On (n, p)-clean commutative rings and *n*-almost clean rings

Mohamed Chhiti

Communicated by Najib Mahdou

MSC 2010 Classifications: 13D05, 13D02.

Keywords and phrases: Clean rings, n-clean, almost clean, amalgamated algebras along an ideal, trivial ring extension.

Abstract Let R be a commutative ring with identity. A ring R is called n-Clean if every element of R can be written as a sum of idempotent and n units in R. The class of n-clean rings contains Clean rings (ie every element can be written as a sum of a unit and an idempotent). This notion of n-cleaness first appared in [14]. We say that a ring R is almost clean if every element can be written as a sum of a unit and an regular element. In this paper, we introduce the new notion of (n, p)-Clean rings and n-almost clean rings. Next, we investigate some properties of such rings, and then generate new and original families of rings with these properties.

1 Introduction

Throughout this paper, all rings are commutative with unity. For a ring R, Id(R), U(R), Rad(R)and Reg(R) are denote the set of idempotents of R, the set of units of R, the Jacobson radical of R and the set of regular elements of R, respectively. Nicholson [9] defined a ring R to be clean if every element of R can be written as a sum of a unit and an idempotent. Recently, this class of rings is studied extensively in literatures see for example, [8], [13] and [1]. According to Xiao and Tong [14], a ring R is called n-clean if every element can be written as a sum of n-units and an idempotent. Following McGovern [4], we say that a ring R is almost clean if, for each $x \in R$, x can be written as x = r + e where $r \in Reg(R)$ and $e \in Idem(R)$. Almost clean rings have been studied in [12]. In [12], it is shown that a commutative Rickart ring is almost clean. Up to date, almost clean rings that are not necessarily commutative are given. In this paper, we introduce the new notion of (n, p)-Clean rings and we extend some results on n-clean rings to (n, p)-clean rings. Next we generalize the notion of almost clean rings.

2 (n, p)-Clean rings

Definition 2.1. Let n and p two positive integers $(p \ge 2)$. A ring R is said (n, p)-clean if every element $a \in R$ can be written in the form $a = u_1 + u_2 + \dots + u_n + x$ where $u_i \in U(R)$ $(i = 1, \dots, n)$ and $x^p = x$.

Note that clean rings are (1,2)-clean rings and n-clean rings are (n,2)-clean rings. However, for $(p \ge 2)$, (n, p)-clean rings need not be clean rings, as shown by the following example.

Example 2.2. \mathbb{Z}_{15} is a (1,3)-clean which is not clean.

Proof. One can easily verified that $U(\mathbb{Z}_{15}) = \{\overline{1}, \overline{2}\overline{4}, \overline{7}, \overline{8}, \overline{11}, \overline{14}\}$, $Id(\mathbb{Z}_{15}) = \{\overline{0}, \overline{1}\}$ and $\{x \in \mathbb{Z}_{15}/x^3 = x\} = \{\overline{0}, \overline{1}, \overline{4}, \overline{5}, \overline{6}, \overline{9}, \overline{10}, \overline{11}, \overline{14}\}$. Hence each $a \in \mathbb{Z}_{15}$ can be written in the form a = u + x where $u \in U(\mathbb{Z}_{15})$ and $x^3 = x$. Consequently \mathbb{Z}_{15} is a (1,3)-clean which is not clean. \Box

Proposition 2.3. Let n and p two positive integers $(p \ge 2)$. Then a ring R is (n, p)-clean if and only if every element $a \in R$ has the form $a = u_1 + u_2 + \dots + u_n - x$ where $u_i \in U(R)$ $(i = 1, \dots, n)$ and $x^p = x$.

Proof. Let $a \in R$. Since R is (n, p)-clean, we have $-a = v_1 + v_2 + \dots + v_n + x$ where $v_i \in U(R)$ $(i = 1, \dots, n)$ and $x^p = x$. Hence, $a = u_1 + u_2 + \dots + u_n - x$ where $u_i = -v_i \in U(R)$

(i = 1, ..., n) and $x^p = x$. Conversely, let $a \in R$. Then $-a = u_1 + u_2 + ..., + u_n - x$ where $u_i \in U(R)$ (i = 1, ..., n) and $x^p = x$. Hence, $a = (-u_1) + (-u_2) + ..., + (-u_n) + x$ where $(-u_i) \in U(R)$ (i = 1, ..., n) and $x^p = x$. Thus R is (n, p)-clean.

It is known that homomorphic images of n-clean rings are n-clean (see [14]). For (n, p)-clean rings we have the following:

Proposition 2.4. Let n and p two positive integers $(p \ge 2)$. Then every homomorphic image of an (n, p)-clean ring is (n, p)-clean. In particular, every homomorphic image of a n-clean ring is n-clean.

Proof. Let R be an (n, p)-clean ring and let $\varphi : R \to S$ be a ring epimorphism. Let $x \in S$. Then $x = \varphi(y)$ for some $y \in R$. Since R is an (n, p)-clean, then $y = u_1 + u_2 + \dots + u_n + x$ where $u_i \in U(R)$ $(i = 1, \dots, n)$ and $x^p = x$. That is, $x = \varphi(y) = \varphi(u_1) + \varphi(u_2) + \dots + \varphi(u_n) + \varphi(x)$. Since φ is an epimorphism, we then have that $\varphi(u_i) \in U(S)$ and $\varphi(x)^p = \varphi(x)$. It follows that $S = \varphi(R)$ is an (n, p)-clean.

We now consider direct products. For (n, p)-clean rings, we have the following:

Proposition 2.5. Let n and p two positive integers $(p \ge 2)$. The direct product ring $\prod_{i \in I} R_i$ is (n, p)-clean if and only if each R_i is (n, p)-clean.

Proof. One direction immediately follows from proposition 2.4 (since R_i is a homomorphic image of $\prod_{i \in I} R_i$ (via the natural projection : $\Pi_i : \prod_{i \in I} R_i \to R_i$). Conversely, suppose that each R_i is an (n, p)-clean ring. Let $a = (a_i) \in \prod_{i \in I} R_i$. Then for each i, $a_i = u_{i1} + u_{i2} + \dots + u_{in} + x_i$ where $u_{ij} \in U(R_i)$ $(j = 1, \dots, n)$ and $x_i^p = x_i$. Thus, $a = (a_i) = (u_{i1}) + (u_{i2}) +, \dots + (u_{in}) + (x_i)$ with $(u_{ij} \in U(\prod_{i \in I} R_i)$ for $(j = 1, \dots, n)$ and $(x_i)^p = (x_i)$. Hence, $\prod_{i \in I} R_i$ is (n, p)-clean.

Polynomial rings over (n, p)-clean rings are not necessarily (n, p)-clean. For example, the ring \mathbb{Z}_2 is (1, 2)- clean but the polynomial ring $\mathbb{Z}_2[x]$ is not (1, 2)-clean. However, power series ring over n -weakly clean rings are (n, p)-clean as shown in the following:

Proposition 2.6. Let n and p two positive integers $(p \ge 2)$. Then the power series ring R[[x]] is (n, p)-clean if and only if R is (n, p)-clean.

Proof. Suppose that R[[x]] is (n, p)-clean. Then it follows by the isomorphism $R \cong R[[x]]/(x)$ and Proposition 2.4 that R is an (n, p)-clean ring. Conversely, suppose that R is (n, p)-clean. Let $f = \sum_{i=0}^{+\infty} r_i x^i \in R[[x]]$. Since R is (n, p)-clean, we have that $a_0 = u_1 + u_2 + \dots + u_n + e$ where $u_i \in U(R)$ $(i = 1, \dots, n)$ and $e^p = e$. Then $f = (u_1 + r_1 x + r_2 x^2 + \dots) + u_2 + \dots + u_n + e$ where $(u_1 + r_1 x + r_2 x^2 + \dots) \in U(R[[x]]), u_i \in U(R[[x]])$ $(i = 2, \dots, n)$ and $e \in R \subseteq R[[x]]$. Thus, R[[x]] is an (n,p)-clean ring.

For more examples of (n,p)-clean rings, we consider the method of trivial ring extension. Let R be a ring and E an R-module. The trivial ring extension of R by E is the ring $R \propto E$ with product with $r \in R$ and $e \in E$, under coordinatewise addition and under an adjusted defined by (r, e)(r', e') = (rr', re' + r'e) for all $r, r' \in R$, $e, e' \in E$.

Theorem 2.7. Consider n and p two positive integers $(p \ge 2)$. Let R be a ring and E an R-module. Then $R \propto E$ is (n,p)-clean if and only if R is an (n,p)-clean ring.

Proof. Note that $R \cong R \propto E/0 \propto E$ is a homomorphic image of $R \propto E$. Hence if $R \propto E$ is (n, p)-clean, so by Proposition 2.4, R is (n, p)-clean. Conversely, racall that $1_{R \propto E} = (1, 0)$ and observe that if $u \in U(R)$, then $(u, e) \in U(R \propto E)$ for each $e \in E$ and if $x^p = x$ for each $x \in R$, then $(x, 0)^p = (x^p, 0) = (x, 0)$ in $R \propto E$. Hense if $a \in R$ with $a = u_1 + u_2 + \dots + u_n + x$ where $u_i \in U(R)$ $(i = 1, \dots, n)$ and $x^p = x$, then for $e \in E$, $(a, e) = (u_1 + u_2 + \dots + u_n + x, e) = (u_1, e) + (u_2, 0) + (u_3, 0) + \dots + (x, 0)$ where $(u_1, e) \in U(R \propto E)$, $(u_i, 0) \in U(R \propto E)$ $(i = 2, \dots, n)$ and $(x, 0)^p = (x, 0)$. Thus if R is (n,p)-clean, so is $R \propto E$.

Let A and B be two rings with unity, let J be an ideal of B and let $f : A \to B$ be a ring homomorphism. In this setting, we can consider the following subring of $A \times B$:

$$A \bowtie^f J := \{(a, f(a) + j) \mid a \in A, j \in J\}$$

called *the amalgamation of* A *with* B *along* J *with respect to* f. This construction has been introduced and studied in [3, 4], and it is a generalization of the amalgamated duplication of a ring along an ideal (introduced and studied in [5, 6]). Moreover, other classical constructions (such as the A+XB[X], A+XB[[X]], and the D+M constructions) can be studied as particular cases of the amalgamation ([3, Examples 2.5 and 2.6]).

Theorem 2.8. Consider *n* and *p* two positive integers $(p \ge 2)$. Let $f : A \to B$ be a ring homomorphism and J an ideal of B such that f(u) + j is invertible (in B) for each $u \in U(A)$ and $j \in J$. Then $A \bowtie^f J$ is (n,p)-clean if and only if A is an (n,p)-clean ring.

Proof. Suppose that $A \bowtie^f J$ is (n, p)-clean. Then it follows by the isomorphism $A \cong A \bowtie^f J/(\{0\}) \times J$ and Proposition 2.4 that A is an (n, p)-clean ring. Conversely, assume that A is clean and f(u) + j is invertible (in B) for each $u \in U(A)$ and $j \in J$. Consider $(a, j) \in A \times J$. Since A is clean, $a = u_1 + u_2 + \dots + u_n + x$ where $u_i \in U(R)$ $(i = 1, \dots, n)$ and $x^p = x$. Moreover, $f(u_1) + j$ is invertible in B. Then, there exists $v \in B$ such that $(f(u_1) + j)v = 1$. Hence,

$$(f(u_1) + j)(f(u_1^{-1}) - vf(u_1^{-1})j) = f(u_1)f(u_1^{-1}) + jf(u_1^{-1}) - (f(u_1) + j)vf(u_1^{-1})j$$

= $1 + jf(u_1^{-1}) - f(u_1^{-1})j$
= 1

Thus, $(u_1, f(u_1) + j)$ is invertible in $A \bowtie^f J$ (since $(u_1, f(u_1) + j)(u_1^{-1}, f(u_1^{-1}) - vf(u_1^{-1})j) = (1, 1)$). Hence,

$$(a, f(a) + j) = (u_1 + u_2 + \dots + u_n + x, f(u_1 + u_2 + \dots + u_n + x) + j)$$

= $(u_1, f(u_1) + j) + (u_2, f(u_2)) + \dots + (u_n, f(u_n)) + (x, f(x))$

where $(u_1, f(u_1) + j) \in U(R \propto E)$, $(u_i, f(u_i) \in U(R \propto E)$ (i = 2,, n) and $(x, f(x))^p = (x, f(x))$. Consequently, $A \bowtie^f J$ is clean.

Corollary 2.9. Let $f : A \to B$ be a ring homomorphism and J an ideal of B such that $J \subseteq Rad(B)$. Then $A \bowtie^f J$ is (n, p)- clean if and only if A is(n, p)-clean.

Corollary 2.10. Let $A \subset B$ be an extension of commutative rings and $X := \{X_1, X_2, ..., X_n\}$ a finite set of indeterminates over B. Set the subring $A + XB[[X]] := \{h \in B[[X]] \mid h(0) \in A\}$ of the ring of power series B[[X]]. Then, A + XB[[X]] is (n, p)-clean if and only if A(n, p)-is clean.

Proof. By [3, Example 2.5], A + XB[[X]] is isomorphic to $A \bowtie^{\sigma} J$, where $\sigma : A \hookrightarrow B[[X]]$ is the natural embedding and J := XB[[X]]. It is well known that $Rad(B[[X]]) = \{g \in B[[X]] \mid g(0) \in Rad(A)\}$. Thus, $J \subseteq Rad(B[[X]])$. Hence, by Corollary 2.9, $A \bowtie^{\sigma} J$ is (n, p)-clean if and only if A is (n, p)-clean. Thus, we have the desired result. \Box

Corollary 2.11. Let T be a ring and $J \subseteq Rad(T)$ an ideal of T and let D be a subring of T such that $J \cap D = (0)$. The ring D + J is (n, p)-clean if and only if D is (n, p)-clean.

Proof. By [3, Proposition 5.1 (3)], D + J is isomorphic to the ring $D \bowtie^{\iota} J$ where $\iota : D \hookrightarrow T$ is the natural embedding. Thus, by Corollary 2.9, D + J is (n, p)-clean if and only if D is (n, p)-clean.

3 *n*-almost clean rings

Definition 3.1. Let n be an integer $(n \ge 2)$. A ring R is said n-almost clean if every element $a \in R$ can be written in the form a = r + x where $r \in Reg(R)$ and $x^n = x$.

Note that an almost clean ring is an *n*-almost clean ring for each $n \ge 2$. However, for $n \ge 3$, *n*-almost clean rings need not be almost clean, as shown by the following example.

Example 3.2. \mathbb{Z}_{15} is a 3-almost clean which is not almost clean.

Proof. It is easily to see that $Id(\mathbb{Z}_{15}) = \{\overline{0},\overline{1}\}$ and $Reg(\mathbb{Z}_{15}) = \{\overline{1},\overline{2},\overline{4},\overline{7},\overline{8},\overline{11},\overline{13},\overline{14}\}$. We have $\overline{6},\overline{6}-\overline{1}$ is not in $Reg(\mathbb{Z}_{15})$. Thus \mathbb{Z}_{15} is not an almost clean ring. While $\{x \in \mathbb{Z}_{15}/x^3 = x\} = \{\overline{0},\overline{1},\overline{4},\overline{5},\overline{6},\overline{9},\overline{10},\overline{11},\overline{14}\}$ and $\overline{3} = \overline{2} + \overline{1}, \overline{5} = \overline{4} + \overline{1}, \overline{6} = \overline{2} + \overline{4}, \overline{9} = \overline{13} + \overline{11}$, and $\overline{12} = \overline{14} + \overline{11}$. Hence each $a \in \mathbb{Z}_{15}$ can be written in the form a = r + x where $r \in Reg(\mathbb{Z}_{15})$ and $x^3 = x$. Consequently \mathbb{Z}_{15} is 3-almost clean.

Remark 3.3. From [2, Example 2.9] it is clear that an homomorphic image of an n-almost clean ring is not necessary an n-almost clean ring.

Proposition 3.4. A direct product rings $\prod_{i \in I} R_i$ is n-almost clean if and only if each R_i is n-almost clean.

Proof. Let $i \in I$ and consider $a \in R_i$. The element (0, ..., a, 0, ..., 0), which has 0 is all j'th place with $i \neq j$, can be written as $(0, ..., a, 0, ..., 0) = (r_j)_j + (x_j)_j$ with $r_j)_j \in Reg(R)$ and $(x_j)_j^n = (x_j)_j$. Since $Reg(R) = \prod Reg(R_j)$, then $r_j \in Reg(R_j)$ for each j. On the other hand, it is clear that $x_j^n = x_j$. Thus, $a = r_i + x_i$ where $r_i \in Reg(R_i)$ and $x_i^n = x_i$. Consequently, R_i is n-almost clean. Conversely, suppose that each R_i is n-almost clean. Let $(a_i)_i \in \prod_{i \in I} R_i$. Write $a_i = r_i + x_i$ where $r_i \in Reg(R_i)$ and $x_i^n = x_i$. Then, $(a_i)_i = (r_i)_i + (x_i)_i$ where $(r_i)_i \in \prod_{i \in I} Reg(R_i)$ and $(x_i)_i^n = (x_i)_i$. So, $\prod_{i \in I} R_i$ is an n-almost clean ring.

Proposition 3.5. If R a commutative ring is n-almost clean, then the power series ring R[[x]] is also n-almost clean.

Proof. Suppose that R is n-almost clean. Let $f \in R[[x]]$, so $f = f_0 + h$ where $f_0 \in R$ and $h \in \langle \{x\} \rangle$. Write $f_0 = r + e$ where $r \in Reg(R)$ and $e^n = e$. Then f = (r + h) + e where $r + h \in Reg(R[[x]])$ and $e \in R \subseteq R[[x]]$. Thus R[[x]] is n-almost clean.

Given aring R, we set $\sqrt[n]{1} = \{x \in R/x^n = 1\}$. Racall that a ring R is called indecomposable if $Idem(R) = \{0, 1\}$.

Proposition 3.6. Let R be an indecomposable ring and $n \ge 2$ be a integer. Then R is n-almost clean if and only if for each $x \in R \setminus Reg(R)$, $x - \alpha$ is regular for some $\alpha \in \sqrt[n-1]{1}$.

Proof. Let $a \in R \setminus Reg(R)$. Write a = r + x where $r \in Reg(R)$ and $x^n = x$. We have $(x^{n-1})^2 = x^{2n-2} = x^n x^{n-2} = xx^{n-2} = x^{n-1}$. Thus, x^{n-1} is an idempotent element of R. Moreover, $x^{n-1} \neq 0$. Otherwise, $x = x^n = x^{n-1}x = 0$, and so a = r is regular, a contradiction. Thus, $x^{n-1} = 1$. Then, $x \in \sqrt[n-1]{1}$ and ax = r is regular. Conversely, let $a \in R$. If a is not regular then there exists $\alpha \in \sqrt[n-1]{1}$ such that $a - \alpha = r$ is regular. Therefore, $a = r + \alpha$ and $\alpha^n = \alpha^{n-1}\alpha = \alpha$. Thus, R is n-almost clean.

Let us give the following definition:

Definition 3.7. Let $n \ge 2$ be an integer. A ring R is called n-indecomposable if for each $x \in R$, $x^n = x$ implies that x = 0 or 1.

Indecomposable rings are just the 2-indecomposable rings. It is clear also that, for each $n \ge 2$, every n-indecomposable ring is indecomposable. The converse implication is not true. For example, \mathbb{Z}_{15} is an indecomposable ring which is not (2p + 1)-indecomposable for each $p \ge 1$ (since $(\overline{4^{2p+1}} = \overline{4} \text{ but } \neq \overline{0}, \overline{1})$.

Proposition 3.8. Let $n \ge 2$ be a positive integer. If R is an n-indecomposable ring then every *n*-almost clean ring is almost clean.

Proof. Clear since for each n-indecomposable n-almost clean ring, every element $x \in R$ can be written as x = e + r where e = 0 or 1 and $r \in Reg(R)$. Thus, R is almost clean ring.

Theorem 3.9. Consider $n \ge 2$ a positive integer. Let R be a ring and E an R-module. Then $R \propto E$ is n-almost clean if and only if each $x \in R$ can be written in the form x = r + e where $r \in R - (Z(R) \cup Z(E))$ and $e^n = e$.

Proof. We first observe that, if $(r, 0) \in Reg(R \propto E)$, then $r \in R - (Z(R) \cup Z(E))$. For if $r \in Z(R)$, then rs = 0 where $s \neq 0$ and then (r, 0)(s, 0) = (0, 0), while if $r \in Z(E)$ then rm = 0 where $m \neq 0$ and then (r, 0)(0, m) = (0, 0). Conversely, if $r \in R - (Z(R) \cup Z(E))$, then (r, m) is regular for each $m \in E$. For (r, m)(s, n) = (0, 0) gives rs = 0 and hence s = 0 and then rn = 0 and hence n = 0.

Suppose that $R \propto E$ is n-almost clean. Thus, for each $x \in R$ and from above, (x, 0) = (r, 0) + (e, 0) where $(r, 0) \in Reg(R \propto E)$ and $(e, 0)^n = (e, 0)$. Thus, $r \in R - (Z(R) \cup Z(E))$ and $e^n = e$, and x = r + e. Conversely, let $x \in R$ and $m \in E$. Write x = r + e where $r \in R - (Z(R) \cup Z(M))$ and $e^n = e$. Then, (x, m) = (r, m) + (e, 0) and we have just prove that $(r, m) \in Reg(R \propto E)$ and $(e, 0)^n = (e, 0)$. Hence, $R \propto E$ is n-almost clean.

Acknowledgments

The author would like also to thank the anonymous referee and the editor for their valuable comments and suggestions.

References

- D.D. Anderson and V. P. Camillo, Commutative rings whose elements are a sum of a unit and an idempotent, *Comm.Algebra* 30, 3327–3336 (2002).
- [2] M.S. Ahn and D.D. Anderson, Weakly clean rings and almost clean rings, *Rocky Mount. J. Math.* 36, 783–798 (2006).
- [3] M. D'Anna, C. A. Finacchiaro, and M. Fontana, Amalgamated algebras along an ideal, in: M. Fontana, S. Kabbaj, B. Olberding, I. Swanson (Eds.), Commutative Algebra and its Applications, Walter de Gruyter, Berlin, 155Ű172 (2009).
- [4] M. D'Anna, C. A. Finacchiaro, and M. Fontana, Properties of chains of prime ideals in amalgamated algebras along an ideal, J. Pure Appl. Algebra 214, 1633–1641 (2010).
- [5] M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, *Ark. Mat.* 45(2), 241–252 (2007).
- [6] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6, 443–459 (2007).
- [7] V. P. Cammillo and D. Khurana, A characterisation of unit-regular rings, Comm. Algebra 29, 2293–2295 (2001).
- [8] J. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra 29, 2589–2595 (2001).
- [9] W. K. Nickolson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229, 278–279 (1977).
- [10] L. Vas, *-Clean Rings; Some Clean and Almost Clean Baer *-rings and von Neumann Algebras, J. Algebra 12, 3388–3400 (2010).
- [11] W. McGovern, Neat rings, J.Pure Appl. Algebra 205, 243–265 (2006).
- [12] W. W. McGovern, Clean semiprime f-rings with bounded inversion, Comm. Algebra 31, 3295–3304 (2003).
- [13] W.W. McGovern, A characterization of commutative clean rings, Int. J. Math. Game Theory Algebra 15, 403–413 (2006).
- [14] G. S. Xiao and W.T. Tong, n- clean rings and weakly unit stable range rings, Comm. Algebra 33, 1501– 1517 (2005).

Author information

Mohamed Chhiti, Faculty of Economics and Social Sciences of Fez, University S. M. Ben Abdellah Fez, Morocco.

E-mail: chhiti.med@hotmail.com