COPRIMELY STRUCTURED MODULES

Zehra Bilgin and Kürsat Hakan Oral

(Communicated by A. Mamouni)

MSC 2010 Classifications: Primary 13A15, ; Secondary 13C13, 13C99.
Keywords and phrases: Coprimely structured rings, multiplication modules, coprimely structured modules.

Abstract

Let R be a commutative ring with identity. A prime submodule P of an R-module M is called coprimely structured if, whenever P is coprime to each element of an arbitrary family of submodules of M, the intersection of the family is not contained in P. An R-module M is called coprimely structured provided each prime submodule of M is coprimely structured. In this paper, properties of coprimely structured modules are examined. Severals results for coprimely structured finitely generated modules and coprimely structured multiplication modules are obtained.

1 Introduction

Throughout this paper, all rings are commutative and with identity. Coprimely structured rings are introduced in [11]. In this paper, we generalize this concept to the class of modules. Let R be a ring. A prime submodule Q of an R-module M is called coprimely structured if for each family $\left\{N_{i}\right\}_{i \in I}$ of submodules of R whenever $N_{i}+Q=M$ for each $i \in I$, we have $\bigcap_{i \in I} N_{i} \nsubseteq Q . M$ is called a copimely structured module if each of its prime submodules is coprimely structured. In Section 2, definitions and general results are given. Direct sums of modules are examined and a sufficient condition for a direct sum of coprimely structured modules being coprimely structured is stated [Theorem 2.7].

In Section 3, finitely generated modules are discussed. For a finitely generated module, it can be decided whether the module is coprimely structured or not by examining only maximal ideals instead of all prime ideals [Theorem 3.1]. The property of an R-module's being coprimely structured is transported to its localization in case of R is local and the module is a finitely generated distributive R-module [Theorem 3.4].

An R-module M is called a multiplication module if each submodule N of M is of the form $I M$ for some ideal I of R. Multiplication modules are studied widely in the literature, see [1,5]. In the category of multiplication modules, many properties of coprimely structured modules can be characterized. The radical of an ideal I of R is defined as the intersection of all prime ideals that contain I. Similarly, the radical of a submodule $N, \operatorname{rad}(N)$, of a module M is the intersection of all prime submodules of M that contains N. When R is viewed as a module over itself, the definitions of the radical of an ideal and the radical of a submodule coincide. In [2], the product of two submodules $N=I M$ and $K=J M$ of a multiplication R-module M is defined as $(I J) M$. Accordingly, the product of two elements $m, m^{\prime} \in M$ is defined as the product of the submodules $R m$ and $R m^{\prime}$. Using this definition, it is proved in [2] that

$$
\operatorname{rad}(N)=\left\{m \in M: m^{k} \subseteq N \text { for some } k \geq 0\right\}
$$

for a submodule N of a multiplication R-module M. Section 4 is reserved for multiplication modules. A family $\left\{N_{i}\right\}_{i \in I}$ of submodules of a multiplication R-module M is said to satisfy property (${ }^{*}$) if for each $x \in M$, there is an $n \in \mathbb{N}$ such that $x \in \operatorname{rad}\left(N_{i}\right)$ implies $x^{n} \subseteq N_{i}$. With the aid of the property $\left({ }^{*}\right)$, it is possible to characterize coprimely structured multiplication modules in terms of prime submodules and maximal submodules [Theorem 4.5]. Besides, the property $\left({ }^{*}\right)$ is proved to be useful to give a sufficient condition for a module to be coprimely structured provided a particular quotient of the module is coprimely structured [Theorem 4.6]. In case of M is a finitely generated faithful multiplication R-module, M is coprimely structured if and only if R is coprimely structured [Theorem 4.7].

In Section 5, the relation between the property (${ }^{*}$) and finitely generated multiplication modules is examined. In particular, if R is a principal ideal ring and M is a finitely generated faithful multiplication module, this property can be used to obtain information about M 's being zerodimensional [Theorem 5.3].

2 Coprimely Structured Modules

In this section, we define coprimely structured modules and investigate some basic properties of them. Also we consider the relation between coprimely structured modules and strongly 0 -dimensional modules.

Definition 2.1. Let M be an R-module and $\left\{N_{i}\right\}_{i \in I}$ a family of submodules of M. A prime submodule P of M is said to be a coprimely structured submodule of M if $N_{i}+P=M$, for all $i \in I$, implies $\bigcap_{i \in I} N_{i} \nsubseteq P$. An R-module M is called a coprimely structured module if every prime submodule of M is coprimely structured.

Note that not every module is a coprimely structured module. Here is an example:
Example 2.2. Let $R=\mathbb{Z}, M=\mathbb{Z} \times \mathbb{Z}$. Conside the family of submodules $\left\{N_{n}=n \mathbb{Z} \times n \mathbb{Z}\right.$: $n \in \mathbb{N}, n$ odd $\}$ of M. We have $\bigcap_{\substack{n \in \mathbb{N} \\ n \text { oodd }}} N_{n}=(0)$. Observe that $2 \mathbb{Z} \times 2 \mathbb{Z}$ is a prime submodule of M and $\bigcap_{\substack{n \in \mathbb{N} \\ n \text { odd }}} N_{n} \subset 2 \mathbb{Z} \times 2 \mathbb{Z}$. However, for each $n \in \mathbb{N}$, n odd, we have $N_{n}+2 \mathbb{Z} \times 2 \mathbb{Z}=M$. Thus M is not coprimely structured.

Theorem 2.3. Every homomorphic image of a coprimely structured module is coprimely structured.

Proof. Let M be a coprimely structured R-module, and M^{\prime} an R-module. Let $f: M \rightarrow M^{\prime}$ be an R-module homomorphism. Assume that for a family of submodules $\left\{N_{i}^{\prime}\right\}_{i \in I}$ and a prime submodule P^{\prime} of $f(M)$, the inclusion $\bigcap_{i \in I} N_{i}^{\prime} \subseteq P^{\prime}$ holds. Then there exist a family of submodules $\left\{N_{i}\right\}_{i \in I}$ of M and a prime submodule P of M such that each N_{i} and P contain $\operatorname{ker} f$, and for all $i \in I$, the equalities $f\left(N_{i}\right)=N_{i}^{\prime}$ and $f(P)=P^{\prime}$ hold. Then

$$
f\left(\bigcap_{i \in I} N_{i}\right) \subseteq \bigcap_{i \in I} f\left(N_{i}\right)=\bigcap_{i \in I} N_{i}^{\prime} \subseteq P^{\prime}=f(P)
$$

and hence $\bigcap_{i \in I} N_{i} \subseteq P$. As M is coprimely structured, there exists $j \in I$ such that $N_{j}+P \neq M$. Since both N_{j} and P contain $\operatorname{ker} f$, we conclude that $N_{j}^{\prime}+P^{\prime}=f\left(N_{j}+P\right) \neq f(M)$. Thus $f(M)$ is coprimely structured.
Corollary 2.4. Let M be an R-module and N a submodule of M. If M is coprimely structured, so is M / N.

A prime submodule P of an R-module M is called a strongly prime submodule provided for any family $\left\{N_{i}\right\}_{i \in I}$ of submodules of M, the inclusion $\bigcap_{i \in I} N_{i} \subseteq P$ implies $N_{j} \subseteq P$ for some $j \in I$. An R-module M is a strongly 0 -dimensional module if each of its prime submodules is strongly prime. Strongly 0 -dimensional multiplication modules are introduced and studied in [10]. The following theorem states the relation between coprimely structured modules and strongly 0 -dimensional modules.

Theorem 2.5. Every strongly 0-dimensional R-module is coprimely structured.

Proof. Let M be a strongly 0-dimensional R-module, $\left\{N_{i}\right\}_{i \in I}$ a family of submodules of M and P a prime submodule of M. Suppose that the equation $N_{i}+P=M$ is satisfied for all $i \in I$. Assume that $\bigcap_{i \in I} N_{i} \subseteq P$. Since M is strongly 0 -dimensional, there exists $j \in I$ such that $N_{j} \subseteq P$. Then we have $M=N_{j}+P=P$ which is a contradiction. Therefore $\bigcap_{i \in I} N_{i} \nsubseteq P$.

By Theorem 2.3, if a direct sum is coprimely structured so is each of its direct summands. We are to investigate when the converse is true. In [7, 2.1], Erdogdu characterizes the submodule structure of direct sum of two modules. For two R-modules M and N, if $\operatorname{Ann}(x)+\operatorname{Ann}(y)=R$ for each $x \in M$ and $y \in N$, then every submodule of $M \oplus N$ is of the form $A \oplus B$ for some submodule A of M and some submodule B of N. We generalize this result to an arbitrary direct sum.

Lemma 2.6. Let $M_{i}, i \in I$, be R-modules. The following are equivalent:
(i) $\operatorname{Ann}\left(m_{i}\right)+\operatorname{Ann}\left(m_{j}\right)=R$ for each $m_{i} \in M_{i}$ and $i \neq j$.
(ii) Each submodule of $\bigoplus_{i \in I} M_{i}$ is of the form $\bigoplus_{i \in I} N_{i}$, where N_{i} is a submodule of M_{i} for each $i \in I$.
Proof. (i) \Rightarrow (ii) Suppose that $\operatorname{Ann}\left(m_{i}\right)+\operatorname{Ann}\left(m_{j}\right)=R$ for each $m_{i} \in M_{i}$ and $i \neq j$. We first prove that $\operatorname{Ann}\left(\left(m_{i_{1}}, \ldots, m_{i_{n-1}}\right)\right)+\operatorname{Ann}\left(m_{i_{n}}\right)=R$ for each $n \in \mathbb{N}, m_{i_{j}} \in M_{i_{j}}$ and $1 \leq j \leq n$. Let $n \in \mathbb{N}$. We prove the statement by induction on n. Let $m_{i} \in M_{i}$. For $n=2$ the result follows from the assumption. Let $n=3$. By assumption, we have $1=a+b=c+d$ where $a \in \operatorname{Ann}\left(m_{1}\right), c \in \operatorname{Ann}\left(m_{2}\right)$ and $b, d \in \operatorname{Ann}\left(m_{3}\right)$. Then

$$
1=(a+b)(c+d)=a c+a d+b c+b d .
$$

Since $a c \in \operatorname{Ann}\left(\left(m_{1}, m_{2}\right)\right)$ and $a d+b c+b d \in \operatorname{Ann}\left(m_{3}\right)$ we have

$$
\operatorname{Ann}\left(\left(m_{1}, m_{2}\right)\right)+\operatorname{Ann}\left(m_{3}\right)=R .
$$

Let $n=k$. Assume that $\operatorname{Ann}\left(\left(m_{i_{1}}, \ldots, m_{i_{l-1}}\right)\right)+\operatorname{Ann}\left(m_{i_{l}}\right)=R$ for $2 \leq l \leq k-1, i_{j} \in\{1, \ldots, k\}$. Then,

$$
\begin{aligned}
\operatorname{Ann}\left(\left(m_{i_{1}}, \ldots, m_{i_{k-2}},\right.\right. & \left.\left.m_{i_{k-1}}\right)\right)+\operatorname{Ann}\left(m_{i_{k}}\right) \\
& =\operatorname{Ann}\left(\left(\left(m_{i_{1}}, \ldots, m_{i_{k-2}}\right), m_{i_{k-1}}\right)\right)+\operatorname{Ann}\left(m_{i_{k}}\right) \\
& =R
\end{aligned}
$$

since, by assumption, we have

$$
\operatorname{Ann}\left(\left(m_{i_{1}}, \ldots, m_{i_{k-2}}\right)\right)+\operatorname{Ann}\left(m_{i_{k}}\right)=R
$$

and $\operatorname{Ann}\left(m_{i_{k-1}}\right)+\operatorname{Ann}\left(m_{i_{k}}\right)=R$.
Now, let N be a submodule of $M=\bigoplus_{i \in I} M_{i}$. Let $n \in N$. Then $n=\sum_{i \in I} m_{i}$, where $m_{i_{1}}, \ldots, m_{i_{k}}$ are nonzero and $m_{i}=0$ for $i \neq i_{1}, \ldots, i_{k}$. For each $l \in\{1, \ldots, k\}$,

$$
1=a_{l}+b_{l}
$$

where $a_{l} \in \operatorname{Ann}\left(\left(\left(m_{i_{1}}, \ldots, m_{i_{l-1}}, m_{i_{l+1}}, \ldots, m_{i_{k}}\right)\right)\right)$ and $b_{l} \in \operatorname{Ann}\left(m_{i_{l}}\right)$. Then

$$
\begin{aligned}
1=\prod_{l=1}^{k}\left(a_{l}+b_{l}\right)=\left(a_{1} b_{2} \ldots b_{k}\right. & \left.+a_{2} b_{1} b_{3} \ldots b_{k}+\ldots+a_{k} b_{1} \ldots b_{k-1}\right) \\
& +b_{1} \ldots b_{k}+\left(\sum_{2 \leq r} a_{t_{1}} \ldots a_{t_{r}} b_{s_{1}} \ldots b_{s_{p}}\right)
\end{aligned}
$$

Observe that the terms in the second line of the right hand side are contained in $\operatorname{Ann}\left(m_{i_{l}}\right)$ for each $l \in\{1, \ldots, k\}$. On the other hand, for each $j \in\{1, \ldots, k\}$, we have

$$
\left(a_{j} b_{1} \ldots b_{j-1} b_{j+1} \ldots b_{k}\right) n=\left(a_{j} b_{1} \ldots b_{j-1} b_{j+1} \ldots b_{k}\right) \iota_{i_{j}}\left(m_{i_{j}}\right) \in N \cap \iota_{i_{j}}\left(M_{i_{j}}\right)
$$

where $\iota_{i}: M_{i} \rightarrow \bigoplus_{i \in I} M_{i}$ is the i th natural injection. Hence

$$
n=1 . n=\left[\prod_{l=1}^{k}\left(a_{l}+b_{l}\right)\right] n=\sum_{i \in I} c_{i}
$$

where $c_{i_{1}}=\left(a_{1} b_{2} \ldots b_{k}\right) m_{i_{1}}, c_{i_{2}}=\left(a_{2} b_{1} b_{3} \ldots b_{k}\right) m_{i_{2}}, \ldots, c_{i_{k}}=\left(a_{k} b_{1} \ldots b_{k-1}\right) m_{i_{k}}$ and $c_{i}=0$ for $i \in I-\left\{i_{1}, \ldots, i_{k}\right\}$. Then $n \in \bigoplus_{i \in I}\left(N \cap \iota_{i}\left(M_{i}\right)\right) \subseteq N$. Therefore $N=\bigoplus_{i \in I}\left(N \cap \iota_{i}\left(M_{i}\right)\right)$.
(ii) \Rightarrow (i)Assume that N is a submodule of $M=\bigoplus_{i \in I} M_{i}$. Then, by assumption, $N=$ $\oplus_{i \in I} N_{i}$ for some submodule N_{i} of M_{i} for each $i \in I$. Observe that

$$
N \cap \iota_{i}\left(M_{i}\right)=\left(\bigoplus_{i \in I} N_{i}\right) \cap \iota_{i}\left(M_{i}\right)=\iota_{i}\left(N_{i}\right) .
$$

Hence $N=\bigoplus_{i \in I} N_{i}=\bigoplus_{i \in I}\left(N \cap \iota_{i}\left(M_{i}\right)\right)$. Let $i, j \in I$ and $m_{i} \in M_{i}, m_{j} \in M_{j}$. Set $a=\sum_{k \in I} a_{k} \in M$ where $a_{i}=m_{i}, a_{j}=m_{j}$ and $a_{k}=0$ for $k \neq i, j$. Since $R a$ is a submodule of M, by the above argument $R a=\bigoplus_{i \in I}\left(R a \cap \iota_{i}\left(M_{i}\right)\right)$. Then $a=\sum_{k \in I} n_{k}$ where $n_{k} \in R a \cap \iota_{k}\left(M_{k}\right)$. Set $b=\sum_{k \in I} b_{k} \in M$ where $b_{i}=m_{i}, b_{j}=n_{j}$ and $b_{k}=0$ for $k \neq i, j$. Then $a-b=\sum_{k \in I} a_{k}-\sum_{k \in I} b_{k}=\sum_{k \in I} n_{k}-\sum_{k \in I} b_{k}$. Comparing the corresponding indices, we obtain $n_{i}-m_{i}=0$ and $m_{j}-n_{j}=0$. Hence $m_{i}=n_{i}$ and $m_{j}=n_{j}$. For each $k \in I$, since $\iota_{k}\left(n_{k}\right) \in R a \cap \iota_{k}\left(M_{k}\right)$, there exists $r_{k} \in R$ such that $r_{k} a=\iota_{k}\left(n_{k}\right) \in \iota_{k}\left(M_{k}\right)$. In particular, $\iota_{j}\left(n_{j}\right)=r_{j} a$. Using the equailities $n_{i}=m_{i}$ and $n_{j}=m_{j}$, we get $r_{j} m_{i}=0$ and $m_{j}=r_{j} m_{j}$. Then $r_{j} \in \operatorname{Ann}\left(m_{i}\right)$ and $1-r_{j} \in \operatorname{Ann}\left(m_{j}\right)$. Therefore

$$
1=r_{j}+\left(1-r_{j}\right) \in \operatorname{Ann}\left(m_{i}\right)+\operatorname{Ann}\left(m_{j}\right)
$$

and hence $\operatorname{Ann}\left(m_{i}\right)+\operatorname{Ann}\left(m_{j}\right)=R$.
Theorem 2.7. Let $M_{i}, i \in I$, be coprimely structured R-modules and assume that Ann $\left(m_{i}\right)+$ Ann $\left(m_{j}\right)=R$ for each, $m_{i} \in M_{i}, i, j \in I, i \neq j$. Then $M=\bigoplus_{i \in I} M_{i}$ is coprimely structured .
Proof. Let $N_{\lambda}, \lambda \in \Lambda$, be a family of submodules and P a prime submodule of M such that $\bigcap_{\lambda \in \Lambda} N_{\lambda} \subseteq P$. By Lemma 2.6, each submodule of M is of the form $\bigoplus_{i \in I} N_{i}$ where N_{i} is a submodule of M_{i} for each $i \in I$. Then for each $\lambda \in \Lambda$, for each $i \in I$, there exists $N_{i, \lambda}$, submodule of M_{i} such that $N_{\lambda}=\bigoplus_{i \in I} N_{i, \lambda}$ and there exists P_{i}, submodule of M_{i}, such that $P=\bigoplus_{i \in I} P_{i}$. Since P is prime, there exists a unique $k \in I$ such that $P_{k} \neq M_{k}$. Let $r \in R$, $m \in M_{k}$. Assume that $r m \in P_{k}$ and $m \notin P_{k}$. Set $a=\sum_{i \in I} a_{i}$ where $a_{k}=m$ and $a_{i}=0$ for $i \neq k$. Then $r a \in P$ and $a \notin P$. Since P is prime, $r \in(P: M)$. Then $r M_{k} \subseteq P_{k}$ and hence we conclude that $r \in\left(P_{k}: M_{k}\right)$. Therefore P_{k} is a prime submodule of M_{k}. We have

$$
\bigoplus_{i \in I}\left(\bigcap_{\lambda \in \Lambda} N_{i, \lambda}\right) \subseteq \bigcap_{\lambda \in \Lambda}\left(\bigoplus_{i \in I} N_{i, \lambda}\right)=\bigcap_{\lambda \in \Lambda} N_{\lambda} \subseteq P=\bigoplus_{i \in I} P_{i} .
$$

Then, we have $\bigcap_{\lambda \in \Lambda} N_{k, \lambda} \subseteq P_{k}$. Since M_{k} is coprimely structured, there exists $\gamma \in \Lambda$ such that $N_{k, \gamma}+P_{k} \neq M_{k}$. Therefore

$$
N_{\gamma}+P=\left(N_{k, \gamma}+P_{k}\right) \oplus\left(\bigoplus_{\substack{i \in I \\ i \neq k}} N_{i, \gamma}\right)+\left(\bigoplus_{\substack{i \in I \\ i \neq k}} P_{i}\right) \neq M_{k}+\left(\bigoplus_{\substack{i \in I \\ i \neq k}} M_{i}\right)=M
$$

Thus, M is coprimely structured.
Example 2.8. Let $R=\mathbb{Z}$ and $M=\bigoplus_{p \text { prime }} \mathbb{Z}_{p}$. Then M is an R-module. For each prime number p, \mathbb{Z}_{p}, being finite, is coprimely structured. Let p and q be two different prime numbers. Since p and q are coprime, there exists x and y in \mathbb{Z} such that $p x+q y=1$. For each $m_{p} \in \mathbb{Z}_{p}$ and $m_{q} \in \mathbb{Z}_{q}$, since $p x \in \operatorname{Ann}\left(m_{p}\right)$ and $q y \in \operatorname{Ann}\left(m_{q}\right)$ we have $1 \in \operatorname{Ann}\left(m_{p}\right)+\operatorname{Ann}\left(m_{q}\right)$. Therefore, by Theorem 2.7, M is coprimely structured.

3 Coprimely Structured Property on Finitely Generated Modules

It is known that every proper submodule of a finitely generated R-module is contained in a maximal submodule, [3, 2.8]. Provided we work on the class of finitely generated modules, it is enough to consider maximal submodules to decide whether a module is coprimely structured, or not. The following theorem states this result.

Theorem 3.1. Let M be a finitely generated R-module. If every maximal submodule of M is coprimely structured, then M is coprimely structured.

Proof. Assume that every maximal submodule of M is coprimely structured. Let $\left\{N_{i}\right\}_{i \in I}$ be a family of submodules of M and P a prime submodule of M satisfying $\bigcap_{i \in I} N_{i} \subseteq P$. Since M is finitely generated, the submodule P is contained in a maximal submodule K of M. Then $\bigcap_{i \in I} N_{i} \subseteq K$, and since K is coprimely structured, there exists $j \in I$ such that $N_{j}+K \neq M$. Then $N_{j}+P \neq M$. Thus, we conclude that M is coprimely structured.

Lemma 3.2. Let M be a finitely generated R-module. The following are equivalent:
(i) M is coprimely structured.
(ii) Every maximal submodule K of M is strongly prime.
(iii) For any maximal submodule K and any family $\left\{N_{i}\right\}_{i \in I}$ of submodules of $M, K+N_{i}=M$, for all $i \in I$, implies $K+\bigcap_{i \in I} N_{i}=M$.

Proof. (i) \Rightarrow (ii) Let $\left\{N_{i}\right\}_{i \in I}$ be a family of submodules of M and K a maximal submodule of M satisfying $\bigcap_{i \in I} N_{i} \subseteq K$. Since M is coprimely structured, $N_{j}+K \neq M$ for some $j \in I$. Then $N_{j} \subseteq K$ and hence K is strongly prime.
(ii) \Rightarrow (iii) Let $\left\{N_{i}\right\}_{i \in I}$ be a family of submodules of M and K a maximal submodule of M such that $K+N_{i}=M$ holds for each $i \in I$. We have $N_{i} \nsubseteq K$ for each $i \in I$. Since K is strongly prime, we obtain $\bigcap_{i \in I} N_{i} \nsubseteq K$. This implies $K+\bigcap_{i \in I} N_{i}=M$.
(iii) \Rightarrow (i) Let $\left\{N_{i}\right\}_{i \in I}$ be a family of submodules of M and P a prime submodule of M satisfying $\bigcap_{i \in I} N_{i} \subseteq P$. Since M is finitely generated, the submodule P is contained in a maximal submodule K of M. Then we have $\bigcap_{i \in I} N_{i} \subseteq K$, and hence $K+\bigcap_{i \in I} N_{i} \neq M$. This implies $P+N_{j} \subseteq K+N_{j} \neq M$ for some $j \in I$. Therefore M is coprimely structured.

It is proved in $[10,2.4]$ that a strongly 0 -dimensional multiplication module is zero-dimensional. Actually, the proof is valid if we drop the assumption that the module is a multiplication module.

Theorem 3.3. Let M be a finitely generated R-module. Then M is a zero-dimensional coprimely structured module if and only if M is a strongly 0-dimensional module.

Proof. Follows from Theorem 2.5 and Lemma 3.2.
An R-module M is said to be a distributive module if the lattice of submodules of M is distributive, that is, for any submodules A, B, C of M, the equality $A \cap(B+C)=(A \cap B)+$ $(A \cap C)$ holds. In [12, 2.4], Stephenson proved that for a local ring R and a distributive R-module M, submodules of M are comparable. For a comprehensive study on distributive modules the reader may refer to $[7,12]$.

Theorem 3.4. Let R be a local ring and M a finitely generated distributive module. Let S be a multiplicatively closed subset of R. If M is coprimely structured then $S^{-1} M$ is coprimely structured.

Proof. Let $\left\{N_{i}\right\}_{i \in I}$ be a family of submodules and P a prime submodule of $S^{-1} M$. Then for some family $\left\{K_{i}\right\}_{i \in I}$ of submodules and some prime submodule Q of M we have $N_{i}=S^{-1} K_{i}$ and $P=S^{-1} Q$. Assume that $\bigcap_{i \in I} N_{i} \subseteq P$. Then

$$
S^{-1}\left(\bigcap_{i \in I} K_{i}\right) \subseteq \bigcap_{i \in I} S^{-1} K_{i}=\bigcap_{i \in I} N_{i} \subseteq P=S^{-1} Q
$$

Hence $\bigcap_{i \in I} K_{i} \subseteq Q$. Since M is coprimely structured, we have $K_{j}+Q \neq M$ for some $j \in I$. Since M is finitely generated, there exists a maximal submodule K of M such that $K_{j}+Q \subseteq K$. As $K_{j} \subseteq K$, there exists a minimal prime submodule Q_{j} of M such that $K_{j} \subseteq Q_{j} \subseteq K$. Then $Q_{j}+Q \subseteq K$. Since R is local and M is distributive, either $Q_{j} \subseteq Q$ or $Q \subseteq Q_{j}$. Then $S^{-1} Q_{j} \subseteq S^{-1} Q$ or $S^{-1} Q \subseteq S^{-1} Q_{j}$. Hence we obtain $N_{j}+P \neq S^{-1} M$. Therefore $S^{-1} M$ is coprimely structured.

4 Coprimely Structured Multiplication Modules

In this section we study some properties of coprimely structured multiplication modules. An R-module M is called a multiplication module if each submodule N of M is of the form $I M$ for some ideal I of R As finitely generated modules, nonzero multiplication modules admits the property that every proper submodule is contained in a maximal submodule, by [1, 2.5], we have the following theorems on multiplication modules similar to results on finitely generated modules mentioned above. The proofs are exactly the same, and hence omitted.

Theorem 4.1. Let M be a multiplication R-module. If every maximal submodule of M is coprimely structured, then M is coprimely structured.

Lemma 4.2. Let M be a multiplication R-module. The following are equivalent:
(i) M is coprimely structured.
(ii) Every maximal submodule K of M is strongly prime.
(iii) For any maximal submodule K and any family $\left\{N_{i}\right\}_{i \in I}$ of submodules of $M, K+N_{i}=M$, for all $i \in I$, implies $K+\bigcap_{i \in I} N_{i}=M$.
Theorem 4.3. Let M be a zero-dimensional multiplication R-module. Then M is coprimely structured if and only if M is strongly 0-dimensional.

Next, we prove a theorem that gives a characterization of coprimely structured multiplication modules in terms of families of prime submodules and maximal submodules. To this aim, we state some definitions and notations. For a submodule N of M, the radical of N, denoted by $\operatorname{rad}(N)$, is defined as the intersection of all prime submodules of M that contain N. In [2, 3.3], Ameri defines the product of two submodules $N=I M$ and $K=J M$ of a multiplication R module M as $(I J) M$. Accordingly, the product of two elements $m, m^{\prime} \in M$ is defined as the product of the submodules $R m$ and $R m^{\prime}$. It is shown in [2,3.13] that $\operatorname{rad}(N)=\{m \in M$: $m^{k} \subseteq N$ for some $\left.k \geq 0\right\}$ for a submodule N of a multiplication R-module M.

A family $\left\{N_{i}\right\}_{i \in I}$ of submodules of a multiplication R-module M is said to satisfy property ${ }^{(*)}$ if for each $x \in M$, there is an $n \in \mathbb{N}$ such that $x \in \operatorname{rad}\left(N_{i}\right)$ implies $x^{n} \subseteq N_{i}$. We note that if we consider R as a module over itself, this property is the same as the condition A2 in [4, 7]. Accordingly, the following lemma is a generalization of $[6,2]$.

Lemma 4.4. A family $\left\{N_{i}\right\}_{i \in I}$ of submodules of a multiplication R-module M satisfies the prop$\operatorname{erty}(*)$ if and only if for each subset $J \subseteq I$,

$$
\operatorname{rad}\left(\bigcap_{i \in J} N_{i}\right)=\bigcap_{i \in J} \operatorname{rad}\left(N_{i}\right) .
$$

Proof. Let $\left\{N_{i}\right\}_{i \in I}$ be a family of submodules of a multiplication R-module M. Assume that the family $\left\{N_{i}\right\}_{i \in I}$ satisfies the property (*). Let J be a subset of I. The inclusion $\operatorname{rad}\left(\bigcap_{i \in J} N_{i}\right) \subseteq$ $\bigcap_{i \in J} \operatorname{rad}\left(N_{i}\right)$ always holds. For the reverse inclusion let $x \in \bigcap_{i \in J} \operatorname{rad}\left(N_{i}\right)$. Then for all $i \in J$ we have $x \in \operatorname{rad}\left(N_{i}\right)$. Since $\left\{N_{i}\right\}_{i \in I}$ satisfies the property (*), there exists an $n \in \mathbb{N}$ such that $x^{n} \subseteq N_{i}$ for each $i \in J$. This implies $x^{n} \subseteq \bigcap_{i \in J} N_{i}$. Hence we obtain $x \in \operatorname{rad}\left(\bigcap_{i \in J} N_{i}\right)$. Conversely, assume for each subset J of I, that the equation $\operatorname{rad}\left(\bigcap_{i \in J} N_{i}\right)=\bigcap_{i \in J} \operatorname{rad}\left(N_{i}\right)$ holds. Let $x \in M$ and set $J=\left\{i \in I: x \in \operatorname{rad}\left(N_{i}\right)\right\}$. Then $x \in \bigcap_{i \in J} \operatorname{rad}\left(N_{i}\right)=\operatorname{rad}\left(\bigcap_{i \in J} N_{i}\right)$. Therefore there is an $n \in \mathbb{N}$ such that $x^{n} \in \bigcap_{i \in J} N_{i}$. Since $\bigcap_{i \in J} N_{i} \subseteq N_{i}$ for each $i \in J$, we conclude that $x^{n} \subseteq N_{i}$ for each $i \in J$. Therefore $\left\{N_{i}\right\}_{i \in I}$ satisfies the property (*).

Theorem 4.5. Let M be a multiplication R-module. If M is coprimely structured, then for any family $\left\{P_{i}\right\}_{i \in I}$ of prime submodules and any maximal submodule K of M, the inclusion $\bigcap_{i \in I} P_{i} \subseteq K$ implies $P_{j} \subseteq K$ for some $j \in I$. The converse is true if the property $\left(^{*}\right)$ is satisfied by any family of submodules of M.

Proof. Assume that M is coprimely structured. Let $\left\{P_{i}\right\}_{i \in I}$ be a family of submodules of M and K a maximal submodule of M such that $\bigcap_{i \in I} P_{i} \subseteq K$. We have $P_{j}+K \neq M$ for some $j \in I$. Thus $P_{j} \subseteq K$. Conversely, assume that the property (*) is satisfied by any family of submodules of M. Further, assume, for any family $\left\{P_{i}\right\}_{i \in I}$ of prime submodules and any maximal submodule K of M, that the inclusion $\bigcap_{i \in I} P_{i} \subseteq K$ implies $P_{j} \subseteq K$ for some $j \in I$. Let $\left\{N_{\alpha}\right\}_{\alpha \in A}$ be a family of submodules of M and P a prime submodule of M such that $\bigcap_{\alpha \in A} N_{\alpha} \subseteq P$. Then $\operatorname{rad}\left(\bigcap_{\alpha \in A} N_{\alpha}\right) \subseteq \operatorname{rad}(P)=P$. As M is a multiplication module, P is contained in a maximal submodule L of M. Since, by assumption, the property (*) is satisfied by $\left\{N_{\alpha}\right\}_{\alpha \in A}$, using Lemma 4.4, we obtain $\bigcap_{\alpha \in A} \operatorname{rad}\left(N_{\alpha}\right)=\operatorname{rad}\left(\bigcap_{\alpha \in A} N_{\alpha}\right) \subseteq P \subseteq L$. Besides, for each $\alpha \in A$,

$$
\operatorname{rad}\left(N_{\alpha}\right)=\bigcap_{\substack{\beta \in B \\ N_{\alpha} \subseteq P_{\beta, \alpha}}} P_{\beta, \alpha}
$$

for some family $\left\{P_{\beta, \alpha}\right\}_{\beta \in B}$ of prime submodules of M. Therefore,

$$
\bigcap_{\substack{(\alpha, \beta) \in A \times B \\ N_{\alpha} \subseteq P_{\beta, \alpha}}} P_{\beta, \alpha}=\bigcap_{\alpha \in A} \bigcap_{\substack{\beta \in B \\ N_{\alpha} \subseteq P_{\beta, \alpha}}} P_{\beta, \alpha}=\bigcap_{\alpha \in A} \operatorname{rad}\left(N_{\alpha}\right) \subseteq L .
$$

Then, by assumption, we have $P_{\lambda, \kappa} \subseteq L$ for some $(\lambda, \kappa) \in A \times B$. This implies $P_{\lambda, \kappa}+L \neq M$ for some $(\lambda, \kappa) \in A \times B$. Hence, for some $\lambda \in A$, we have $N_{\lambda}+P \subseteq P_{\lambda, \kappa}+P \subseteq P_{\lambda, \kappa}+L \neq M$. Thus M is coprimely structured.

Theorem 4.6. Let M be a multiplication R-module. Assume that the property (*) is satisfied for any family of submodules of M. Let N be a submodule of M which is contained in $\operatorname{rad}(0)$. Then M / N is coprimely structured if and only if M is coprimely structured.

Proof. Assume that M / N is coprimely structured. Let $\left\{P_{i}\right\}_{i \in I}$ be a family of prime submodules of M and K a maximal submodule of M satisfying $\bigcap_{i \in I} P_{i} \subseteq K$. Then, as $N \subseteq \operatorname{rad}(0)$, we obtain

$$
\bigcap_{i \in I} P_{i} / N=\left(\bigcap_{i \in I} P_{i}\right) / N \subseteq K / N
$$

Since K is maximal, K / N is maximal in M / N. Then, for some $j \in I$, we have $P_{j} / N+K / N \neq$ M / N. This implies $P_{j} / N \subseteq K / N$. Therefore, for some $j \in I$ the inclusion $P_{j} \subseteq K$ holds. Using Theorem 4.5 we conclude that M is coprimely structured. The converse follows from Corollary 2.4.

Theorem 4.7. Let M be a finitely generated faithful multiplication R-module. M is coprimely structured if and only if R is coprimely structured.

Proof. Assume that M is a coprimely structured module. Let $\left\{I_{\alpha}\right\}_{\alpha \in A}$ be a family of ideals of R and P a prime ideal of R satisfying $\bigcap_{\alpha \in A} I_{\alpha} \subseteq P$. Then, we have $\bigcap_{\alpha \in A}\left(I_{\alpha} M\right)=$ $\left(\bigcap_{\alpha \in A} I_{\alpha}\right) M \subseteq P M$. Since M is coprimely structured, there exists $\beta \in A$ such that $\left(I_{\beta}+\right.$ $P) M=I_{\beta} M+P M \neq M$. Therefore, by $[1,3.1]$, we obtain $I_{\beta}+P \neq R$, and hence R is coprimely structured. Conversely, assume that R is coprimely structured. Let $\left\{N_{\lambda}\right\}_{\lambda \in L}$ be a family of submodules of M and Q^{\prime} a prime submodule of M. Suppose $\bigcap_{\lambda \in L} N_{\lambda} \subseteq Q^{\prime}$. Since M is a multiplication module there exist a family $\left\{I_{\lambda}\right\}_{\lambda \in L}$ of ideals of R and a prime ideal Q of R such that $N_{\lambda}=I_{\lambda} M$, for all $\lambda \in L$, and $Q^{\prime}=Q M$, by [1, 2.11]. Then, using [1, 1.6], we have $\left(\bigcap_{\lambda \in L} I_{\lambda}\right) M=\bigcap_{\lambda \in L}\left(I_{\lambda} M\right)=\bigcap_{\lambda \in L} N_{\lambda} \subseteq Q^{\prime}=Q M$, and by [1, 3.1], we obtain $\bigcap_{\lambda \in L} I_{\lambda} \subseteq Q$. Since R is coprimely structured, there exists $\kappa \in L$ such that $I_{\kappa}+Q \neq R$. Then, using [1, 3.1], we conclude that $N_{\kappa}+Q^{\prime}=\left(I_{\kappa} M+P\right) M \neq M$. Thus M is coprimely structured.

Theorem 4.8. Every Artinian multiplication module is coprimely structured.

Proof. Every Artinian multiplication module is strongly 0-dimensional by [10, 2.6]. The result follows from Theorem 2.5.

5 The Property (*)

In [6], Brewer and Richman give some characterizations of zero-dimensional rings. Here we generalize some of these results under certain conditions. In particular, if R is a principal ideal ring and M is a finitely generated faithful multiplication R-module, the property $\left({ }^{*}\right)$ we introduced in Section 4 can be used to determine whether M is zero-dimensional or not. Before giving that result we need some lemma. R is assumed to be a principal ideal ring in the following.

Lemma 5.1. Let M be a finitely generated multiplication R-module and m an element of M such that $R m=I M$. The following conditions are equivalent:
(i) There exists an $n \in \mathbb{N}$ such that $I^{n} M=I^{n+1} M$.
(ii) $I M+\bigcup_{n=1}^{\infty}\left(0:_{M} I^{n}\right)=M$.

Proof. (i) \Rightarrow (ii) Suppose that $I^{n} M=I^{n+1} M$ for some $n \in \mathbb{N}$. Since R is a principal ideal ring there exists an $r \in R$ such that $I=(r)$. Then $r^{n} M=r^{n+1} M$. That means for each $m \in M$ there exists a $m^{\prime} \in M$ such that $r^{n} m=r^{n+1} m^{\prime}$. Then $m-r m^{\prime} \in\left(0:_{M} r^{n}\right)=\left(0:_{M} I^{n}\right)$. Hence we have $M \subseteq I M+\bigcup_{n=1}^{\infty}\left(0:_{M} I^{n}\right)$. The result follows.
(ii) \Rightarrow (i) Assume that $I M+\bigcup_{n=1}^{\infty}\left(0:_{M} I^{n}\right)=M$ holds. Since I is a principal ideal, $I=(x)$ for some $x \in R$. Then we have $x M+\bigcup_{n=1}^{\infty}\left(0:_{M} x^{n}\right)=M$. Let $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a generator set for M. Then, by assumption, we have

$$
a_{i} \in x M+\bigcup_{n=1}^{\infty}\left(0:_{M} x^{n}\right)
$$

for each $i \in\{1,2, \ldots, n\}$. Then, for each $i \in\{1,2, \ldots, n\}$, there exists $m_{i} \in M$ and $n_{i} \in\left(0: x^{k_{i}}\right)$, $k_{i} \in \mathbb{N}$ such that $a_{i}=x m_{i}+n_{i}$. Set $k=\max \left\{k_{1}, \ldots, k_{n}\right\}$. Then

$$
x^{k} a_{i}=x^{k+1} m_{i}+x^{k} n_{i}=x^{k+1} m_{i} \in x^{k+1} M
$$

Hence we have $x^{k} M \subseteq x^{k+1} M$. The other inclusion is always true. Therefore we obtain $x^{k} M=$ $x^{k+1} M$, that is $I^{k} M=I^{k+1} M$.

Theorem 5.2. A finitely generated faithful multiplication R-module M is zero-dimensional if and only if one of the conditions of Lemma 5.1 are satisfied for every $m \in M$.
Proof. Suppose that the condition (ii) of Lemma 5.1 is not satisfied for some $m \in M$. Then $I M+\bigcup_{n=1}^{\infty}\left(0:_{M} I^{n}\right)$ is a proper submodule of M, and hence it is contained in a prime submodule Q^{\prime} of M. Then the ideal $Q=\left(Q^{\prime}: M\right)$ is a prime ideal of R. Since R is a principal ideal ring, we have $I=(a)$ for some $a \in R$. Set $S:=\left\{a^{n} r: n \in \mathbb{N}, r \in R \backslash Q\right\}$. Assume $0 \in S$. Then there exists an $r \in R \backslash Q$ such that $a^{n} r=0$. Let $x \in M$. Then we have $r x \in\left(0:_{M} a^{n}\right)=\left(0:_{M} I^{n}\right) \subseteq Q^{\prime}$. As $r \notin Q=\left(Q^{\prime}: M\right)$ and Q^{\prime} is prime, we conclude that $x \in Q^{\prime}$, and hence $M \subseteq Q^{\prime}$, a contradiction. Hence $0 \notin S$. Then there exists a prime ideal P of R such that $P \cap S=\emptyset$. Since $R \backslash Q \subseteq S$ we have $P \subseteq Q$. Besides $a M \subseteq Q^{\prime}$, and hence $a \in Q$. However, $a \notin P$ since $a \in S$. Therefore P is a proper ideal of Q. Then, by [1,3.1], $P M$ is a proper submodule of $Q M$. Thus M is not zero-dimensional.

Conversely assume that M is not zero-dimensional. Then there exist prime submodules P and Q of M such that $P \subset Q$. Let $m \in Q \backslash P$. Then $R m=I M$ for some ideal I of R. Suppose $\bigcup_{n=1}^{\infty}\left(0:_{M} I^{n}\right) \nsubseteq P$. Then there exists an $x \in M$ such that $I^{n} x=0$ for some $n \in \mathbb{N}$ and $x \notin P$. Since $I=(b)$ for some $b \in R$, we have $b^{n} x=0 \in P$. As P is prime, we have $b^{n} \in(P: M)$. Then $b \in(P: M)$. Hence we obtain $m \in R m=b M \subseteq P$, a contradiction. Therefore $\bigcup_{n=1}^{\infty}\left(0:_{M} I^{n}\right) \subseteq P \subset Q$. Besides $I M=R m \subseteq Q$. Hence $I M+\bigcup_{n=1}^{\infty}\left(0:_{M} I^{n}\right) \subseteq Q \neq M$. This is the contrapositive of the condition (ii) of Lemma 5.1.

Theorem 5.3. Let M be a finitely generated faithful multiplication R-module. The following conditions are equivalent:
(i) M is zero-dimensional.
(ii) Property $\left(^{*}\right.$) holds for the family of all submodules of M.
(iii) Property (*) holds for the family of all primary submodules of M.

Proof. (i) \Rightarrow (ii) Suppose that M is zero-dimensional. Then by 5.2 , for each $m \in M$ there exists an $n \in \mathbb{N}$ such that $I^{n} M=I^{n+1} M$, where $R m=I M$. Observe that the equality $I^{n+t} M=I^{n} M$ holds for all $t \in \mathbb{N}$. Let N be a submodule of M. If $x \in \operatorname{rad} N$, then there exists a $k \in \mathbb{N}$ such that $J^{k} M \subseteq N$ where $R x=J M$. If $n>k$ then $J^{n} M=J^{n-k}\left(J^{k} M\right) \subseteq J^{n-k} N \subseteq N$. If $n \leq k$ then $J^{n} M=J^{k} M \subseteq N$. In both cases we have $x^{n}=J^{n} M \subseteq N$. Therefore the property (*) holds for the family of all submodules of M.
(ii) \Rightarrow (iii) Trivial.
$($ iii $) \Rightarrow$ (i) Suppose that the property $(*)$ holds for the family of all primary submodules of M and M is not zer-dimensional. Assume that P is a prime submodule of M that is not maximal. Let $x \in M$. Since M is a multiplication module there is an ideal I of R such that $R x=I M$. Let P be a minimal prime submodule of $I M$. For each $n \in \mathbb{N}$, define

$$
Q_{n}=\left\{m \in M: s m \in I^{n} M \text { for some } s \in R \backslash(P: M)\right\} .
$$

Set $Q=(P: M)$. Then, by $[9,6], M_{Q}$ is a local module. Hence P_{Q} is the unique maximal submodule of M_{Q}. Observe that P is also a minimal prime submodule of $I^{n} M$. Then we have $\operatorname{rad}\left(I^{n} M\right)_{Q}=P_{Q}$. Thus,

$$
\operatorname{rad} Q_{n}=\operatorname{rad}\left(\left(I^{n} M\right)_{Q} \cap R\right)=\left(\operatorname{rad}\left(I^{n} M\right)_{Q}\right) \cap R=P_{Q} \cap R=P
$$

and hence we obtain

$$
(P: M) M=P=\operatorname{rad} Q_{n}=\operatorname{rad}\left(\left(Q_{n}: M\right) M\right)=\sqrt{\left(Q_{n}: M\right)} M
$$

Since M is a finitely generated faithful multiplication module, by [1,3.1], we conclude that $\sqrt{\left(Q_{n}: M\right)}=(P: M)$. Now, let $r \in R, m \in M$ such that $r m \in Q_{n}$. Then there exists $s \in R \backslash(P: M)$ such that $s r m \in I^{n} M$. If $r \notin \sqrt{\left(Q_{n}: M\right)}$, then $s r \in R \backslash(P: M)$. Then since $s r m \in I^{n} M$ we obtain $m \in Q_{n}$. Therefore Q_{n} is $(P: M)$-primary. Then $\left\{Q_{n}\right\}_{n} \in \mathbb{N}$, is a family of primary submodules of M. Observe that $x \in P=\bigcap_{n \in \mathbb{N}} \operatorname{rad}\left(Q_{n}\right)$. We are to show that $x \notin \operatorname{rad}\left(\bigcap_{n \in \mathbb{N}} Q_{n}\right)$. Assume, on the contrary, that $x \in \operatorname{rad}\left(\bigcap_{n \in \mathbb{N}} Q_{n}\right)$. Then for some $k \in \mathbb{N}$ we have $x^{k} \subseteq \bigcap_{n \in \mathbb{N}} Q_{n}$. In particular, $x^{k} \subseteq Q_{k+1}$. Note that I is a principal ideal, hence there exists $a \in R$ such that $I=(a)$. Since $P \neq M$ there exists $m \in M \backslash P$ and $s \in R \backslash(P: M)$ such that $s a^{k} m=a^{k+1} m^{\prime}$ for some $m^{\prime} \in M$. Since M is torsion-free, we conclude that $s m=a m^{\prime} \in I M \subseteq P$ and this contradicting our choice $m \in M \backslash P$. Hence we must have $x \notin \operatorname{rad}\left(\bigcap_{n \in \mathbb{N}} Q_{n}\right)$. Therefore we obtain a family of primary submodules $Q_{n}, n \in M$, of M for which the property $(*)$ does not hold.

References

[1] Z. Abd El-Bast and P. P. Smith, Multiplication modules, Comm. Algebra 16, 755-779 (1998).
[2] R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci. 27, 1715-1724 (2003).
[3] W. F. Anderson nd K. R. Fuller, Rings and Categories of Modules, Springer Science \& Business Media, (2012).
[4] M. Arapović, On the embedding of a commutative ring into a 0-dimensional ring, Glas. Mat. 18, 53-59 (1983).
[5] A. Barnard, Multiplication modules, J. Algebra 71, 174-178 (1981).
[6] J. Brewer and F. Richman, Subrings of zero-dimensional rings, in: J. W. Brewer, S. Glaz, W. Heinzer, and B. Olberding (Eds.) Multiplicative Ideal Theory in Commutative Algebra, pp. 73-88, Springer US, (2006).
[7] V. Erdogdu, Distributive modules, Canad. Math. Bull. 30, 248-254 (1987).
[8] C. Jayaram, K. H. Oral and Ü. Tekir, Strongly 0-dimensional rings, Comm. Algebra 41, 2026-2032 (2013).
[9] C. P. Lu, Spectra of modules, Comm. Algebra 23, 3741-3752 (1995).
[10] K. H. Oral, N. A. Özkirisçi and Ü. Tekir, Strongly 0-dimensional modules, Canad. Math. Bull. 57, 159165 (2013).
[11] N. A. Özkirisçi, K. H. Oral and Ü. Tekir, Coprimely structured rings, Turkish J. Math. 40, 719-727 (2015).
[12] W. Stephenson, Modules whose lattice of submodules is distributive, Proc. Lond. Math. Soc. 28, 291-310 (1974).

Author information

Zehra Bilgin, Department of Philosophy, Istanbul Medeniyet University, Kadiköy, Istanbul, TURKEY.
E-mail: zehrabilgin.zb@gmail.com
Kürsat Hakan Oral, Istanbul, TURKEY.
E-mail: khoral993@gmail.com

