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Abstract Let R be a commutative ring with identity. A ring R is called n-Clean if every
element of R can be written as a sum of idempotent and n units in R. The class of n-clean rings
contains Clean rings ( ie every element can be written as a sum of a unit and an idempotent).
This notion of n-cleaness first appared in [14]. We say that a ring R is almost clean if every
element can be written as a sum of a unit and an regular element. In this paper, we introduce the
new notion of (n, p)-Clean rings and n-almost clean rings. Next, we investigate some properties
of such rings, and then generate new and original families of rings with these properties.

1 Introduction

Throughout this paper, all rings are commutative with unity. For a ring R, Id(R), U(R), Rad(R)
and Reg(R) are denote the set of idempotents of R , the set of units of R, the Jacobson radical of
R and the set of regular elements of R, respectively. Nicholson [9] defined a ring R to be clean
if every element of R can be written as a sum of a unit and an idempotent. Recently, this class of
rings is studied extensively in literatures see for example, [8], [13] and [1]. According to Xiao
and Tong [14], a ring R is called n-clean if every element can be written as a sum of n-units and
an idempotent. Following McGovern [4], we say that a ring R is almost clean if, for each x ∈ R,
x can be written as x = r + e where r ∈ Reg(R) and e ∈ Idem(R) . Almost clean rings have
been studied in [12]. In [12], it is shown that a commutative Rickart ring is almost clean. Up
to date, almost cleanness has been considered mostly for commutative rings. In [10], various
classes of almost clean rings that are not necessarily commutative are given. In this paper, we
introduce the new notion of (n, p)-Clean rings and we extend some results on n-clean rings to
(n, p)-clean rings. Next we generalize the notion of almost clean rings.

2 (n, p)-Clean rings

Definition 2.1. Let n and p two positive integers (p ≥ 2). A ring R is said (n, p)-clean if every
element a ∈ R can be written in the form a = u1 + u2 + ...... + un + x where ui ∈ U(R)
(i = 1, .....n) and xp = x.

Note that clean rings are (1,2)-clean rings and n-clean rings are (n,2)-clean rings. However,
for (p ≥ 2), (n, p)-clean rings need not be clean rings, as shown by the following example.

Example 2.2. Z15 is a (1,3)-clean which is not clean.

Proof. One can easily verified that U(Z15) = {1, 2 4, 7, 8, 11, 14}, Id(Z15) = {0, 1} and {x ∈
Z15/x

3 = x}={0, 1, 4, 5, 6, 9, 10, 11, 14}. Hence each a ∈ Z15 can be written in the form a =
u+ x where u ∈ U(Z15) and x3 = x. Consequently Z15 is a (1,3)-clean which is not clean.

Proposition 2.3. Let n and p two positive integers (p ≥ 2). Then a ring R is (n, p)-clean if
and only if every element a ∈ R has the form a = u1 + u2 + ...... + un − x where ui ∈ U(R)
(i = 1, .....n) and xp = x.

Proof. Let a ∈ R . Since R is (n, p)-clean, we have −a = v1+v2+......+vn+x where vi ∈ U(R)
(i = 1, .....n) and xp = x . Hence, a = u1 + u2 + ...... + un − x where ui = −vi ∈ U(R)
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(i = 1, .....n) and xp = x . Conversely, let a ∈ R. Then −a = u1 + u2 + ......+ un − x where
ui ∈ U(R) (i = 1, .....n) and xp = x . Hence, a = (−u1) + (−u2) + ...... + (−un) + x where
(−ui) ∈ U(R) (i = 1, .....n) and xp = x. Thus R is (n, p)-clean.

It is known that homomorphic images of n-clean rings are n-clean (see [14]). For (n, p)-clean
rings we have the following:

Proposition 2.4. Let n and p two positive integers (p ≥ 2). Then every homomorphic image of
an (n, p)-clean ring is (n, p)-clean . In particular, every homomorphic image of a n-clean ring
is n-clean.

Proof. Let R be an (n, p)-clean ring and let φ : R → S be a ring epimorphism. Let x ∈ S . Then
x = φ(y) for some y ∈ R . Since R is an (n, p)-clean , then y = u1 + u2 + ......+ un + x where
ui ∈ U(R) (i = 1, .....n) and xp = x. That is, x = φ(y) = φ(u1)+φ(u2)+ ......+φ(un)+φ(x).
Since φ is an epimorphism, we then have that φ(ui) ∈ U(S) and φ(x)p = φ(x). It follows that
S = φ(R) is an (n, p)-clean.

We now consider direct products. For (n, p)-clean rings, we have the following:

Proposition 2.5. Let n and p two positive integers (p ≥ 2). The direct product ring
∏

i∈I Ri is
(n, p)-clean if and only if each Ri is (n, p)-clean.

Proof. One direction immediately follows from proposition 2.4 ( since Ri is a homomorphic
image of

∏
i∈I Ri (via the natural projection :Πi :

∏
i∈I Ri → Ri ) . Conversely, suppose

that each Ri is an (n, p)-clean ring. Let a = (ai) ∈
∏

i∈I Ri . Then for each i, ai = ui1 +
ui2 + ...... + uin + xi where uij ∈ U(Ri) (j = 1, .....n) and xp

i = xi. Thus, a = (ai) =
(ui1) + (ui2)+, ......+ (uin) + (xi) with (uij ∈ U(

∏
i∈I Ri) for (j = 1, .....n) and (xi)p = (xi)

. Hence,
∏

i∈I Ri is (n, p)-clean.

Polynomial rings over (n, p)-clean rings are not necessarily (n, p)-clean. For example, the
ring Z2 is (1, 2)- clean but the polynomial ring Z2[x] is not (1, 2)-clean. However, power series
ring over n -weakly clean rings are (n, p)-clean as shown in the following:

Proposition 2.6. Let n and p two positive integers (p ≥ 2). Then the power series ring R[[x]] is
(n, p)-clean if and only if R is (n, p)-clean.

Proof. Suppose that R[[x]] is (n, p)-clean. Then it follows by the isomorphism R ∼= R[[x]]/(x)
and Proposition 2.4 that R is an (n, p)-clean ring. Conversely, suppose that R is (n, p)-clean. Let
f =

∑+∞
i=0 rix

i ∈ R[[x]]. Since R is (n, p)-clean, we have that a0 = u1+u2+......+un+e where
ui ∈ U(R) (i = 1, .....n) and ep = e. Then f = (u1 + r1x+ r2x

2 + .......) + u2 + ......+ un + e
where (u1 + r1x+ r2x

2 + .......) ∈ U(R[[x]]), ui ∈ U(R[[x]]) (i = 2, .....n) and e ∈ R ⊆ R[[x]].
Thus, R[[x]] is an (n,p)-clean ring.

For more examples of (n,p)-clean rings, we consider the method of trivial ring extension. Let
R be a ring and E an R-module. The trivial ring extension of R by E is the ring R ∝ E with
product with r ∈ R and e ∈ E, under coordinatewise addition and under an adjusted defined by
(r, e)(r′, e′) = (rr′, re′ + r′e) for all r, r′ ∈ R , e, e′ ∈ E.

Theorem 2.7. Consider n and p two positive integers (p ≥ 2). Let R be a ring and E an R-
module. Then R ∝ E is (n,p)-clean if and only if R is an (n,p)-clean ring.

Proof. Note that R ∼= R ∝ E/0 ∝ E is a homomorphic image of R ∝ E. Hence if R ∝ E is
(n, p)-clean, so by Proposition 2.4, R is (n, p)-clean. Conversely, racall that 1R∝E = (1, 0) and
observe that if u ∈ U(R), then (u, e) ∈ U(R ∝ E) for each e ∈ E and if xp = x for each x ∈ R,
then (x, 0)p = (xp, 0) = (x, 0) in R ∝ E. Hense if a ∈ R with a = u1+u2+ ......+un+x where
ui ∈ U(R) (i = 1, .....n) and xp = x, then for e ∈ E, (a, e) = (u1 + u2 + ......+ un + x, e) =
(u1, e) + (u2, 0) + (u3, 0) + ....... + (x, 0) where (u1, e) ∈ U(R ∝ E), (ui, 0) ∈ U(R ∝ E)
(i = 2, .....n) and (x, 0)p = (x, 0). Thus if R is (n,p)-clean, so is R ∝ E.

Let A and B be two rings with unity, let J be an ideal of B and let f : A → B be a ring
homomorphism. In this setting, we can consider the following subring of A×B:



On (n, p)-clean commutative rings and n-almost clean rings 25

A ◃▹f J := {(a, f(a) + j) | a ∈ A, j ∈ J}

called the amalgamation of A with B along J with respect to f . This construction has been
introduced and studied in [3, 4], and it is a generalization of the amalgamated duplication of
a ring along an ideal (introduced and studied in [5, 6]). Moreover, other classical constructions
(such as the A+XB[X], A+XB[[X]], and the D+M constructions) can be studied as particular
cases of the amalgamation ([3, Examples 2.5 and 2.6]).

Theorem 2.8. Consider n and p two positive integers (p ≥ 2). Let f : A → B be a ring
homomorphism and J an ideal of B such that f(u) + j is invertible (in B) for each u ∈ U(A)
and j ∈ J . Then A ◃▹f J is (n,p)-clean if and only if A is an (n,p)-clean ring.

Proof. Suppose that A ◃▹f J is (n, p)-clean. Then it follows by the isomorphism A ∼= A ◃▹f

J/({0}) × J and Proposition 2.4 that A is an (n, p)-clean ring. Conversely, assume that A is
clean and f(u) + j is invertible (in B) for each u ∈ U(A) and j ∈ J . Consider (a, j) ∈ A × J .
Since A is clean, a = u1 + u2 + ...... + un + x where ui ∈ U(R) (i = 1, .....n) and xp = x .
Moreover, f(u1) + j is invertible in B. Then, there exists v ∈ B such that (f(u1) + j)v = 1.
Hence,

(f(u1) + j)(f(u−1
1 )− vf(u−1

1 )j) = f(u1)f(u
−1
1 ) + jf(u−1

1 )− (f(u1) + j)vf(u−1
1 )j

= 1 + jf(u−1
1 )− f(u−1

1 )j

= 1

Thus, (u1, f(u1)+ j) is invertible in A ◃▹f J (since (u1, f(u1)+ j)(u−1
1 , f(u−1

1 )− vf(u−1
1 )j) =

(1, 1)). Hence,

(a, f(a) + j) = (u1 + u2 + ......+ un + x, f(u1 + u2 + ......+ un + x) + j)

= (u1, f(u1) + j) + (u2, f(u2)) + ....+ (un, f(un)) + (x, f(x))

where (u1, f(u1) + j) ∈ U(R ∝ E), (ui, f(ui) ∈ U(R ∝ E) (i = 2, .....n) and (x, f(x))p =
(x, f(x)). Consequently, A ◃▹f J is clean.

Corollary 2.9. Let f : A → B be a ring homomorphism and J an ideal of B such that J ⊆
Rad(B). Then A ◃▹f J is (n, p)- clean if and only if A is(n, p)-clean.

Corollary 2.10. Let A ⊂ B be an extension of commutative rings and X := {X1, X2, ..., Xn} a
finite set of indeterminates over B. Set the subring A + XB[[X]] := {h ∈ B[[X]] | h(0) ∈ A}
of the ring of power series B[[X]]. Then, A+XB[[X]] is (n, p)-clean if and only if A (n, p)-is
clean.

Proof. By [3, Example 2.5], A+XB[[X]] is isomorphic to A ◃▹σ J , where σ : A ↪→ B[[X]] is
the natural embedding and J := XB[[X]]. It is well known that Rad(B[[X]]) = {g ∈ B[[X]] |
g(0) ∈ Rad(A)}. Thus, J ⊆ Rad(B[[x]]. Hence, by Corollary 2.9, A ◃▹σ J is (n, p)-clean if
and only if A is (n, p)-clean. Thus, we have the desired result.

Corollary 2.11. Let T be a ring and J ⊆ Rad(T ) an ideal of T and let D be a subring of T such
that J ∩D = (0). The ring D + J is (n, p)-clean if and only if D is (n, p)-clean.

Proof. By [3, Proposition 5.1 (3)], D + J is isomorphic to the ring D ◃▹ι J where ι : D ↪→ T
is the natural embedding. Thus, by Corollary 2.9, D + J is (n, p)-clean if and only if D is
(n, p)-clean.

3 n-almost clean rings

Definition 3.1. Let n be an integer (n ≥ 2). A ring R is said n-almost clean if every element
a ∈ R can be written in the form a = r + x where r ∈ Reg(R) and xn = x.

Note that an almost clean ring is an n-almost clean ring for each n ≥ 2. However, for n ≥ 3,
n-almost clean rings need not be almost clean, as shown by the following example.
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Example 3.2. Z15 is a 3-almost clean which is not almost clean.

Proof. It is easily to see that Id(Z15) = {0, 1} and Reg(Z15) = {1, 2, 4, 7, 8, 11, 13, 14}.
We have 6, 6−1 is not in Reg(Z15). Thus Z15 is not an almost clean ring. While {x ∈ Z15/x

3 =
x}={0, 1, 4, 5, 6, 9, 10, 11, 14} and 3 = 2 + 1, 5 = 4 + 1, 6 = 2 + 4, 9 = 13 + 11, and
12 = 14 + 11,. Hence each a ∈ Z15 can be written in the form a = r + x where r ∈ Reg(Z15)
and x3 = x. Consequently Z15 is 3-almost clean.

Remark 3.3. From [2, Example 2.9] it is clear that an homomorphic image of an n-almost clean
ring is not necessary an n-almost clean ring.

Proposition 3.4. A direct product rings
∏

i∈I Ri is n-almost clean if and only if each Ri is n-
almost clean.

Proof. Let i ∈ I and consider a ∈ Ri. The element (0, .., a, 0, ..., 0), which has 0 is all j’th
place with i ̸= j, can be written as (0, .., a, 0, ..., 0) = (rj)j + (xj)j with rj)j ∈ Reg(R) and
(xj)nj = (xj)j . Since Reg(R) =

∏
Reg(Rj), then rj ∈ Reg(Rj) for each j, . On the other hand,

it is clear that xn
j = xj . Thus, a = ri + xi where ri ∈ Reg(Ri) and xn

i = xi. Consequently,
Ri is n-almost clean. Conversely, suppose that each Ri is n-almost clean. Let (ai)i ∈

∏
i∈I Ri.

Write ai = ri + xi where ri ∈ Reg(Ri) and xn
i = xi . Then, (ai)i = (ri)i + (xi)i where

(ri)i ∈
∏

i∈I Reg(Ri) and (xi)ni = (xi)i. So,
∏

i∈I Ri is an n-almost clean ring.

Proposition 3.5. If R a commutative ring is n-almost clean, then the power series ring R[[x]] is
also n-almost clean.

Proof. Suppose that R is n-almost clean. Let f ∈ R[[x]], so f = f0 + h where f0 ∈ R and
h ∈ ⟨{x}⟩. Write f0 = r + e where r ∈ Reg(R) and en = e. Then f = (r + h) + e where
r + h ∈ Reg(R[[x]]) and e ∈ R ⊆ R[[x]]. Thus R[[x]] is n-almost clean.

Given aring R, we set n
√

1 = {x ∈ R/xn = 1}. Racall that a ring R is called indecomposable
if Idem(R) = {0, 1}.

Proposition 3.6. Let R be an indecomposable ring and n ≥ 2 be a integer. Then R is n-almost
clean if and only if for each x ∈ R \Reg(R), x− α is regular for some α ∈ n−1

√
1.

Proof. Let a ∈ R \ Reg(R). Write a = r + x where r ∈ Reg(R) and xn = x. We have
(xn−1)2 = x2n−2 = xnxn−2 = xxn−2 = xn−1. Thus, xn−1 is an idempotent element of R.
Moreover, xn−1 ̸= 0. Otherwise, x = xn = xn−1x = 0, and so a = r is regular, a contradiction.
Thus, xn−1 = 1. Then, x ∈ n−1

√
1 and ax = r is regular. Conversely, let a ∈ R. If a is not

regular then there exists α ∈ n−1
√

1 such that a − α = r is regular. Therefore, a = r + α and
αn = αn−1α = α. Thus, R is n-almost clean.

Let us give the following definition:

Definition 3.7. Let n ≥ 2 be an integer. A ring R is called n-indecomposable if for each x ∈ R,
xn = x implies that x = 0 or 1.

Indecomposable rings are just the 2-indecomposable rings. It is clear also that, for each
n ≥ 2, every n-indecomposable ring is indecomposable. The converse implication is not true.
For example, Z15 is an indecomposable ring which is not (2p + 1)-indecomposable for each
p ≥ 1 (since (42p+1 = 4 but ̸= 0, 1 ).

Proposition 3.8. Let n ≥ 2 be a positive integer. If R is an n-indecomposable ring then every
n-almost clean ring is almost clean.

Proof. Clear since for each n-indecomposable n-almost clean ring, every element x ∈ R can be
written as x = e+ r where e = 0 or 1 and r ∈ Reg(R). Thus, R is almost clean ring.

Theorem 3.9. Consider n ≥ 2 a positive integer. Let R be a ring and E an R-module. Then
R ∝ E is n-almost clean if and only if each x ∈ R can be written in the form x = r + e where
r ∈ R− (Z(R) ∪ Z(E)) and en = e.
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Proof. We first observe that, if (r, 0) ∈ Reg(R ∝ E), then r ∈ R − (Z(R) ∪ Z(E)). For if
r ∈ Z(R), then rs = 0 where s ̸= 0 and then (r, 0)(s, 0) = (0, 0), while if r ∈ Z(E) then
rm = 0 where m ̸= 0 and then (r, 0)(0,m) = (0, 0). Conversely, if r ∈ R − (Z(R) ∪ Z(E)),
then (r,m) is regular for each m ∈ E. For (r,m)(s, n) = (0, 0) gives rs = 0 and hence s = 0
and then rn = 0 and hence n = 0.
Suppose that R ∝ E is n-almost clean. Thus, for each x ∈ R and from above, (x, 0) = (r, 0) +
(e, 0) where (r, 0) ∈ Reg(R ∝ E) and (e, 0)n = (e, 0). Thus, r ∈ R − (Z(R) ∪ Z(E))
and en = e, and x = r + e. Conversely, let x ∈ R and m ∈ E. Write x = r + e where
r ∈ R− (Z(R)∪Z(M)) and en = e. Then, (x,m) = (r,m)+ (e, 0) and we have just prove that
(r,m) ∈ Reg(R ∝ E) and (e, 0)n = (e, 0). Hence, R ∝ E is n-almost clean.
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