M, that the inclusion $\bigcap_{i \in I} P_i \subseteq K$ implies $P_j \subseteq K$ for some $j \in I$. Let $\{N_\alpha\}_{\alpha \in A}$ be a family of submodules of M and P a prime submodule of M such that $\bigcap_{\alpha \in A} N_\alpha \subseteq P$. Then $\operatorname{rad}(\bigcap_{\alpha \in A} N_\alpha) \subseteq \operatorname{rad}(P) = P$. As M is a multiplication module, P is contained in a maximal submodule L of M. Since, by assumption, the property (*) is satisfied by $\{N_\alpha\}_{\alpha \in A}$, using Lemma 4.4, we obtain $\bigcap_{\alpha \in A} \operatorname{rad}(N_\alpha) = \operatorname{rad}(\bigcap_{\alpha \in A} N_\alpha) \subseteq P \subseteq L$. Besides, for each $\alpha \in A$,

$$\operatorname{rad}(N_{\alpha}) = \bigcap_{\substack{\beta \in B\\ N_{\alpha} \subseteq P_{\beta,\alpha}}} P_{\beta,\alpha}$$

for some family $\{P_{\beta,\alpha}\}_{\beta\in B}$ of prime submodules of M. Therefore,

$$\bigcap_{\substack{(\alpha,\beta)\in A\times B\\N_{\alpha}\subseteq P_{\beta,\alpha}}} P_{\beta,\alpha} = \bigcap_{\alpha\in A} \bigcap_{\substack{\beta\in B\\N_{\alpha}\subseteq P_{\beta,\alpha}}} P_{\beta,\alpha} = \bigcap_{\alpha\in A} \operatorname{rad}(N_{\alpha}) \subseteq L.$$

Then, by assumption, we have $P_{\lambda,\kappa} \subseteq L$ for some $(\lambda,\kappa) \in A \times B$. This implies $P_{\lambda,\kappa} + L \neq M$ for some $(\lambda,\kappa) \in A \times B$. Hence, for some $\lambda \in A$, we have $N_{\lambda} + P \subseteq P_{\lambda,\kappa} + P \subseteq P_{\lambda,\kappa} + L \neq M$. Thus M is coprimely structured.

Theorem 4.6. Let M be a multiplication R-module. Assume that the property (*) is satisfied for any family of submodules of M. Let N be a submodule of M which is contained in rad(0). Then M/N is coprimely structured if and only if M is coprimely structured.

Proof. Assume that M/N is coprimely structured. Let $\{P_i\}_{i \in I}$ be a family of prime submodules of M and K a maximal submodule of M satisfying $\bigcap_{i \in I} P_i \subseteq K$. Then, as $N \subseteq \operatorname{rad}(0)$, we obtain

$$\bigcap_{i \in I} P_i/N = (\bigcap_{i \in I} P_i)/N \subseteq K/N.$$

Since K is maximal, K/N is maximal in M/N. Then, for some $j \in I$, we have $P_j/N + K/N \neq M/N$. This implies $P_j/N \subseteq K/N$. Therefore, for some $j \in I$ the inclusion $P_j \subseteq K$ holds. Using Theorem 4.5 we conclude that M is coprimely structured. The converse follows from Corollary 2.4.

Theorem 4.7. Let *M* be a finitely generated faithful multiplication *R*-module. *M* is coprimely structured if and only if *R* is coprimely structured.

Proof. Assume that M is a coprimely structured module. Let $\{I_{\alpha}\}_{\alpha \in A}$ be a family of ideals of R and P a prime ideal of R satisfying $\bigcap_{\alpha \in A} I_{\alpha} \subseteq P$. Then, we have $\bigcap_{\alpha \in A} (I_{\alpha}M) = (\bigcap_{\alpha \in A} I_{\alpha}) M \subseteq PM$. Since M is coprimely structured, there exists $\beta \in A$ such that $(I_{\beta} + P)M = I_{\beta}M + PM \neq M$. Therefore, by [1, 3.1], we obtain $I_{\beta} + P \neq R$, and hence R is coprimely structured. Conversely, assume that R is coprimely structured. Let $\{N_{\lambda}\}_{\lambda \in L}$ be a family of submodules of M and Q' a prime submodule of M. Suppose $\bigcap_{\lambda \in L} N_{\lambda} \subseteq Q'$. Since M is a multiplication module there exist a family $\{I_{\lambda}\}_{\lambda \in L}$ of ideals of R and a prime ideal Q of R such that $N_{\lambda} = I_{\lambda}M$, for all $\lambda \in L$, and Q' = QM, by [1, 2.11]. Then, using [1, 1.6], we have $(\bigcap_{\lambda \in L} I_{\lambda})M = \bigcap_{\lambda \in L} (I_{\lambda}M) = \bigcap_{\lambda \in L} N_{\lambda} \subseteq Q' = QM$, and by [1, 3.1], we obtain $\bigcap_{\lambda \in L} I_{\lambda} \subseteq Q$. Since R is coprimely structured, there exists $\kappa \in L$ such that $I_{\kappa} + Q \neq R$. Then, using [1, 3.1], we conclude that $N_{\kappa} + Q' = (I_{\kappa}M + P)M \neq M$. Thus M is coprimely structured.

Theorem 4.8. Every Artinian multiplication module is coprimely structured.

Proof. Every Artinian multiplication module is strongly 0-dimensional by [10, 2.6]. The result follows from Theorem 2.5. \Box

5 The Property (*)

In [6], Brewer and Richman give some characterizations of zero-dimensional rings. Here we generalize some of these results under certain conditions. In particular, if R is a principal ideal ring and M is a finitely generated faithful multiplication R-module, the property (*) we introduced in Section 4 can be used to determine whether M is zero-dimensional or not. Before giving that result we need some lemma. R is assumed to be a principal ideal ring in the following.

Lemma 5.1. Let M be a finitely generated multiplication R-module and m an element of M such that Rm = IM. The following conditions are equivalent:

- (i) There exists an $n \in \mathbb{N}$ such that $I^n M = I^{n+1} M$.
- (*ii*) $IM + \bigcup_{n=1}^{\infty} (0:_M I^n) = M.$

Proof. (i) \Rightarrow (ii) Suppose that $I^n M = I^{n+1}M$ for some $n \in \mathbb{N}$. Since R is a principal ideal ring there exists an $r \in R$ such that I = (r). Then $r^n M = r^{n+1}M$. That means for each $m \in M$ there exists a $m' \in M$ such that $r^n m = r^{n+1}m'$. Then $m - rm' \in (0 :_M r^n) = (0 :_M I^n)$. Hence we have $M \subseteq IM + \bigcup_{n=1}^{\infty} (0 :_M I^n)$. The result follows.

(ii) \Rightarrow (i) Assume that $IM + \bigcup_{n=1}^{\infty} (0:_M I^n) = M$ holds. Since I is a principal ideal, I = (x) for some $x \in R$. Then we have $xM + \bigcup_{n=1}^{\infty} (0:_M x^n) = M$. Let $\{a_1, a_2, ..., a_n\}$ be a generator set for M. Then, by assumption, we have

$$a_i \in xM + \bigcup_{n=1}^{\infty} (0:_M x^n)$$

for each $i \in \{1, 2, ..., n\}$. Then, for each $i \in \{1, 2, ..., n\}$, there exists $m_i \in M$ and $n_i \in (0 : x^{k_i})$, $k_i \in \mathbb{N}$ such that $a_i = xm_i + n_i$. Set $k = max\{k_1, ..., k_n\}$. Then

$$x^{k}a_{i} = x^{k+1}m_{i} + x^{k}n_{i} = x^{k+1}m_{i} \in x^{k+1}M.$$

Hence we have $x^k M \subseteq x^{k+1}M$. The other inclusion is always true. Therefore we obtain $x^k M = x^{k+1}M$, that is $I^k M = I^{k+1}M$.

Theorem 5.2. A finitely generated faithful multiplication *R*-module *M* is zero-dimensional if and only if one of the conditions of Lemma 5.1 are satisfied for every $m \in M$.

Proof. Suppose that the condition (ii) of Lemma 5.1 is not satisfied for some $m \in M$. Then $IM + \bigcup_{n=1}^{\infty} (0:_M I^n)$ is a proper submodule of M, and hence it is contained in a prime submodule Q' of M. Then the ideal Q = (Q': M) is a prime ideal of R. Since R is a principal ideal ring, we have I = (a) for some $a \in R$. Set $S := \{a^n r : n \in \mathbb{N}, r \in R \setminus Q\}$. Assume $0 \in S$. Then there exists an $r \in R \setminus Q$ such that $a^n r = 0$. Let $x \in M$. Then we have $rx \in (0:_M a^n) = (0:_M I^n) \subseteq Q'$. As $r \notin Q = (Q':M)$ and Q' is prime, we conclude that $x \in Q'$, and hence $M \subseteq Q'$, a contradiction. Hence $0 \notin S$. Then there exists a prime ideal P of R such that $P \cap S = \emptyset$. Since $R \setminus Q \subseteq S$ we have $P \subseteq Q$. Besides $aM \subseteq Q'$, and hence $a \in Q$. However, $a \notin P$ since $a \in S$. Therefore P is a proper ideal of Q. Then, by [1, 3.1], PM is a proper submodule of QM. Thus M is not zero-dimensional.

Conversely assume that M is not zero-dimensional. Then there exist prime submodules P and Q of M such that $P \subset Q$. Let $m \in Q \setminus P$. Then Rm = IM for some ideal I of R. Suppose $\bigcup_{n=1}^{\infty} (0:_M I^n) \not\subseteq P$. Then there exists an $x \in M$ such that $I^n x = 0$ for some $n \in \mathbb{N}$ and $x \notin P$. Since I = (b) for some $b \in R$, we have $b^n x = 0 \in P$. As P is prime, we have $b^n \in (P : M)$. Then $b \in (P : M)$. Hence we obtain $m \in Rm = bM \subseteq P$, a contradiction. Therefore $\bigcup_{n=1}^{\infty} (0:_M I^n) \subseteq P \subset Q$. Besides $IM = Rm \subseteq Q$. Hence $IM + \bigcup_{n=1}^{\infty} (0:_M I^n) \subseteq Q \neq M$. This is the contrapositive of the condition (ii) of Lemma 5.1.

Theorem 5.3. Let *M* be a finitely generated faithful multiplication *R*-module. The following conditions are equivalent:

- (i) M is zero-dimensional.
- (ii) Property (*) holds for the family of all submodules of M.
- (iii) Property (*) holds for the family of all primary submodules of M.

Proof. (i) \Rightarrow (ii) Suppose that M is zero-dimensional. Then by 5.2, for each $m \in M$ there exists an $n \in \mathbb{N}$ such that $I^n M = I^{n+1}M$, where Rm = IM. Observe that the equality $I^{n+t}M = I^n M$ holds for all $t \in \mathbb{N}$. Let N be a submodule of M. If $x \in \operatorname{rad} N$, then there exists a $k \in \mathbb{N}$ such that $J^k M \subseteq N$ where Rx = JM. If n > k then $J^n M = J^{n-k}(J^k M) \subseteq J^{n-k}N \subseteq N$. If $n \leq k$ then $J^n M = J^k M \subseteq N$. In both cases we have $x^n = J^n M \subseteq N$. Therefore the property (*) holds for the family of all submodules of M.

(ii) \Rightarrow (iii) Trivial.

(iii) \Rightarrow (i) Suppose that the property (*) holds for the family of all primary submodules of M and M is not zer-dimensional. Assume that P is a prime submodule of M that is not maximal. Let $x \in M$. Since M is a multiplication module there is an ideal I of R such that Rx = IM. Let P be a minimal prime submodule of IM. For each $n \in \mathbb{N}$, define

$$Q_n = \{ m \in M : sm \in I^n M \text{ for some } s \in R \setminus (P : M) \}.$$

Set Q = (P : M). Then, by [9, 6], M_Q is a local module. Hence P_Q is the unique maximal submodule of M_Q . Observe that P is also a minimal prime submodule of $I^n M$. Then we have $rad(I^n M)_Q = P_Q$. Thus,

$$\operatorname{rad}Q_n = \operatorname{rad}((I^n M)_Q \cap R) = (\operatorname{rad}(I^n M)_Q) \cap R = P_Q \cap R = P,$$

and hence we obtain

$$(P:M)M = P = \operatorname{rad}Q_n = \operatorname{rad}((Q_n:M)M) = \sqrt{(Q_n:M)M}$$

Since M is a finitely generated faithful multiplication module, by [1, 3.1], we conclude that $\sqrt{(Q_n : M)} = (P : M)$. Now, let $r \in R$, $m \in M$ such that $rm \in Q_n$. Then there exists $s \in R \setminus (P : M)$ such that $srm \in I^n M$. If $r \notin \sqrt{(Q_n : M)}$, then $sr \in R \setminus (P : M)$. Then since $srm \in I^n M$ we obtain $m \in Q_n$. Therefore Q_n is (P : M)-primary. Then $\{Q_n\}_n \in \mathbb{N}$, is a family of primary submodules of M. Observe that $x \in P = \bigcap_{n \in \mathbb{N}} \operatorname{rad}(Q_n)$. We are to show that $x \notin \operatorname{rad}(\bigcap_{n \in \mathbb{N}} Q_n)$. Assume, on the contrary, that $x \in \operatorname{rad}(\bigcap_{n \in \mathbb{N}} Q_n)$. Then for some $k \in \mathbb{N}$ we have $x^k \subseteq \bigcap_{n \in \mathbb{N}} Q_n$. In particular, $x^k \subseteq Q_{k+1}$. Note that I is a principal ideal, hence there exists $a \in R$ such that I = (a). Since $P \neq M$ there exists $m \in M \setminus P$ and $s \in R \setminus (P : M)$ such that $sa^km = a^{k+1}m'$ for some $m' \in M$. Since M is torsion-free, we conclude that $sm = am' \in IM \subseteq P$ and this contradicting our choice $m \in M \setminus P$. Hence we must have $x \notin \operatorname{rad}(\bigcap_{n \in \mathbb{N}} Q_n)$. Therefore we obtain a family of primary submodules $Q_n, n \in M$, of M for which the property (*) does not hold.

References

- [1] Z. Abd El-Bast and P. P. Smith, Multiplication modules, Comm. Algebra 16, 755–779 (1998).
- [2] R. Ameri, On the prime submodules of multiplication modules, *Int. J. Math. Math. Sci.* 27, 1715–1724 (2003).
- [3] W. F. Anderson nd K. R. Fuller, *Rings and Categories of Modules*, Springer Science & Business Media, (2012).
- [4] M. Arapović, On the embedding of a commutative ring into a 0-dimensional ring, *Glas. Mat.* **18**, 53–59 (1983).
- [5] A. Barnard, Multiplication modules, J. Algebra 71, 174–178 (1981).
- [6] J. Brewer and F. Richman, Subrings of zero-dimensional rings, in: J. W. Brewer, S. Glaz, W. Heinzer, and B. Olberding (Eds.) *Multiplicative Ideal Theory in Commutative Algebra*, pp. 73–88, Springer US, (2006).
- [7] V. Erdogdu, Distributive modules, Canad. Math. Bull. 30, 248–254 (1987).
- [8] C. Jayaram, K. H. Oral and Ü. Tekir, Strongly 0-dimensional rings, Comm. Algebra 41, 2026–2032 (2013).
- [9] C. P. Lu, Spectra of modules, Comm. Algebra 23, 3741-3752 (1995).
- [10] K. H. Oral, N. A. Özkirisçi and Ü. Tekir, Strongly 0-dimensional modules, *Canad. Math. Bull.* 57, 159– 165 (2013).
- [11] N. A. Özkirisçi, K. H. Oral and Ü. Tekir, Coprimely structured rings, *Turkish J. Math.* 40, 719–727 (2015).
- [12] W. Stephenson, Modules whose lattice of submodules is distributive, *Proc. Lond. Math. Soc.* 28, 291–310 (1974).

Author information

Zehra Bilgin, Department of Philosophy, Istanbul Medeniyet University, Kadiköy, Istanbul, TURKEY. E-mail: zehrabilgin.zb@gmail.com

Kürsat Hakan Oral, Istanbul, TURKEY. E-mail: khoral993@gmail.com