ON COFINITELY WEAK* RAD – \oplus – SUPPLEMENTED MODULES

Manoj K. Patel, Laba K. Das and Jane R. Yimchunger

Communicated by Mohammad Ashraf

MSC 2010 Classifications: Primary 16D10; Secondary 16D80.

Keywords and phrases: Rad- \oplus -supplemented module, weak* Rad- \oplus -supplemented module, cofinitely weak* Rad- \oplus -supplemented module.

Abstract In this paper we introduce the idea of cofinitely weak* Rad $-\oplus$ -supplemented module as a generalization of weak* Rad $-\oplus$ -supplemented module. Some relevant counter examples are given to distinguish these structure of modules. We establish several properties of cofinitely weak* Rad $-\oplus$ -supplemented module related with w-local modules. Finally, we prove that the class of cofinitely weak* Rad $-\oplus$ -supplemented modules is closed under arbitrary direct sums.

1 Introduction

Throughout this paper, R is an associative ring with identity and all modules are unitary left R-modules, unless otherwise specified. Let M be an R-module. A submodule N of M denoted by $N \subseteq M$ and Rad(M) will indicate the Jacobson radical of M. A submodule N of a module M is called small in M (denoted by $N \ll M$), if $M \neq N + K$ for every proper submodule K of M. A non zero module M is said to be hollow if every proper submodule of M is small in M, and it is said to be local if the sum of all the proper submodules of M is also a proper submodule of M, equivalently M is hollow and finitely generated. A non zero module M is said to be w-local, if it has a unique maximal submodule (cf. [4]).

A module M is said to have property (p^*) , if for every submodule N of M, there exists a direct summand K of M such that $K \subseteq N$ and $N/K \subseteq Rad(M/K)$ (cf. [3]). Recall that a module M is called radical if M has no maximal submodule i.e., RadM = M (cf. [6]). For a module M, P(M) will indicate the sum of all radical submodules of M. Note that P(M) is the largest radical submodule of M.

If N and L are submodules of M, then N is called a supplement of L, if N + L = M and $N \cap L \ll N$. A module M is called supplemented if each of its submodules has a supplement in M. A module M is called \oplus -supplemented (completely \oplus -supplemented) if every submodule (direct summand) of M has a supplement that is a direct summand of M (cf. [5, 7, 9]). A submodule N of a module M is called cofinite if M/N is finitely generated and a module M is called cofinitely supplemented if every cofinite submodule of M has a supplement in M (cf. [2, 7]). A submodule N of a module M has a Rad-supplement K in M if N + K = M and $N \cap K \subseteq RadK$. A module M is called Rad-supplemented if every submodule of M has a Rad-supplement (cf. [5, 7]). M is called Rad- \oplus -supplemented if every submodule of M has a Rad-supplement that is a direct summand of M. The \mathbb{Z} -module \mathbb{Q} is Rad- \oplus -supplemented but not \oplus -supplemented. Every module with (p^*) is Rad- \oplus -supplemented. A module M is called completely Rad- \oplus -supplemented if every direct summand of M is Rad- \oplus -supplemented (cf. [5]). Recall that a module M is called weak* Rad- \oplus -supplemented if every semi-simple submodule of M has a Rad-supplement that is a direct summand of M (cf. [5]).

Motivated by the above notions, we introduce a new concept known as cofinitely weak* $Rad - \oplus$ -supplemented module as a generalization of the class of $Rad - \oplus$ -supplemented modules and weak* $Rad - \oplus$ -supplemented modules.

Remark 1.1. Let K and N be submodules of a module M with $K \subseteq N \subseteq M$. Then

(i) if K is a cofinite submodule of N and N is a cofinite submodule of M, then K is also a

cofinite submodule of M (transitive property).

(*ii*) N is a cofinite submodule of M if and only if N/K is a cofinite submodule of M/K.

2 Cofinitely weak* Rad− ⊕ −supplemented Modules

Definition 2.1. An *R*-module *M* is called a cofinitely weak* $\text{Rad}-\oplus$ -supplemented module if every cofinite semi simple submodule of *M* has a Rad-supplement that is a direct summand of *M*.

For example, hollow modules and modules with (p^*) are cofinitely weak* Rad $-\oplus$ -supplemented modules. Clearly, every Rad $-\oplus$ -supplemented module is a weak* Rad $-\oplus$ -supplemented module and weak* Rad $-\oplus$ -supplemented module is a cofinitely weak* Rad $-\oplus$ -supplemented module but the converses are not true in general. Thus we have the following implications:

 \oplus -supplemented \Rightarrow Rad- \oplus -supplemented \Rightarrow weak* Rad- \oplus -supplemented \Rightarrow cofinitely weak* Rad- \oplus -supplemented.

Example 2.2. (1). Every \oplus -supplemented module is Rad- \oplus -supplemented module, but the converse is not always true. For example, let M be a non torsion module over \mathbb{Z} with RadM = M. Then M is Rad- \oplus -supplemented but not supplemented. Consider the \mathbb{Z} -module $M = \mathbb{Q} \oplus \mathbb{Z}/p\mathbb{Z}$ for any prime p. Then M has a unique maximal submodule, $RadM \neq M$, i.e., M is w-local so M is Rad- \oplus -supplemented but not \oplus -supplemented. On the other hand if M is \oplus -supplemented, then \mathbb{Q} is supplemented which is not true because \mathbb{Q} is not torsion.

(2). Let *R* be a non local Dedekind domain with quotient field *K*. Then the module *K* is $\operatorname{Rad}-\oplus$ -supplemented but not \oplus -supplemented. On the other hand if *K* is \oplus -supplemented, then *R* is a local ring which contradicts our assumption.

(3). (cf. [7, Example 2.15(1)]), Let R be a local commutative ring having a radical module K (e.g., R is a discrete valuation ring with quotient field K). Then there exists a free module F and a semi simple submodule X of F such that $F/X \cong K$. Suppose that there is a direct summand Y of F such that Y is a weak* Rad- \oplus -supplement of X in F. By (cf. [8, Theorem 1]), Y is a direct sum of a local module. It follows that $Rad(Y) \neq Y$. On the other hand we have $F/X \cong Y/(X \cap Y) \cong K$, so $Y/(X \cap Y)$ has no maximal submodule. But by definition of weak* Rad- \oplus -supplement $(X \cap Y) \subseteq Rad(Y)$. Then Y/Rad(Y) has no maximal submodules. Since Y/Rad(Y) is semi simple, we get Y = Rad(Y), a contradiction. Therefore, F is not weak* Rad- \oplus -supplemented. However, it is easily seen that if N is a proper cofinite semi simple submodule of F, then there exist local direct summands $K_1, K_2, ..., K_r$ of F such that $K_1 + K_2 + ... + K_r$ is direct and a direct summand of F, so $F = N + K_1 + K_2 + ... + K_r$ and this sum is irredundant. Hence $K_1 + K_2 + ... + K_r$ is a weak* Rad- \oplus -supplement of N in F by Proposition 2.13. Consequently, F is cofinitely weak* Rad- \oplus -supplemented.

Proposition 2.3. Let M be a weak* $Rad - \oplus$ -supplemented module. A cofinite fully invariant submodule N of M is weak* $Rad - \oplus$ -supplemented if it is a direct summand of M.

Proof. Let *K* be any submodule of *M* contained inside *N* with $Rad(N) \subseteq K$. By assumption $M = N \oplus H$ for some finitely generated sumodule *H* of *M*. Thus $Rad(H) \ll H$. Clearly $Rad(M) \subseteq K + Rad(H)$. Since *M* is a weak* Rad $- \oplus$ –supplemented module, then for semi simple submodule *L* of *M* there exists $G \subseteq M$ such that M = K + Rad(H) + L, $(K + Rad(H)) \cap L \subseteq Rad(L)$ and $M = L \oplus G$. Since $Rad(H) \ll H$, we have M = K + L, $K \cap L \subseteq Rad(L)$ and $M = L \oplus G$. It follows that $N = K + (L \cap N)$ and $K \cap (L \cap N) \subseteq Rad(L \cap N)$. As *N* is a fully invariant submodule of *M*, we have $N = (L \cap N) \oplus (G \cap N)$ and $K \cap (L \cap N) \subseteq Rad(L \cap N)$. Therefore, *N* is weak* Rad $- \oplus$ –supplemented.

Proposition 2.4. For a finitely generated semi simple module M, the following statements are equivalent:

(*i*) M is \oplus -supplemented;

(*ii*) *M* is $Rad - \oplus -supplemented$;

(*iii*) *M* is weak* $Rad - \oplus -supplemented$;

(iv) M is cofinitely weak* $Rad - \oplus$ -supplemented.

Proof. $(i) \Rightarrow (ii) \Rightarrow (iv) \Rightarrow (iv)$ are clear. $(iv) \Rightarrow (i)$ assume that M is cofinitely weak* Rad- \oplus -supplemented and N be any submodule of M, so N is a direct summand and hence a semi simple submodule of M. Since M is finitely generated, N is a cofinite submodule of M. By assumption, there exists a direct summand K of M such that M = N + K and $(N \cap K) \subseteq$ Rad(K). K is finitely generated since M is finitely generated, so $Rad(K) \subseteq K$. Thus we get $(N \cap K) \ll K$. Hence K is a supplement of N in M. Therefore, M is \oplus -supplemented.

Lemma 2.5. Every radical module M is cofinitely weak* $Rad - \oplus$ -supplemented.

Proof. Let N be a cofinite semi simple submodule of M. Then M/N is finitely generated. As M is a radical, $N \subseteq Rad(M) = M$. Thus M is a trivial weak* Rad $- \oplus$ -supplement of N in M. Hence M is cofinitely weak* Rad $- \oplus$ -supplemented.

Corollary 2.6. The largest radical submodule P(M) of a module M is cofinitely weak* Rad $-\oplus$ -supplemented.

Remark 2.7. It is easily seen that a module M is w-local if and only if Rad(M) is a maximal submodule of M. Also, direct summand of a w-local module M is either a radical or w-local.

Lemma 2.8. Every w-local module M is cofinitely weak* Rad- \oplus -supplemented.

Proof. Let N be a cofinite semi simple submodule of M. Then M/N is finitely generated. By definition of w-local module, Rad(M) is the unique maximal submodule of M, i.e., $M/Rad(M) \subseteq M/N$ which gives $N \subseteq Rad(M)$. Thus M is a trivial weak* Rad– \oplus –supplement of N in M. Hence M is cofinitely weak* Rad– \oplus –supplemented.

Corollary 2.9. Every direct summand of a w-local module M is cofinitely weak* $Rad - \oplus$ -supplemented.

Proof. As mentioned in Remark 2.7, the direct summand of a w-local module M is either a radical or w-local. Applying Lemma 2.5 and Lemma 2.8, we get the required result.

Proposition 2.10. Let M be an indecomposable module. Then M is cofinitely weak* $Rad - \oplus$ -supplemented if and only if M = Rad(M) or M is w-local.

Proof. Assume that M is cofinitely weak* Rad- \oplus -supplemented with $M \neq Rad(M)$. Let N be a semi simple maximal submodule of M. Then by assumption, there exists a direct summand K of M such that M = N + K and $(N \cap K) \subseteq Rad(K)$. Since M is indecomposable, we have K = M which implies that $N \ll M$, i.e., $N \subseteq Rad(M)$ and hence N = Rad(M) is the unique maximal submodule of M. Therefore, M is a w-local module. The converse is clear by Lemma 2.5 and Lemma 2.8.

Proposition 2.11. Let K be a w-local direct summand of a module M. Then K is a weak* Rad- \oplus -supplement of N in M, where N is a proper cofinite semi simple submodule of M with K + N = M.

Proof. Assume that N is a proper cofinite semi simple submodule of M such that K + N = M. Then M/N = (K + N)/N is finitely generated. We know that $(K + N)/N \cong K/(K \cap N)$, so $K/(K \cap N) \neq 0$. Since K is a w-local direct summand of a module M, it has a unique maximal submodule Rad(K) of K. Also $K/(K \cap N)$ has a maximal sumodule; hence it follows that $(K \cap N) \subseteq Rad(K)$. Therefore, K is a weak* Rad- \oplus -supplement of N in M.

Lemma 2.12. Let K, L and N be semi simple submodules of a module M such that K+L+N = M. If K is a weak* $Rad - \oplus$ -supplement of L+N in M and L is a weak* $Rad - \oplus$ -supplement of K + N in M, then K + L is a weak* $Rad - \oplus$ -supplement of N in M.

Proof. Assume that K is a weak* Rad– \oplus –supplement of L + N in M; so, $K \cap (L + N) \subseteq Rad(K)$ and L is a weak* Rad– \oplus –supplement of K + N in M so, $L \cap (K + N) \subseteq Rad(L)$. Since $(K + L) \cap N \subseteq [K \cap (N + L)] + [L \cap (N + K)]$, we have $(K + L) \cap N \subseteq Rad(K) + Rad(L) \subseteq Rad(K + L)$. Thus $(K + L) \cap N \subseteq Rad(K + L)$, which shows that K + L is a weak* Rad– \oplus –supplement of N in M. **Proposition 2.13.** Let $K_1, K_2, ..., K_r$ be w-local direct summands of a module M. Then for every proper cofinite semi simple submodule N of M such that $M = N + K_1 + K_2 + ... + K_r$ and $M \neq N + \sum_{i \neq j} K_i$ for each $1 \leq j \leq r$, then $K_1 + K_2 + ... + K_r$ is a weak* $Rad - \oplus$ -supplement of N in M.

Proof. The proof follows by repeated application of Proposition 2.11 and Lemma 2.12, because every submodule of M which contains N is a cofinite submodule of M.

Proposition 2.14. Let M be a cofinitely weak* $Rad - \oplus$ -supplemented module. If M contains a maximal semi simple submodule, then M contains a w-local direct summand.

Proof. Assume that M is a cofinitely weak* Rad- \oplus -supplemented module and let N be a maximal semi simple submodule M. There exists a direct summand K of M such that M = N + K and $(N \cap K) \subseteq Rad(K)$. Since N is a maximal submodule, $M/N = (N + K)/N \cong K/(N \cap K)$ is a simple module. It means $(N \cap K)$ being a maximal submodule of K, $Rad(K) \subseteq (N \cap K)$ which implies that $Rad(K) = (N \cap K)$, i.e., K is w-local. Therefore, K is a w-local direct summand of M.

Corollary 2.15. Let M be a cofinitely weak* $Rad - \oplus$ -supplemented module with $Rad(M) \ll M$. Then M contains a local direct summand.

Proposition 2.16. Finite direct sum of cofinitely weak* $Rad - \oplus$ -supplemented modules is a cofinitely weak* $Rad - \oplus$ -supplemented.

Proof. For the proof of this result we will prove the result for only two cofinitely weak* Rad- \oplus -supplemented modules, which can be extended to n(finitely many) cofinitely weak* Rad- \oplus -supplemented module by induction. Let M_1 and M_2 be cofinitely weak* Rad- \oplus -supplemented modules and L be a semi simple submodule of $M = M_1 \oplus M_2$. Then $M = M_1 + M_2 + L$ has a trivial Rad- \oplus -supplement 0 in M. Since $M_2 \cap (M_1 + L)$ is a cofinite semi simple submodule of M_2 , by assumption there exists a direct summand H of M_2 such that $M_2 = [M_2 \cap (M_1 + L)] + H$ and $(M_1 + L) \cap H \subseteq Rad(H)$. By (cf. [5, Lemma 7]), H is a weak* Rad- \oplus -supplement of $(M_1 + L)$ in M, i.e., $M = (M_1 + L) + H$. Since $M_1 \cap (L + H)$ is a cofinite semi simple submodule of M_1 , by assumption, there exists a direct summand K of M_1 such that $M_1 = [M_1 \cap (L + H)] + K$ and $(L + H) \cap K \subseteq Rad(K)$. By (cf. [5, Lemma 7]), K is a weak* Rad- \oplus -supplement of (H + L) in M, i.e., M = (H + L) + K = L + (H + K) and $L \cap (H + K) \subseteq [H \cap (L + K)] + [K \cap (L + H)] \subseteq Rad(H) \oplus Rad(K) \subseteq Rad(H \oplus K)$, which shows that H + K is a Rad- \oplus -supplement of L in M. Moreover, $H \oplus K$ is a direct summand of $M = M_1 \oplus M_2$. Therefore, $M = M_1 \oplus M_2$ is a cofinitely weak* Rad- \oplus -supplemented module.

Corollary 2.17. Any direct sum of cofinitely weak* $Rad - \oplus -$ supplemented modules is cofinitely weak* $Rad - \oplus -$ supplemented.

Proof. Let $\{M_i | i \in I\}$ be a family of cofinitely weak* Rad- \oplus -supplemented modules. We claim that $M = \bigoplus_{i \in I} M_i$ is cofinitely weak* Rad- \oplus -supplemented. Let L be a cofinite semisimple submodule of M. Then $M = L + \bigoplus_{r=1}^n M_{i_r}$ for a finite subset $\{i_1, i_2, ... i_r\}$ of index set I. Since $\bigoplus_{r=1}^n M_{i_r}$ is cofinitely weak* Rad- \oplus -supplemented (see Proposition 2.16) and $[\bigoplus_{r=1}^n M_{i_r}]/(L \cap [\bigoplus_{r=1}^n M_{i_r}])$ is finitely generated, there exists a direct summand K of $[\bigoplus_{r=1}^n M_{i_r}]$ such that $L \cap [\bigoplus_{r=1}^n M_{i_r}] + K = \bigoplus_{r=1}^n M_{i_r}$ and $(K \cap L) \subseteq Rad(K)$. As K+L = M, K is a weak* Rad- \oplus -supplemented.

Corollary 2.18. Any direct sum of w-local modules is cofinitely weak* Rad- \oplus -supplemented.

Proof. The proof follows from Lemma 2.8 and Corollary 2.17.

References

[1] R. Alizade, G. Bilhan and P. F. Smith, Modules whose maximal submodules have supplements, *Comm. Alg.* **29(6)**, 2389-2405 (2001).

- [2] R. Alizade and E. Buyukasik, Cofinitely weak supplemented modules, *Comm. Alg.* 31(11), 5377-5390 (2003).
- [3] I. Al-Khazzi and P. F. Smith, Modules with chain conditions on superfluous submodules, *Comm. Alg.* 19(8), 2331-2351 (1991).
- [4] E. Buyukasik and R. Tribak, On w-local modules and Rad-supplemented modules, J. Korean Math. Soc. 51(5), 971-95 (2014).
- [5] S. K. Choubey, M. K. Patel and V. Kumar, On weak* Rad- ⊕ -supplemented modules, *Maejo Int. J. of Sci. and Tech.* 11(03), 264-274 (2017).
- [6] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, *Lifting Modules Supplements and projectivity in module theory*, 1st Edn., Birkhaeuser Verlag, Basel, Switzerland (2006).
- [7] S. Ecevit, M. T. Kosan and R. Tribak, $Rad \oplus$ -supplemented modules and cofinitely $Rad \oplus$ -supplemented modules, *Alg. Colloq.* **19(4)**, 637-648 (2012).
- [8] R. B. Warfield Jr., A Krull-Schmidt theorem for infinite sum of modules, Proc. Amer. Math. Soc. 22, 460-465 (1969).
- [9] R. Wisbauer, *Foundations of Modules and Rings Theory*, 1st Edn., Gordon and Breach Sci. Pub., Reading, Berkshire RG18JL, UK (1991).

Author information

Manoj K. Patel, Laba K. Das and Jane R. Yimchunger, Department of Mathematics, National Institute of Technology Nagaland, Dimapur-797103, Nagaland, India.

E-mail:mkpitb@gmail.com, labakumardas74@gmail.com, janeroselineyim@gmail.com