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Abstract In this paper we introduce the idea of cofinitely weak* Rad− ⊕ −supplemented
module as a generalization of weak* Rad− ⊕ −supplemented module. Some relevant counter
examples are given to distinguish these structure of modules. We establish several properties
of cofinitely weak* Rad− ⊕ −supplemented module related with w−local modules. Finally,
we prove that the class of cofinitely weak* Rad− ⊕ −supplemented modules is closed under
arbitrary direct sums.

1 Introduction

Throughout this paper, R is an associative ring with identity and all modules are unitary left
R−modules, unless otherwise specified. Let M be an R−module. A submodule N of M denoted
by N ⊆ M and Rad(M) will indicate the Jacobson radical of M . A submodule N of a module
M is called small in M (denoted by N ≪ M ), if M ̸= N + K for every proper submodule
K of M . A non zero module M is said to be hollow if every proper submodule of M is small
in M , and it is said to be local if the sum of all the proper submodules of M is also a proper
submodule of M , equivalently M is hollow and finitely generated. A non zero module M is said
to be w−local, if it has a unique maximal submodule (cf. [4]).

A module M is said to have property (p∗), if for every submodule N of M , there exists a
direct summand K of M such that K ⊆ N and N/K ⊆ Rad(M/K) (cf. [3]). Recall that a
module M is called radical if M has no maximal submodule i.e., RadM = M (cf. [6]). For a
module M,P (M) will indicate the sum of all radical submodules of M . Note that P (M) is the
largest radical submodule of M .

If N and L are submodules of M , then N is called a supplement of L , if N + L = M and
N ∩L ≪ N . A module M is called supplemented if each of its submodules has a supplement in
M . A module M is called ⊕−supplemented (completely ⊕−supplemented) if every submodule
(direct summand) of M has a supplement that is a direct summand of M (cf. [5, 7, 9]). A
submodule N of a module M is called cofinite if M/N is finitely generated and a module M
is called cofinitely supplemented if every cofinite submodule of M has a supplement in M (cf.
[2, 7]). A submodule N of a module M has a Rad-supplement K in M if N + K = M and
N ∩ K ⊆ RadK. A module M is called Rad-supplemented if every submodule of M has a
Rad-supplement (cf. [5, 7]). M is called Rad−⊕−supplemented if every submodule of M has a
Rad-supplement that is a direct summand of M . The Z−module Q is Rad−⊕−supplemented but
not ⊕−supplemented. Every module with (p∗) is Rad−⊕−supplemented. A module M is called
completely Rad− ⊕ −supplemented if every direct summand of M is Rad− ⊕ −supplemented
(cf. [5]). Recall that a module M is called weak* Rad−⊕−supplemented if every semi-simple
submodule of M has a Rad-supplement that is a direct summand of M (cf. [5]).

Motivated by the above notions, we introduce a new concept known as cofinitely weak*
Rad− ⊕ −supplemented module as a generalization of the class of Rad− ⊕ −supple-mented
modules and weak* Rad−⊕−supplemented modules.

Remark 1.1. Let K and N be submodules of a module M with K ⊆ N ⊆ M . Then
(i) if K is a cofinite submodule of N and N is a cofinite submodule of M , then K is also a
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cofinite submodule of M (transitive property).
(ii) N is a cofinite submodule of M if and only if N/K is a cofinite submodule of M/K.

2 Cofinitely weak* Rad− ⊕ −supplemented Modules

Definition 2.1. An R−module M is called a cofinitely weak* Rad− ⊕ −supplemented module
if every cofinite semi simple submodule of M has a Rad-supplement that is a direct summand of
M .

For example, hollow modules and modules with (p∗) are cofinitely weak* Rad−⊕−supplemented
modules. Clearly, every Rad− ⊕ −supplemented module is a weak* Rad− ⊕ −supplemented
module and weak* Rad−⊕−supplemented module is a cofinitely weak* Rad−⊕−supplemented
module but the converses are not true in general. Thus we have the following implications:

⊕−supplemented ⇒ Rad− ⊕ −supplemented ⇒ weak* Rad− ⊕ −supplemented ⇒ cofinitely
weak* Rad−⊕−supplemented.

Example 2.2. (1). Every ⊕−supplemented module is Rad− ⊕ −supplemented module, but
the converse is not always true. For example, let M be a non torsion module over Z with
RadM = M . Then M is Rad−⊕−supplemented but not supplemented. Consider the Z−module
M = Q⊕ Z/pZ for any prime p. Then M has a unique maximal submodule, RadM ̸= M , i.e.,
M is w−local so M is Rad− ⊕ −supplemented but not ⊕−supplemented. On the other hand if
M is ⊕−supplemented, then Q is supplemented which is not true because Q is not torsion.
(2). Let R be a non local Dedekind domain with quotient field K. Then the module K is
Rad−⊕−supplemented but not ⊕−supplemented. On the other hand if K is ⊕−supplemented,
then R is a local ring which contradicts our assumption.
(3). (cf. [7, Example 2.15(1)]), Let R be a local commutative ring having a radical module K
(e.g., R is a discrete valuation ring with quotient field K). Then there exists a free module F and
a semi simple submodule X of F such that F/X ∼= K. Suppose that there is a direct summand
Y of F such that Y is a weak* Rad− ⊕ −supplement of X in F . By (cf. [8, Theorem 1]), Y
is a direct sum of a local module. It follows that Rad(Y ) ̸= Y . On the other hand we have
F/X ∼= Y/(X∩Y ) ∼= K, so Y/(X∩Y ) has no maximal submodule. But by definition of weak*
Rad− ⊕ −supplement (X ∩ Y ) ⊆ Rad(Y ). Then Y/Rad(Y ) has no maximal submodules.
Since Y/Rad(Y ) is semi simple, we get Y = Rad(Y ), a contradiction. Therefore, F is not
weak* Rad− ⊕ −supplemented. However, it is easily seen that if N is a proper cofinite semi
simple submodule of F , then there exist local direct summands K1,K2, ...Kr of F such that
K1+K2+ ...+Kr is direct and a direct summand of F , so F = N+K1+K2+ ...+Kr and this
sum is irredundant. Hence K1 +K2 + ...+Kr is a weak* Rad−⊕−supplement of N in F by
Proposition 2.13. Consequently, F is cofinitely weak* Rad− ⊕ −supplemented but not weak*
Rad−⊕−supplemented.

Proposition 2.3. Let M be a weak* Rad− ⊕ −supplemented module. A cofinite fully invariant
submodule N of M is weak* Rad−⊕−supplemented if it is a direct summand of M .

Proof. Let K be any submodule of M contained inside N with Rad(N) ⊆ K. By assumption
M = N ⊕ H for some finitely generated sumodule H of M . Thus Rad(H) ≪ H . Clearly
Rad(M) ⊆ K + Rad(H). Since M is a weak* Rad− ⊕ −supplemented module, then for semi
simple submodule L of M there exists G ⊆ M such that M = K+Rad(H)+L, (K+Rad(H))∩
L ⊆ Rad(L) and M = L⊕G. Since Rad(H) ≪ H , we have M = K+L,K∩L ⊆ Rad(L) and
M = L⊕G. It follows that N = K+(L∩N) and K ∩ (L∩N) ⊆ Rad(L∩N). As N is a fully
invariant submodule of M , we have N = (L∩N)⊕ (G∩N) and K ∩ (L∩N) ⊆ Rad(L∩N).
Therefore, N is weak* Rad−⊕−supplemented.

Proposition 2.4. For a finitely generated semi simple module M , the following statements are
equivalent:
(i) M is ⊕−supplemented;
(ii) M is Rad−⊕−supplemented;
(iii) M is weak* Rad−⊕−supplemented;
(iv) M is cofinitely weak* Rad−⊕−supplemented.
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Proof. (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are clear. (iv) ⇒ (i) assume that M is cofinitely weak*
Rad−⊕−supplemented and N be any submodule of M , so N is a direct summand and hence a
semi simple submodule of M . Since M is finitely generated, N is a cofinite submodule of M .
By assumption, there exists a direct summand K of M such that M = N +K and (N ∩K) ⊆
Rad(K). K is finitely generated since M is finitely generated, so Rad(K) ⊆ K. Thus we get
(N ∩K) ≪ K. Hence K is a supplement of N in M . Therefore, M is ⊕−supplemented.

Lemma 2.5. Every radical module M is cofinitely weak* Rad−⊕−supplemented.

Proof. Let N be a cofinite semi simple submodule of M . Then M/N is finitely generated. As
M is a radical, N ⊆ Rad(M) = M . Thus M is a trivial weak* Rad− ⊕ −supplement of N in
M . Hence M is cofinitely weak* Rad−⊕−supplemented.

Corollary 2.6. The largest radical submodule P (M) of a module M is cofinitely weak* Rad−⊕
−supplemented.

Remark 2.7. It is easily seen that a module M is w−local if and only if Rad(M) is a maximal
submodule of M . Also, direct summand of a w−local module M is either a radical or w−local.

Lemma 2.8. Every w−local module M is cofinitely weak* Rad−⊕−supplemented.

Proof. Let N be a cofinite semi simple submodule of M . Then M/N is finitely generated. By
definition of w−local module, Rad(M) is the unique maximal submodule of M , i.e., M/Rad(M) ⊆
M/N which gives N ⊆ Rad(M). Thus M is a trivial weak* Rad−⊕−supplement of N in M .
Hence M is cofinitely weak* Rad−⊕−supplemented.

Corollary 2.9. Every direct summand of a w−local module M is cofinitely weak* Rad− ⊕
−supplemented.

Proof. As mentioned in Remark 2.7, the direct summand of a w−local module M is either a
radical or w−local. Applying Lemma 2.5 and Lemma 2.8, we get the required result.

Proposition 2.10. Let M be an indecomposable module. Then M is cofinitely weak* Rad− ⊕
−supplemented if and only if M = Rad(M) or M is w−local.

Proof. Assume that M is cofinitely weak* Rad−⊕−supplemented with M ̸= Rad(M). Let N
be a semi simple maximal submodule of M . Then by assumption, there exists a direct summand
K of M such that M = N +K and (N ∩K) ⊆ Rad(K). Since M is indecomposable, we have
K = M which implies that N ≪ M , i.e., N ⊆ Rad(M) and hence N = Rad(M) is the unique
maximal submodule of M . Therefore, M is a w−local module. The converse is clear by Lemma
2.5 and Lemma 2.8.

Proposition 2.11. Let K be a w−local direct summand of a module M . Then K is a weak*
Rad−⊕−supplement of N in M , where N is a proper cofinite semi simple submodule of M with
K +N = M .

Proof. Assume that N is a proper cofinite semi simple submodule of M such that K +N = M .
Then M/N = (K + N)/N is finitely generated. We know that (K + N)/N ∼= K/(K ∩ N),
so K/(K ∩ N) ̸= 0. Since K is a w−local direct summand of a module M , it has a unique
maximal submodule Rad(K) of K. Also K/(K ∩N) has a maximal sumodule; hence it follows
that (K ∩N) ⊆ Rad(K). Therefore, K is a weak* Rad−⊕−supplement of N in M .

Lemma 2.12. Let K,L and N be semi simple submodules of a module M such that K+L+N =
M . If K is a weak* Rad−⊕−supplement of L+N in M and L is a weak* Rad−⊕−supplement
of K +N in M , then K + L is a weak* Rad−⊕−supplement of N in M .

Proof. Assume that K is a weak* Rad− ⊕ −supplement of L + N in M ; so, K ∩ (L + N) ⊆
Rad(K) and L is a weak* Rad−⊕−supplement of K +N in M so, L ∩ (K +N) ⊆ Rad(L).
Since (K + L) ∩ N ⊆ [K ∩ (N + L)] + [L ∩ (N +K)], we have (K + L) ∩ N ⊆ Rad(K) +
Rad(L) ⊆ Rad(K+L). Thus (K+L)∩N ⊆ Rad(K+L), which shows that K+L is a weak*
Rad−⊕−supplement of N in M .
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Proposition 2.13. Let K1,K2, ...Kr be w−local direct summands of a module M . Then for every
proper cofinite semi simple submodule N of M such that M = N + K1 + K2 + ... + Kr and
M ̸= N+

∑
i ̸=j Ki for each 1 ≤ j ≤ r, then K1+K2+ ...+Kr is a weak* Rad−⊕−supplement

of N in M .

Proof. The proof follows by repeated application of Proposition 2.11 and Lemma 2.12, because
every submodule of M which contains N is a cofinite submodule of M .

Proposition 2.14. Let M be a cofinitely weak* Rad− ⊕ −supplemented module. If M contains
a maximal semi simple submodule, then M contains a w−local direct summand.

Proof. Assume that M is a cofinitely weak* Rad− ⊕ −supplemented module and let N be a
maximal semi simple submodule M . There exists a direct summand K of M such that M =
N +K and (N ∩ K) ⊆ Rad(K). Since N is a maximal submodule, M/N = (N +K)/N ∼=
K/(N ∩K) is a simple module. It means (N ∩K) being a maximal submodule of K, Rad(K) ⊆
(N ∩K) which implies that Rad(K) = (N ∩K), i.e., K is w−local. Therefore, K is a w−local
direct summand of M .

Corollary 2.15. Let M be a cofinitely weak* Rad−⊕−supplemented module with Rad(M) ≪
M . Then M contains a local direct summand.

Proposition 2.16. Finite direct sum of cofinitely weak* Rad− ⊕ −supplemented modules is a
cofinitely weak* Rad−⊕−supplemented.

Proof. For the proof of this result we will prove the result for only two cofinitely weak*
Rad− ⊕ −supplemented modules, which can be extended to n(finitely many) cofinitely weak*
Rad− ⊕ −supplemented module by induction. Let M1 and M2 be cofinitely weak* Rad− ⊕
−supplemented modules and L be a semi simple submodule of M = M1 ⊕ M2. Then M =
M1 + M2 + L has a trivial Rad− ⊕ −supplement 0 in M . Since M2 ∩ (M1 + L) is a cofinite
semi simple submodule of M2, by assumption there exists a direct summand H of M2 such that
M2 = [M2 ∩ (M1+L)]+H and (M1+L)∩H ⊆ Rad(H). By (cf. [5, Lemma 7]), H is a weak*
Rad− ⊕ −supplement of (M1 + L) in M , i.e., M = (M1 + L) +H . Since M1 ∩ (L+H) is a
cofinite semi simple submodule of M1, by assumption, there exists a direct summand K of M1
such that M1 = [M1 ∩ (L+H)]+K and (L+H)∩K ⊆ Rad(K). By (cf. [5, Lemma 7]), K is
a weak* Rad−⊕−supplement of (H + L) in M , i.e., M = (H + L) +K = L+ (H +K) and
L∩ (H +K) ⊆ [H ∩ (L+K)] + [K ∩ (L+H)] ⊆ Rad(H)⊕Rad(K) ⊆ Rad(H ⊕K), which
shows that H +K is a Rad−⊕−supplement of L in M . Moreover, H ⊕K is a direct summand
of M = M1 ⊕ M2. Therefore, M = M1 ⊕ M2 is a cofinitely weak* Rad− ⊕ −supplemented
module.

Corollary 2.17. Any direct sum of cofinitely weak* Rad−⊕−supplemented modules is cofinitely
weak* Rad−⊕−supplemented.

Proof. Let {Mi|i ∈ I} be a family of cofinitely weak* Rad− ⊕ −supplemented modules. We
claim that M =

⊕
i∈I Mi is cofinitely weak* Rad− ⊕ −supplemented. Let L be a cofinite

semisimple submodule of M . Then M = L +
⊕n

r=1 Mir for a finite subset {i1, i2, ...ir} of
index set I . Since

⊕n
r=1 Mir is cofinitely weak* Rad−⊕−supplemented (see Proposition 2.16)

and [
⊕n

r=1 Mir ]/(L ∩ [
⊕n

r=1 Mir ]) is finitely generated, there exists a direct summand K of
[
⊕n

r=1 Mir ] such that L∩[
⊕n

r=1 Mir ]+K =
⊕n

r=1 Mir and (K∩L) ⊆ Rad(K). As K+L = M ,
K is a weak* Rad− ⊕ −supplement of N in M . Therefore, M =

⊕
i∈I Mi is cofinitely weak*

Rad−⊕−supplemented.

Corollary 2.18. Any direct sum of w−local modules is cofinitely weak* Rad−⊕−supplemented.

Proof. The proof follows from Lemma 2.8 and Corollary 2.17.
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