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Abstract Let R be a commutative ring with identity. A prime submodule P of an R-module
M is called coprimely structured if, whenever P is coprime to each element of an arbitrary fam-
ily of submodules of M , the intersection of the family is not contained in P . An R-module M
is called coprimely structured provided each prime submodule of M is coprimely structured. In
this paper, properties of coprimely structured modules are examined. Severals results for co-
primely structured finitely generated modules and coprimely structured multiplication modules
are obtained.

1 Introduction

Throughout this paper, all rings are commutative and with identity. Coprimely structured rings
are introduced in [11]. In this paper, we generalize this concept to the class of modules. Let R be
a ring. A prime submoduleQ of anR-moduleM is called coprimely structured if for each family
{Ni}i∈I of submodules of R whenever Ni+Q =M for each i ∈ I , we have

⋂
i∈I Ni 6⊆ Q. M is

called a copimely structured module if each of its prime submodules is coprimely structured. In
Section 2, definitions and general results are given. Direct sums of modules are examined and a
sufficient condition for a direct sum of coprimely structured modules being coprimely structured
is stated [Theorem 2.7].

In Section 3, finitely generated modules are discussed. For a finitely generated module, it can
be decided whether the module is coprimely structured or not by examining only maximal ideals
instead of all prime ideals [Theorem 3.1]. The property of an R-module’s being coprimely
structured is transported to its localization in case of R is local and the module is a finitely
generated distributive R-module [Theorem 3.4].

An R-module M is called a multiplication module if each submodule N of M is of the form
IM for some ideal I of R. Multiplication modules are studied widely in the literature, see [1, 5].
In the category of multiplication modules, many properties of coprimely structured modules
can be characterized. The radical of an ideal I of R is defined as the intersection of all prime
ideals that contain I . Similarly, the radical of a submodule N , rad(N), of a module M is the
intersection of all prime submodules of M that contains N . When R is viewed as a module over
itself, the definitions of the radical of an ideal and the radical of a submodule coincide. In [2], the
product of two submodules N = IM and K = JM of a multiplication R-module M is defined
as (IJ)M . Accordingly, the product of two elements m,m′ ∈M is defined as the product of the
submodules Rm and Rm′. Using this definition, it is proved in [2] that

rad(N) = {m ∈M : mk ⊆ N for some k ≥ 0}

for a submodule N of a multiplication R-module M . Section 4 is reserved for multiplication
modules. A family {Ni}i∈I of submodules of a multiplication R-module M is said to satisfy
property (*) if for each x ∈ M , there is an n ∈ N such that x ∈ rad(Ni) implies xn ⊆ Ni.
With the aid of the property (*), it is possible to characterize coprimely structured multiplication
modules in terms of prime submodules and maximal submodules [Theorem 4.5]. Besides, the
property (*) is proved to be useful to give a sufficient condition for a module to be coprimely
structured provided a particular quotient of the module is coprimely structured [Theorem 4.6].
In case of M is a finitely generated faithful multiplication R-module, M is coprimely structured
if and only if R is coprimely structured [Theorem 4.7].
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In Section 5, the relation between the property (*) and finitely generated multiplication mod-
ules is examined. In particular, if R is a principal ideal ring and M is a finitely generated faithful
multiplication module, this property can be used to obtain information about M ’s being zero-
dimensional [Theorem 5.3].

2 Coprimely Structured Modules

In this section, we define coprimely structured modules and investigate some basic properties
of them. Also we consider the relation between coprimely structured modules and strongly
0-dimensional modules.

Definition 2.1. Let M be an R-module and {Ni}i∈I a family of submodules of M . A prime
submodule P of M is said to be a coprimely structured submodule of M if Ni + P =M , for all
i ∈ I , implies

⋂
i∈I Ni * P . An R-module M is called a coprimely structured module if every

prime submodule of M is coprimely structured.

Note that not every module is a coprimely structured module. Here is an example:

Example 2.2. Let R = Z, M = Z × Z. Conside the family of submodules {Nn = nZ× nZ :
n ∈ N, n odd } of M . We have

⋂
n∈N
nodd

Nn = (0). Observe that 2Z× 2Z is a prime submodule of
M and

⋂
n∈N
nodd

Nn ⊂ 2Z× 2Z. However, for each n ∈ N, n odd, we have Nn + 2Z × 2Z = M .
Thus M is not coprimely structured.

Theorem 2.3. Every homomorphic image of a coprimely structured module is coprimely struc-
tured.

Proof. Let M be a coprimely structured R-module, and M ′ an R-module. Let f : M → M ′

be an R-module homomorphism. Assume that for a family of submodules {N ′i}i∈I and a prime
submodule P ′ of f(M), the inclusion

⋂
i∈I N

′
i ⊆ P ′ holds. Then there exist a family of sub-

modules {Ni}i∈I of M and a prime submodule P of M such that each Ni and P contain kerf ,
and for all i ∈ I , the equalities f(Ni) = N ′i and f(P ) = P ′ hold. Then

f(
⋂
i∈I

Ni) ⊆
⋂
i∈I

f(Ni) =
⋂
i∈I

N ′i ⊆ P ′ = f(P )

and hence
⋂
i∈I Ni ⊆ P . AsM is coprimely structured, there exists j ∈ I such thatNj+P 6=M .

Since both Nj and P contain kerf , we conclude that N ′j + P ′ = f(Nj + P ) 6= f(M). Thus
f(M) is coprimely structured.

Corollary 2.4. Let M be an R-module and N a submodule of M . If M is coprimely structured,
so is M/N .

A prime submodule P of an R-module M is called a strongly prime submodule provided for
any family {Ni}i∈I of submodules of M , the inclusion

⋂
i∈I Ni ⊆ P implies Nj ⊆ P for some

j ∈ I . An R-module M is a strongly 0-dimensional module if each of its prime submodules
is strongly prime. Strongly 0-dimensional multiplication modules are introduced and studied
in [10]. The following theorem states the relation between coprimely structured modules and
strongly 0-dimensional modules.

Theorem 2.5. Every strongly 0-dimensional R-module is coprimely structured.

Proof. Let M be a strongly 0-dimensional R-module, {Ni}i∈I a family of submodules of M
and P a prime submodule of M . Suppose that the equation Ni + P = M is satisfied for all
i ∈ I . Assume that

⋂
i∈I Ni ⊆ P . Since M is strongly 0-dimensional, there exists j ∈ I

such that Nj ⊆ P . Then we have M = Nj + P = P which is a contradiction. Therefore⋂
i∈I Ni 6⊆ P .

By Theorem 2.3, if a direct sum is coprimely structured so is each of its direct summands.
We are to investigate when the converse is true. In [7, 2.1], Erdogdu characterizes the submodule
structure of direct sum of two modules. For two R-modules M and N , if Ann(x)+Ann(y) = R
for each x ∈ M and y ∈ N , then every submodule of M ⊕ N is of the form A ⊕ B for some
submodule A of M and some submodule B of N . We generalize this result to an arbitrary direct
sum.
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Lemma 2.6. Let Mi, i ∈ I , be R-modules. The following are equivalent:

(i) Ann(mi) + Ann(mj) = R for each mi ∈Mi and i 6= j.

(ii) Each submodule of
⊕

i∈IMi is of the form
⊕

i∈I Ni, where Ni is a submodule of Mi for
each i ∈ I .

Proof. (i)⇒(ii) Suppose that Ann(mi) + Ann(mj) = R for each mi ∈ Mi and i 6= j. We first
prove that Ann((mi1 , ...,min−1)) + Ann(min) = R for each n ∈ N, mij ∈ Mij and 1 ≤ j ≤ n.
Let n ∈ N. We prove the statement by induction on n. Let mi ∈ Mi. For n = 2 the result
follows from the assumption. Let n = 3. By assumption, we have 1 = a + b = c + d where
a ∈ Ann(m1), c ∈ Ann(m2) and b, d ∈ Ann(m3) . Then

1 = (a+ b)(c+ d) = ac+ ad+ bc+ bd.

Since ac ∈ Ann((m1,m2)) and ad+ bc+ bd ∈ Ann(m3) we have

Ann((m1,m2)) + Ann(m3) = R.

Let n = k. Assume that Ann((mi1 , ...,mil−1))+Ann(mil) = R for 2 ≤ l ≤ k−1, ij ∈ {1, ..., k}.
Then,

Ann((mi1 , ...,mik−2 ,mik−1)) + Ann(mik)

= Ann(((mi1 , ...,mik−2),mik−1)) + Ann(mik)

= R

since, by assumption, we have

Ann((mi1 , ...,mik−2)) + Ann(mik) = R

and Ann(mik−1) + Ann(mik) = R.
Now, let N be a submodule of M =

⊕
i∈IMi. Let n ∈ N . Then n =

∑
i∈I mi, where

mi1 , ...,mik are nonzero and mi = 0 for i 6= i1, ..., ik. For each l ∈ {1, ..., k},

1 = al + bl

where al ∈ Ann(((mi1 , ...,mil−1 ,mil+1 , ...,mik))) and bl ∈ Ann(mil). Then

1 =
k∏
l=1

(al + bl) = (a1b2...bk + a2b1b3...bk + ...+ akb1...bk−1)

+ b1...bk +

∑
2≤r

at1 ...atrbs1 ...bsp

 .

Observe that the terms in the second line of the right hand side are contained in Ann(mil) for
each l ∈ {1, ..., k}. On the other hand, for each j ∈ {1, ..., k}, we have

(ajb1...bj−1bj+1...bk)n = (ajb1...bj−1bj+1...bk)ιij (mij ) ∈ N ∩ ιij (Mij )

where ιi : Mi →
⊕

i∈IMi is the ith natural injection. Hence

n = 1.n =

[
k∏
l=1

(al + bl)

]
n =

∑
i∈I

ci

where ci1 = (a1b2...bk)mi1 , ci2 = (a2b1b3...bk)mi2 ,..., cik = (akb1...bk−1)mik and ci = 0 for
i ∈ I − {i1, ..., ik}. Then n ∈

⊕
i∈I(N ∩ ιi(Mi)) ⊆ N . Therefore N =

⊕
i∈I(N ∩ ιi(Mi)).

(ii)⇒(i)Assume that N is a submodule of M =
⊕

i∈IMi. Then, by assumption, N =⊕
i∈I Ni for some submodule Ni of Mi for each i ∈ I . Observe that

N ∩ ιi(Mi) =

(⊕
i∈I

Ni

)
∩ ιi(Mi) = ιi(Ni).
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Hence N =
⊕

i∈I Ni =
⊕

i∈I(N ∩ ιi(Mi)). Let i, j ∈ I and mi ∈ Mi, mj ∈ Mj . Set
a =

∑
k∈I ak ∈ M where ai = mi, aj = mj and ak = 0 for k 6= i, j. Since Ra is a

submodule of M , by the above argument Ra =
⊕

i∈I(Ra ∩ ιi(Mi)). Then a =
∑
k∈I nk where

nk ∈ Ra∩ ιk(Mk). Set b =
∑
k∈I bk ∈M where bi = mi, bj = nj and bk = 0 for k 6= i, j. Then

a− b =
∑
k∈I ak −

∑
k∈I bk =

∑
k∈I nk −

∑
k∈I bk. Comparing the corresponding indices, we

obtain ni − mi = 0 and mj − nj = 0. Hence mi = ni and mj = nj . For each k ∈ I , since
ιk(nk) ∈ Ra ∩ ιk(Mk), there exists rk ∈ R such that rka = ιk(nk) ∈ ιk(Mk). In particular,
ιj(nj) = rja. Using the equailities ni = mi and nj = mj , we get rjmi = 0 and mj = rjmj .
Then rj ∈ Ann(mi) and 1− rj ∈ Ann(mj). Therefore

1 = rj + (1− rj) ∈ Ann(mi) + Ann(mj)

and hence Ann(mi) + Ann(mj) = R.

Theorem 2.7. Let Mi, i ∈ I , be coprimely structured R-modules and assume that Ann(mi) +
Ann(mj) = R for each, mi ∈Mi, i, j ∈ I , i 6= j. Then M =

⊕
i∈IMi is coprimely structured.

Proof. Let Nλ, λ ∈ Λ, be a family of submodules and P a prime submodule of M such that⋂
λ∈Λ

Nλ ⊆ P . By Lemma 2.6, each submodule of M is of the form
⊕

i∈I Ni where Ni is
a submodule of Mi for each i ∈ I . Then for each λ ∈ Λ, for each i ∈ I , there exists Ni,λ,
submodule of Mi such that Nλ =

⊕
i∈I Ni,λ and there exists Pi, submodule of Mi, such that

P =
⊕

i∈I Pi. Since P is prime, there exists a unique k ∈ I such that Pk 6= Mk. Let r ∈ R,
m ∈ Mk. Assume that rm ∈ Pk and m 6∈ Pk. Set a =

∑
i∈I ai where ak = m and ai = 0 for

i 6= k. Then ra ∈ P and a 6∈ P . Since P is prime, r ∈ (P : M). Then rMk ⊆ Pk and hence we
conclude that r ∈ (Pk : Mk). Therefore Pk is a prime submodule of Mk. We have

⊕
i∈I

(⋂
λ∈Λ

Ni,λ

)
⊆
⋂
λ∈Λ

(⊕
i∈I

Ni,λ

)
=
⋂
λ∈Λ

Nλ ⊆ P =
⊕
i∈I

Pi .

Then, we have
⋂
λ∈Λ

Nk,λ ⊆ Pk. Since Mk is coprimely structured, there exists γ ∈ Λ such that
Nk,γ + Pk 6=Mk. Therefore

Nγ + P = (Nk,γ + Pk)⊕

⊕
i∈I
i6=k

Ni,γ

+

⊕
i∈I
i6=k

Pi

 6=Mk +

⊕
i∈I
i6=k

Mi

 =M .

Thus, M is coprimely structured.

Example 2.8. Let R = Z and M =
⊕

p prime Zp. Then M is an R-module. For each prime
number p, Zp, being finite, is coprimely structured. Let p and q be two different prime numbers.
Since p and q are coprime, there exists x and y in Z such that px + qy = 1. For each mp ∈ Zp
and mq ∈ Zq, since px ∈ Ann(mp) and qy ∈ Ann(mq) we have 1 ∈ Ann(mp) + Ann(mq).
Therefore, by Theorem 2.7, M is coprimely structured.

3 Coprimely Structured Property on Finitely Generated Modules

It is known that every proper submodule of a finitely generated R-module is contained in a
maximal submodule, [3, 2.8]. Provided we work on the class of finitely generated modules, it is
enough to consider maximal submodules to decide whether a module is coprimely structured, or
not. The following theorem states this result.

Theorem 3.1. Let M be a finitely generated R-module. If every maximal submodule of M is
coprimely structured, then M is coprimely structured.

Proof. Assume that every maximal submodule of M is coprimely structured. Let {Ni}i∈I be
a family of submodules of M and P a prime submodule of M satisfying

⋂
i∈I Ni ⊆ P . Since

M is finitely generated, the submodule P is contained in a maximal submodule K of M . Then⋂
i∈I Ni ⊆ K, and since K is coprimely structured, there exists j ∈ I such that Nj +K 6= M .

Then Nj + P 6=M . Thus, we conclude that M is coprimely structured.
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Lemma 3.2. Let M be a finitely generated R-module. The following are equivalent:

(i) M is coprimely structured.

(ii) Every maximal submodule K of M is strongly prime.

(iii) For any maximal submoduleK and any family {Ni}i∈I of submodules ofM , K+Ni =M ,
for all i ∈ I , implies K +

⋂
i∈I Ni =M .

Proof. (i)⇒(ii) Let {Ni}i∈I be a family of submodules of M and K a maximal submodule of M
satisfying

⋂
i∈I Ni ⊆ K. Since M is coprimely structured, Nj +K 6= M for some j ∈ I . Then

Nj ⊆ K and hence K is strongly prime.
(ii)⇒(iii) Let {Ni}i∈I be a family of submodules of M and K a maximal submodule of M such
that K + Ni = M holds for each i ∈ I . We have Ni 6⊆ K for each i ∈ I . Since K is strongly
prime, we obtain

⋂
i∈I Ni 6⊆ K. This implies K +

⋂
i∈I Ni =M .

(iii)⇒(i) Let {Ni}i∈I be a family of submodules of M and P a prime submodule of M satisfy-
ing

⋂
i∈I Ni ⊆ P . Since M is finitely generated, the submodule P is contained in a maximal

submodule K of M . Then we have
⋂
i∈I Ni ⊆ K, and hence K +

⋂
i∈I Ni 6= M . This implies

P +Nj ⊆ K +Nj 6=M for some j ∈ I . Therefore M is coprimely structured.

It is proved in [10, 2.4] that a strongly 0-dimensional multiplication module is zero-dimensional.
Actually, the proof is valid if we drop the assumption that the module is a multiplication module.

Theorem 3.3. LetM be a finitely generatedR-module. ThenM is a zero-dimensional coprimely
structured module if and only if M is a strongly 0-dimensional module.

Proof. Follows from Theorem 2.5 and Lemma 3.2.

An R-module M is said to be a distributive module if the lattice of submodules of M is
distributive, that is, for any submodules A,B,C of M , the equality A ∩ (B + C) = (A ∩ B) +
(A∩C) holds. In [12, 2.4], Stephenson proved that for a local ringR and a distributiveR-module
M , submodules of M are comparable. For a comprehensive study on distributive modules the
reader may refer to [7, 12].

Theorem 3.4. Let R be a local ring and M a finitely generated distributive module. Let S be
a multiplicatively closed subset of R. If M is coprimely structured then S−1M is coprimely
structured.

Proof. Let {Ni}i∈I be a family of submodules and P a prime submodule of S−1M . Then for
some family {Ki}i∈I of submodules and some prime submodule Q of M we have Ni = S−1Ki

and P = S−1Q. Assume that
⋂
i∈I Ni ⊆ P . Then

S−1

(⋂
i∈I

Ki

)
⊆
⋂
i∈I

S−1Ki =
⋂
i∈I

Ni ⊆ P = S−1Q.

Hence
⋂
i∈I Ki ⊆ Q. Since M is coprimely structured, we have Kj + Q 6= M for some j ∈ I .

Since M is finitely generated, there exists a maximal submodule K of M such that Kj+Q ⊆ K.
As Kj ⊆ K, there exists a minimal prime submodule Qj of M such that Kj ⊆ Qj ⊆ K.
Then Qj + Q ⊆ K. Since R is local and M is distributive, either Qj ⊆ Q or Q ⊆ Qj . Then
S−1Qj ⊆ S−1Q or S−1Q ⊆ S−1Qj . Hence we obtain Nj + P 6= S−1M . Therefore S−1M is
coprimely structured.

4 Coprimely Structured Multiplication Modules

In this section we study some properties of coprimely structured multiplication modules. An
R-module M is called a multiplication module if each submodule N of M is of the form IM
for some ideal I of R As finitely generated modules, nonzero multiplication modules admits
the property that every proper submodule is contained in a maximal submodule, by [1, 2.5], we
have the following theorems on multiplication modules similar to results on finitely generated
modules mentioned above. The proofs are exactly the same, and hence omitted.
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Theorem 4.1. Let M be a multiplication R-module. If every maximal submodule of M is co-
primely structured, then M is coprimely structured.

Lemma 4.2. Let M be a multiplication R-module. The following are equivalent:

(i) M is coprimely structured.

(ii) Every maximal submodule K of M is strongly prime.

(iii) For any maximal submoduleK and any family {Ni}i∈I of submodules ofM , K+Ni =M ,
for all i ∈ I , implies K +

⋂
i∈I Ni =M .

Theorem 4.3. Let M be a zero-dimensional multiplication R-module. Then M is coprimely
structured if and only if M is strongly 0-dimensional.

Next, we prove a theorem that gives a characterization of coprimely structured multiplication
modules in terms of families of prime submodules and maximal submodules. To this aim, we
state some definitions and notations. For a submodule N of M , the radical of N , denoted by
rad(N), is defined as the intersection of all prime submodules of M that contain N . In [2, 3.3],
Ameri defines the product of two submodules N = IM and K = JM of a multiplication R-
module M as (IJ)M . Accordingly, the product of two elements m,m′ ∈ M is defined as the
product of the submodules Rm and Rm′. It is shown in [2, 3.13] that rad(N) = {m ∈ M :
mk ⊆ N for some k ≥ 0} for a submodule N of a multiplication R-module M .

A family {Ni}i∈I of submodules of a multiplication R-module M is said to satisfy property
(*) if for each x ∈ M , there is an n ∈ N such that x ∈ rad(Ni) implies xn ⊆ Ni. We note that
if we consider R as a module over itself, this property is the same as the condition A2 in [4, 7].
Accordingly, the following lemma is a generalization of [6, 2].

Lemma 4.4. A family {Ni}i∈I of submodules of a multiplication R-module M satisfies the prop-
erty (*) if and only if for each subset J ⊆ I ,

rad(
⋂
i∈J

Ni) =
⋂
i∈J

rad(Ni).

Proof. Let {Ni}i∈I be a family of submodules of a multiplicationR-moduleM . Assume that the
family {Ni}i∈I satisfies the property (*). Let J be a subset of I . The inclusion rad(

⋂
i∈J Ni) ⊆⋂

i∈J rad(Ni) always holds. For the reverse inclusion let x ∈
⋂
i∈J rad(Ni). Then for all i ∈ J

we have x ∈ rad(Ni). Since {Ni}i∈I satisfies the property (*), there exists an n ∈ N such that
xn ⊆ Ni for each i ∈ J . This implies xn ⊆

⋂
i∈J Ni. Hence we obtain x ∈ rad(

⋂
i∈J Ni).

Conversely, assume for each subset J of I , that the equation rad(
⋂
i∈J Ni) =

⋂
i∈J rad(Ni)

holds. Let x ∈ M and set J = {i ∈ I : x ∈ rad(Ni)}. Then x ∈
⋂
i∈J rad(Ni) = rad(

⋂
i∈J Ni).

Therefore there is an n ∈ N such that xn ∈
⋂
i∈J Ni. Since

⋂
i∈J Ni ⊆ Ni for each i ∈ J , we

conclude that xn ⊆ Ni for each i ∈ J . Therefore {Ni}i∈I satisfies the property (*).

Theorem 4.5. Let M be a multiplication R-module. If M is coprimely structured, then for
any family {Pi}i∈I of prime submodules and any maximal submodule K of M , the inclusion⋂
i∈I Pi ⊆ K implies Pj ⊆ K for some j ∈ I . The converse is true if the property (*) is satisfied

by any family of submodules of M .

Proof. Assume thatM is coprimely structured. Let {Pi}i∈I be a family of submodules ofM and
K a maximal submodule of M such that

⋂
i∈I Pi ⊆ K. We have Pj +K 6= M for some j ∈ I .

Thus Pj ⊆ K. Conversely, assume that the property (*) is satisfied by any family of submodules
ofM . Further, assume, for any family {Pi}i∈I of prime submodules and any maximal submodule
K of M , that the inclusion

⋂
i∈I Pi ⊆ K implies Pj ⊆ K for some j ∈ I . Let {Nα}α∈A be a

family of submodules of M and P a prime submodule of M such that
⋂
α∈ANα ⊆ P . Then

rad(
⋂
α∈ANα) ⊆ rad(P ) = P . As M is a multiplication module, P is contained in a maximal

submodule L of M . Since, by assumption, the property (*) is satisfied by {Nα}α∈A, using
Lemma 4.4, we obtain

⋂
α∈A rad(Nα) = rad(

⋂
α∈ANα) ⊆ P ⊆ L. Besides, for each α ∈ A,

rad(Nα) =
⋂
β∈B

Nα⊆Pβ,α

Pβ,α
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for some family {Pβ,α}β∈B of prime submodules of M . Therefore,⋂
(α,β)∈A×B
Nα⊆Pβ,α

Pβ,α =
⋂
α∈A

⋂
β∈B

Nα⊆Pβ,α

Pβ,α =
⋂
α∈A

rad(Nα) ⊆ L.

Then, by assumption, we have Pλ,κ ⊆ L for some (λ, κ) ∈ A×B. This implies Pλ,κ + L 6= M
for some (λ, κ) ∈ A×B. Hence, for some λ ∈ A, we haveNλ+P ⊆ Pλ,κ+P ⊆ Pλ,κ+L 6=M .
Thus M is coprimely structured.

Theorem 4.6. Let M be a multiplication R-module. Assume that the property (*) is satisfied for
any family of submodules of M . Let N be a submodule of M which is contained in rad(0). Then
M/N is coprimely structured if and only if M is coprimely structured.

Proof. Assume that M/N is coprimely structured. Let {Pi}i∈I be a family of prime submodules
of M and K a maximal submodule of M satisfying

⋂
i∈I Pi ⊆ K. Then, as N ⊆ rad(0), we

obtain ⋂
i∈I

Pi/N = (
⋂
i∈I

Pi)/N ⊆ K/N.

Since K is maximal, K/N is maximal in M/N . Then, for some j ∈ I , we have Pj/N +K/N 6=
M/N . This implies Pj/N ⊆ K/N . Therefore, for some j ∈ I the inclusion Pj ⊆ K holds.
Using Theorem 4.5 we conclude that M is coprimely structured. The converse follows from
Corollary 2.4.

Theorem 4.7. Let M be a finitely generated faithful multiplication R-module. M is coprimely
structured if and only if R is coprimely structured.

Proof. Assume that M is a coprimely structured module. Let {Iα}α∈A be a family of ide-
als of R and P a prime ideal of R satisfying

⋂
α∈A Iα ⊆ P . Then, we have

⋂
α∈A(IαM) =(⋂

α∈A Iα
)
M ⊆ PM . Since M is coprimely structured, there exists β ∈ A such that (Iβ +

P )M = IβM + PM 6= M . Therefore, by [1, 3.1], we obtain Iβ + P 6= R, and hence R is
coprimely structured. Conversely, assume that R is coprimely structured. Let {Nλ}λ∈L be a
family of submodules of M and Q′ a prime submodule of M . Suppose

⋂
λ∈LNλ ⊆ Q′. Since

M is a multiplication module there exist a family {Iλ}λ∈L of ideals of R and a prime ideal Q
of R such that Nλ = IλM , for all λ ∈ L, and Q′ = QM , by [1, 2.11]. Then, using [1, 1.6],
we have (

⋂
λ∈L Iλ)M =

⋂
λ∈L(IλM) =

⋂
λ∈LNλ ⊆ Q′ = QM , and by [1, 3.1], we obtain⋂

λ∈L Iλ ⊆ Q. Since R is coprimely structured, there exists κ ∈ L such that Iκ + Q 6= R.
Then, using [1, 3.1], we conclude that Nκ + Q′ = (IκM + P )M 6= M . Thus M is coprimely
structured.

Theorem 4.8. Every Artinian multiplication module is coprimely structured.

Proof. Every Artinian multiplication module is strongly 0-dimensional by [10, 2.6]. The result
follows from Theorem 2.5.

5 The Property (*)

In [6], Brewer and Richman give some characterizations of zero-dimensional rings. Here we
generalize some of these results under certain conditions. In particular, if R is a principal ideal
ring and M is a finitely generated faithful multiplication R-module, the property (*) we intro-
duced in Section 4 can be used to determine whetherM is zero-dimensional or not. Before giving
that result we need some lemma. R is assumed to be a principal ideal ring in the following.

Lemma 5.1. Let M be a finitely generated multiplication R-module and m an element of M
such that Rm = IM . The following conditions are equivalent:

(i) There exists an n ∈ N such that InM = In+1M .

(ii) IM +
⋃∞
n=1(0 :M In) =M .
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Proof. (i)⇒(ii) Suppose that InM = In+1M for some n ∈ N. Since R is a principal ideal ring
there exists an r ∈ R such that I = (r). Then rnM = rn+1M . That means for each m ∈ M
there exists a m′ ∈ M such that rnm = rn+1m′. Then m − rm′ ∈ (0 :M rn) = (0 :M In).
Hence we have M ⊆ IM +

⋃∞
n=1(0 :M In). The result follows.

(ii)⇒(i) Assume that IM +
⋃∞
n=1(0 :M In) =M holds. Since I is a principal ideal, I = (x)

for some x ∈ R. Then we have xM +
⋃∞
n=1(0 :M xn) = M . Let {a1, a2, ..., an} be a generator

set for M . Then, by assumption, we have

ai ∈ xM +
∞⋃
n=1

(0 :M xn)

for each i ∈ {1, 2, ..., n}. Then, for each i ∈ {1, 2, ..., n}, there existsmi ∈M and ni ∈ (0 : xki),
ki ∈ N such that ai = xmi + ni. Set k = max{k1, ..., kn}. Then

xkai = xk+1mi + xkni = xk+1mi ∈ xk+1M.

Hence we have xkM ⊆ xk+1M . The other inclusion is always true. Therefore we obtain xkM =
xk+1M , that is IkM = Ik+1M .

Theorem 5.2. A finitely generated faithful multiplication R-module M is zero-dimensional if
and only if one of the conditions of Lemma 5.1 are satisfied for every m ∈M .

Proof. Suppose that the condition (ii) of Lemma 5.1 is not satisfied for some m ∈ M . Then
IM +

⋃∞
n=1(0 :M In) is a proper submodule of M , and hence it is contained in a prime sub-

module Q′ of M . Then the ideal Q = (Q′ : M) is a prime ideal of R. Since R is a principal
ideal ring, we have I = (a) for some a ∈ R. Set S := {anr : n ∈ N, r ∈ R\Q}. As-
sume 0 ∈ S. Then there exists an r ∈ R\Q such that anr = 0. Let x ∈ M . Then we have
rx ∈ (0 :M an) = (0 :M In) ⊆ Q′. As r 6∈ Q = (Q′ : M) and Q′ is prime, we conclude that
x ∈ Q′, and hence M ⊆ Q′, a contradiction. Hence 0 6∈ S. Then there exists a prime ideal P of
R such that P ∩ S = ∅. Since R\Q ⊆ S we have P ⊆ Q. Besides aM ⊆ Q′, and hence a ∈ Q.
However, a 6∈ P since a ∈ S. Therefore P is a proper ideal of Q. Then, by [1, 3.1], PM is a
proper submodule of QM . Thus M is not zero-dimensional.

Conversely assume that M is not zero-dimensional. Then there exist prime submodules P
and Q of M such that P ⊂ Q. Let m ∈ Q\P . Then Rm = IM for some ideal I of R. Suppose⋃∞
n=1(0 :M In) 6⊆ P . Then there exists an x ∈M such that Inx = 0 for some n ∈ N and x 6∈ P .

Since I = (b) for some b ∈ R, we have bnx = 0 ∈ P . As P is prime, we have bn ∈ (P : M).
Then b ∈ (P : M). Hence we obtain m ∈ Rm = bM ⊆ P , a contradiction. Therefore⋃∞
n=1(0 :M In) ⊆ P ⊂ Q. Besides IM = Rm ⊆ Q. Hence IM +

⋃∞
n=1(0 :M In) ⊆ Q 6= M .

This is the contrapositive of the condition (ii) of Lemma 5.1.

Theorem 5.3. Let M be a finitely generated faithful multiplication R-module. The following
conditions are equivalent:

(i) M is zero-dimensional.

(ii) Property (*) holds for the family of all submodules of M .

(iii) Property (*) holds for the family of all primary submodules of M .

Proof. (i)⇒(ii) Suppose that M is zero-dimensional. Then by 5.2, for each m ∈ M there exists
an n ∈ N such that InM = In+1M , whereRm = IM . Observe that the equality In+tM = InM
holds for all t ∈ N. Let N be a submodule of M . If x ∈ radN , then there exists a k ∈ N such
that JkM ⊆ N where Rx = JM . If n > k then JnM = Jn−k(JkM) ⊆ Jn−kN ⊆ N . If n ≤ k
then JnM = JkM ⊆ N . In both cases we have xn = JnM ⊆ N . Therefore the property (*)
holds for the family of all submodules of M .

(ii)⇒(iii) Trivial.
(iii)⇒(i) Suppose that the property (*) holds for the family of all primary submodules of M

and M is not zer-dimensional. Assume that P is a prime submodule of M that is not maximal.
Let x ∈M . Since M is a multiplication module there is an ideal I of R such that Rx = IM . Let
P be a minimal prime submodule of IM . For each n ∈ N, define

Qn = {m ∈M : sm ∈ InM for some s ∈ R\(P : M)}.



COPRIMELY STRUCTURED MODULES 169

Set Q = (P : M). Then, by [9, 6], MQ is a local module. Hence PQ is the unique maximal
submodule of MQ. Observe that P is also a minimal prime submodule of InM . Then we have
rad(InM)Q = PQ. Thus,

radQn = rad((InM)Q ∩R) = (rad(InM)Q) ∩R = PQ ∩R = P,

and hence we obtain

(P : M)M = P = radQn = rad((Qn : M)M) =
√
(Qn : M)M.

Since M is a finitely generated faithful multiplication module, by [1, 3.1], we conclude that√
(Qn : M) = (P : M). Now, let r ∈ R, m ∈ M such that rm ∈ Qn. Then there exists

s ∈ R\(P : M) such that srm ∈ InM . If r 6∈
√
(Qn : M), then sr ∈ R\(P : M). Then

since srm ∈ InM we obtain m ∈ Qn. Therefore Qn is (P : M)-primary. Then {Qn}n ∈ N,
is a family of primary submodules of M . Observe that x ∈ P =

⋂
n∈N rad(Qn). We are to

show that x 6∈ rad(
⋂
n∈NQn). Assume, on the contrary, that x ∈ rad(

⋂
n∈NQn). Then for

some k ∈ N we have xk ⊆
⋂
n∈NQn. In particular, xk ⊆ Qk+1. Note that I is a principal

ideal, hence there exists a ∈ R such that I = (a). Since P 6= M there exists m ∈ M\P and
s ∈ R\(P : M) such that sakm = ak+1m′ for some m′ ∈ M . Since M is torsion-free, we
conclude that sm = am′ ∈ IM ⊆ P and this contradicting our choice m ∈ M\P . Hence we
must have x 6∈ rad(

⋂
n∈NQn). Therefore we obtain a family of primary submodulesQn, n ∈M ,

of M for which the property (*) does not hold.
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