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Abstract In that paper there is explored the commutativity of a prime ring in which general-
ized semi-derivations satisfy certain differential identities. Furthermore, we have introduced the
notion of generalized left semi-derivations in a noncommutaive ring R and the main results state
some generalizations of recent results due to Chan, Jun, Jung and Firat.

1 Introduction

In this paper, R will represent an associative ring. For any x, y ∈ R, the symbol [x, y] will denote
the commutator xy − yx; while the symbol x ◦ y will stand for the anti-commutator xy + yx.
R is said to be 2-torsion free if whenever 2x = 0, with x ∈ R implies x = 0. Also, R is prime
if aRb = 0 implies a = 0 or b = 0. An additive subgroup J of R is said to be a Jordan ideal
of R if u ◦ r ∈ J , for all u ∈ J and r ∈ R. A mapping f : R −→ R is said to be centralizing
(resp. commuting) on a subset S of R if [f(x), x] ∈ Z(R) (resp. [f(x), x] = 0), for all x ∈ S.
A derivation on R is an additive mapping d: R −→ R such that d(xy) = d(x)y + xd(y), for all
x, y ∈ R. An additive mapping F : R −→ R is called a generalized derivation if there exists
a derivation d: R → R such that F (xy) = F (x)y + xd(y) for all x, y ∈ R. In this case, F
is called the generalized derivation associated with d. An additive mapping d of R into itself is
called a semi-derivation (associated with g) if d(xy) = d(x)y + g(x)d(y) = d(x)g(y) + xd(y)
and d(g(x)) = g(d(x)), for all x, y ∈ R.
Let d be a semi-derivation of R, associated with an endomorphism g. The additive map F on
R is a generalized semi-derivation of R if F (xy) = F (x)y + g(x)d(y) = F (x)g(y) + xd(y)
and F (g(x)) = g(F (x)), for all x, y ∈ R. An additive mapping d is called a left derivation if
d(xy) = yd(x)+xd(y), for all x, y ∈ R. An additive mapping G: R → R is called a generalized
left derivation if there exists a left derivation d: R → R such that G(xy) = xG(y)+ yd(x) holds
for all x, y ∈ R. It is obvious to see that every generalized left derivation on a ring R is a left
derivation. But the converse need not be true in general, for more details see [1].

At the end of this paper, we study the concept of left generalized semi-derivations in prime
rings. Our aim is to show that zero is the only left generalized semi-derivation of a noncommu-
tative prime ring.

2 Main results

In [6], I. S. Chang, K. W. Jun and Y. S. Jung proved that if there exists a derivation D on a non-
commutative 2-torsion-free prime ring R such that the mapping x ; [aD(x), x] is commuting
on R then a = 0 or D = 0. In [8], A. Firat proved this result to semi-derivation. We give a more
generalization of this result for generalized semi-derivation of prime rings as following.

Theorem 2.1. Let R be a noncommutative 2-torsion-free prime ring, g an onto endomorphism
of R, d a semi-derivation associated with g and F is a nonzero generalized semi-derivation
associated with d and g. If the mapping x ; [aF (x), x] is commuting on R, then either a = 0
or aF (x) = λx, with λ ∈ C, the extended centroid of R.
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Proof. Assume that a is a nonzero element of R, then by ([3], Theorem 2), the mapping x ;

aF (x) is commuting on R. Thus we have

[aF (x), x] = 0, for all x ∈ R. (2.1)

By linearization of Equation (2.1), we have

[aF (x), y] + [aF (y), x] = 0, for all x, y ∈ R. (2.2)

Replacing y by yx in (2.2) we get

[ag(y)d(x), x] = 0, for all x, y ∈ R. (2.3)

That is

ag(y)[d(x), x] + a[g(y), x]d(x) + [a, x]g(y)d(x) = 0, for all x, y ∈ R. (2.4)

Since g is an onto endomophism of R, then we can writing

ay[d(x), x] + a[y, x]d(x) + [a, x]yd(x) = 0, for all x, y ∈ R. (2.5)

Substituting y by ay in (2.5) we find that

[a, x]ayd(x) = 0, for all x, y ∈ R. (2.6)

The primeness of R forces that [a, x] = 0 or d(x) = 0 and by Brauer’s trick we have d = 0 or
a ∈ Z(R) in last case Equation (2.5) becomes

ay[d(x), x] + a[y, x]d(x) = 0, for all x, y ∈ R. (2.7)

That is
y[d(x), x] + [y, x]d(x) = 0, for all x, y ∈ R. (2.8)

Writing zy instead of y in (2.8), we obtain

[z, x]yd(x) = 0, for all x, y, z ∈ R. (2.9)

Since R is a noncommutative prime ring, we obtain d = 0, g = IR and x ; G(x) = aF (x) is a
left multiplier. Thus, Equation (2.2) becomes

[G(x), y] + [G(y), x] = 0, for all x, y ∈ R. (2.10)

Replacing y by yz, we obtain

y[G(x), z] +G(y)[z, x] = 0, for all x, y, z ∈ R. (2.11)

Putting ty instead of y, we arrive at

ty[G(x), z] +G(t)y[z, x] = 0, for all t, x, y, z ∈ R. (2.12)

Left multiplying Equation (2.11) by t, we get

ty[G(x), z] + tG(y)[z, x] = 0, for all t, x, y, z ∈ R. (2.13)

From Eqs (2.12) and (2.13), we conclude that

(G(t)y − tG(y))[z, x] = 0, for all t, x, y, z ∈ R. (2.14)

Replacing z by rz in (2.14), we get

(G(t)y − tG(y))R[z, x] = 0, for all t, x, y, z ∈ R. (2.15)

Since R is a noncommutative prime ring ,we result

G(t)y − tG(y) = 0, for all t, y ∈ R. (2.16)

Substituting y by yz, we obtain

G(t)yz − tyG(z) = 0, for all t, y, z ∈ R. (2.17)

Accordingly, ([4], Lemma) forces that G(x) = λx, for all x ∈ R, with λ ∈ C, the extended
centroid of R. This complete the proof.
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Corollary 2.2. ([8], Theorem 1) Let R be a noncommutative 2-torsion-free prime ring and f is
a semi-derivation of R with g: R → R is an onto endomorphism. If the mapping x ; [af(x), x]
is commuting on R, then a = 0 or f = 0.

As an application of Theorem 2.1, we get the following theorem for which the proof goes
through in the same way as the proof of Theorem 2.1 ones.

Theorem 2.3. Let R be a noncommutative 2-torsion-free prime ring with nonzero center, g an
onto endomorphism of R, d a semi-derivation associated with g and F is a nonzero generalized
semi-derivation associated with d and g. If the mapping x ; [F (x), x] is commuting on R, then
F (x) = λx, with λ ∈ C, the extended centroid of R.

In [9], K. Kaya, O. Golbasi, N. Aydin proved that if R is a 2-torsion-free prime ring, d is
a nonzero derivation of R, then d(R) ◦ a = (0), if and only if, d((R ◦ a)) = (0). In [8], A.
Firat extended this result to semi-derivation. We give a more generalization of this result for
generalized semi-derivation of prime rings as following.

Theorem 2.4. Let R be a prime ring of characteristic different from 2, g an onto endomorphism
of R, d a semi-derivation associated with g. If F is a nonzero generalized semi-derivation asso-
ciated with d, then F (x) ◦ a = 0, for all x ∈ R if, and only if, F (x ◦ a) = 0, for all x ∈ R.

To prove our result, we need the following lemmas.

Lemma 2.5. If F (x) ◦ a = 0, then d(a) = 0.

Proof. We have
F (x)a+ aF (x) = 0, for all x ∈ R. (2.18)

Replacing x by xy, we get

F (x)ya+ g(x)d(y)a+ aF (x)y + ag(x)d(y) = 0, for all x, y ∈ R. (2.19)

That is,
F (x)[y, a] + g(x)d(y)a+ ag(x)d(y) = 0, for all x, y ∈ R. (2.20)

Taking y = a in (2.20), we obtain

g(x)d(a)a+ ag(x)d(a) = 0, for all x, y ∈ R. (2.21)

Putting ya instead of y in (2.20) and using (2.21), we get

[g(x), a]g(y)d(a) = 0, for all x, y ∈ R. (2.22)

Since R is prime and g is an onto endomorphism, then d(a) = 0 or a ∈ Z(R). In this case,
Equation (2.18) becomes 2F (x)a = 0, thus a = 0, so that d(a) = 0.

Lemma 2.6. If F (x ◦ a) = 0, then d(a) = 0.

Proof. We have
F (x ◦ a) = 0, for all x ∈ R. (2.23)

Substituting xa instead of x, we get

F ((x ◦ a)a) = 0, for all x ∈ R. (2.24)

That is,
(x ◦ a)d(a) = 0, for all x ∈ R. (2.25)

Replacing x by yx, we get
[y, a]Rd(a) = 0, for all y ∈ R. (2.26)

So that d(a) = 0 or a ∈ Z(R). In this case, we get

0 = F ((xa)a) = xad(a), for all x ∈ R. (2.27)

implies d(a) = 0, this complete the proof.
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Proof of Theorem 2.4. We can suppose a /∈ Z(R).
If g = IR,
suppose that

F (x) ◦ a = 0, for all x ∈ R. (2.28)
Replacing x by xy, we get

(F (x)y) ◦ a+ (xd(y)) ◦ a = 0, for all x, y ∈ R. (2.29)

That is,
F (x)[y, a] + x[d(y), a] + (x ◦ a)d(y) = 0, for all x, y ∈ R. (2.30)

Writing ax instead of x, we obtain

F (ax)[y, a] + ax[d(y), a] + ((ax) ◦ a)d(y) = 0, for all x, y ∈ R. (2.31)

Multiplying Equation (2.30) by a, we get

aF (x)[y, a] + ax[d(y), a] + a(x ◦ a)d(y) = 0, for all x, y ∈ R. (2.32)

Subtracting (2.31) from (2.32), we arrive at

(F (ax)− aF (x))[y, a] = 0, for all x, y ∈ R. (2.33)

Since a /∈ Z(R), then
F (ax) = aF (x), for all x ∈ R. (2.34)

On the other hand, we have

F (xa) = F (x)a+ g(x)d(a) = F (x)a, for all x ∈ R. (2.35)

So that
F (x) ◦ a = F (x ◦ a) = 0.

Suppose that
F (x ◦ a) = 0, for all x ∈ R. (2.36)

Replacing x by xy, we get

F (x[y, a]) + F ((x ◦ a)y) = 0, for all x, y ∈ R. (2.37)

That is,
F (x)[y, a] + xd([y, a]) + (x ◦ a)d(y) = 0, for all x, y ∈ R. (2.38)

Putting ax instead of x, we obtain

F (ax)[y, a] + axd([y, a]) + ((ax) ◦ a)d(y) = 0, for all x, y ∈ R. (2.39)

Multiplying Equation (2.38) by a, we get

aF (x)[y, a] + axd([y, a]) + a(x ◦ a)d(y) = 0, for all x, y ∈ R. (2.40)

Subtracting (2.39) from (2.40), we arrive at

(F (ax)− aF (x))[y, a] = 0, for all x, y ∈ R. (2.41)

Since a /∈ Z(R), then F (ax) = aF (x).
On the other hand, we have F (xa) = F (x)a+ g(x)d(a) = F (x)a, by Lemma 2.6. Thus,

F (x ◦ a) = F (x) ◦ a = 0.

If g ̸= IR, then F (x) = αx+ d(x), where α ∈ C, the extended centroid of R (by ([7], Theorem
17)), so that

F (x ◦ a) = α(x ◦ a) + d(x ◦ a) =
= (αx) ◦ a+ d(x) ◦ a =

= (αx+ d(x)) ◦ a =

= F (x) ◦ a, for all x ∈ R.

This complete the proof of Theorem 2.4.
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Corollary 2.7. ([8], Theorem 2) Let R be a 2-torsion-free prime ring and a ∈ R. If f is a nonzero
semi-derivation of R, with associated endomorphism g, then f(x) ◦ a = 0, for all x ∈ R if, and
only if, f(x ◦ a) = 0, for all x ∈ R.

Theorem 2.8. Let R be a prime ring of characteristic different from 2, g an onto endomorphism
of R, d a semi-derivation associated with g and F is a nonzero generalized semi-derivation
associated with d and g. If [d(x), F (y)] = 0, for all x, y ∈ R, then R is commutative.

Proof. Suppose that
[d(x), F (y)] = 0, for all x, y ∈ R. (2.42)

Replacing x by xz in (2.42), we get

d(x)[z, F (y)] + [g(x), F (y)]d(z) = 0, for all x, y, z ∈ R. (2.43)

Putting d(z) instead of z in (2.43), we arrive at

[g(x), F (y)]d2(z) = 0, for all x, y, z ∈ R. (2.44)

Substituting xt instead of x in (2.44), we obtain

[g(x), F (y)]g(t)d2(z) = 0, for all x, y, z ∈ R. (2.45)

Since g is an onto endomorphism, then the primeness of R forces that F (y) ∈ Z(R), for all
y ∈ R, or d2(x) = 0. In this case, d = 0.
If F (y) ∈ Z(R), for all y ∈ R, then

[F (x), r] = 0, for all x, r ∈ R. (2.46)

Replacing x by xy, we get

F (x)[y, r] + g(x)[d(y), r] + [g(x), r]d(y) = 0, for all x, y, r ∈ R. (2.47)

Writing F (x) instead of x in (2.47), we obtain

F 2(x)[y, r] + F (g(x))[d(y), r] = 0, for all x, y, r ∈ R. (2.48)

Taking r = y in (2.48), we result

F (g(x))[d(y), y] = 0, for all x, y, r ∈ R. (2.49)

Putting d(y) instead of r and g(x) instead of x in (2.47) and using (2.49), we arrive at

[g2(x), d(y)]d(y) = 0, for all x, y ∈ R. (2.50)

Since g is an onto, we can write

[x, d(y)]d(y) = 0, for all x, y ∈ R. (2.51)

It follows that d(y) ∈ Z(R), for all y ∈ R. This forces R to be commutative.

Corollary 2.9. Let R be a prime ring of characteristic different from 2 and F is a nonzero gener-
alized derivation associated with d. If [d(x), F (y)] = 0, for all x, y ∈ R, then R is commutative.

Theorem 2.10. Let R be a prime ring of characteristic different from 2, g an onto endomorphism
of R, d a semi-derivation associated with g and F is a nonzero generalized semi-derivation
associated with d and g. If d(x) ◦ F (y) = 0, for all x, y ∈ R, then d = 0 and g = IR (i.e. F is a
left multiplier).
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Proof. Suppose that
d(x) ◦ F (y) = 0, for all x, y ∈ R. (2.52)

Replacing y by yz in (2.52), we get

d(x) ◦ (F (y)z) + d(x) ◦ (g(y)d(z)) = 0, for all x, y, z ∈ R. (2.53)

That is,

−F (y)[d(x), z] + [d(x), g(y)]d(z) + g(y)(d(x) ◦ d(z)) = 0, for all x, y, z ∈ R. (2.54)

Putting d(x) instead of z in (2.54), we arrive at

[d(x), g(y)]d2(x) + g(y)(d(x) ◦ d2(x)) = 0, for all x, y ∈ R. (2.55)

Replacing y by yz, we obtain

[d(x), g(z)]g(y)d2(x) = 0, for all x, y ∈ R. (2.56)

Since g is an onto endomorphism and R is a prime ring, then d(x) ∈ Z(R) or d2(x) = 0, for all
x ∈ R and by Brauer’s trick we have d(x) ∈ Z(R), for all x ∈ R or d2(x) = 0, for all x ∈ R.
If d2(x) = 0, for all x ∈ R, then replacing x by xy, we get d(x)g(y) + xd(y) = 0. Once again
replacing y by yz and using last expression, we obtain xyd(z) = 0, for all x, y, z ∈ R. This
implies that d = 0.
If d(x) ∈ Z(R), for all x ∈ R, then our hypothesis becomes 2d(x)F (y) = 0, for all x, y ∈ R. It
follows that d = 0.
Finally, we conclude that

F (xy) = F (x)g(y) + xd(y) =

= F (x)g(y), for all x, y ∈ R

On the other hand,

F (xy) = F (x)y + g(x)d(y) =

= F (x)y, for all x, y ∈ R

From this two last expression, it follows that F (x)(g(y) − y) = 0. Replace now x by xz to get
F (x)z(g(y)− y) = 0, that is, F (x)R(g(y)− y) = 0, and the primeness of R forces that g = IR.
This completes the proof.

Corollary 2.11. Let R be a prime ring of characteristic different from 2 and F is a nonzero
generalized derivation associated with d. If d(x) ◦ F (y) = 0, for all x, y ∈ R, then F is a left
multiplier.

Motivated by the concepts of left derivations and left generalized derivations one hand and
the semi-derivations and generalized semi-derivations secondly, [1] [7], we initiate the concepts
of left semi-derivations and left generalized semi-derivation, as follows:

Definition 2.12. Let R be a ring and g an endomorphism of R. The additive mapping d is called
a left semi-derivation associated with g, if

d(xy) = yd(x) + g(x)d(y) = g(y)d(x) + xd(y) and d(g(x)) = g(d(x)), for all x, y ∈ R.

Definition 2.13. Let R be a ring and g an endomorphism of R. The additive mapping F is called
a left generalized semi-derivation associated with d and g, if

F (xy) = yF (x) + g(x)d(y) = g(y)F (x) + xd(y) and F (g(x)) = g(F (x)), for all x, y ∈ R.

It is well-known that zero is the only left derivation on a noncommutative prime ring. In the
following theorem we prove a similar result for left generalized semi-derivation, in particular for
a left semi-derivation.
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Theorem 2.14. Let R be a prime ring and g be an endomorphism. If R is noncommutative, then
there exists no nonzero left generalized semi-derivation F associated with a left semi-derivation
d and g.

To prove our result, we need the following lemma.

Lemma 2.15. Let R be a prime ring and g be an endomorphism. If R is noncommutative, then
there exists no nonzero left semi-derivation d associated with g.

Proof. Assume that d ̸= 0. We have both

d(xyz) = xyd(z) + g(z)d(xy)) =

= xyd(z) + g(z)g(y)d(x) + g(z)xd(y).

On the other hand,

d(xyz) = xd(yz) + g(yz)d(x)) =

= xyd(z) + xg(z)d(y) + g(y)g(z)d(x).

From two later expressions, we get

[g(y), g(z)]d(x) + [x, g(z)]d(y) = 0, for all x, y, z ∈ R. (2.57)

In particular, for y = z, we obtain

[x, g(y)]d(y) = 0, for all x, y ∈ R. (2.58)

Replacing x by xt, we obtain

[x, g(y)]Rd(y) = 0, for all x, y ∈ R. (2.59)

Since d is nonzero, then g(R) ⊂ Z(R).
In this case, we have

d(xy) = xd(y) + g(y)d(x) = g(x)d(y) + yd(x), for all x, y ∈ R. (2.60)

That is,
(x− g(x))d(y) = (y − g(y))d(x), for all x, y ∈ R. (2.61)

Replacing x by xz, we get, for all x, y, z ∈ R,

(xz − xg(z))d(y) + (xg(z)− g(x)g(z))d(y) = (y − g(y))g(z)d(x) + (y − g(y))xd(z). (2.62)

That is,
x(z − g(z))d(y) = (y − g(y))xd(z), for all x, y, z ∈ R, (2.63)

so that
x(y − g(y))d(z) = (y − g(y))xd(z), for all x, y, z ∈ R (2.64)

implies that
[x, z − g(z)]d(z) = [x, z]d(z) = 0, for all x, z ∈ R. (2.65)

Replacing z by zy, we get

[x, z]Rd(z) = 0, for all x, z ∈ R. (2.66)

Since d ̸= 0, then R is commutative which contradicts our hypothesis. So that d = 0.

Proof of Theorem 2.14. Assume that F ̸= 0. Since R is noncommutative, then Lemma 2.15
forces that d = 0, so that F (xy) = yF (x) = g(y)F (x). That is, (y − g(y))F (x) = 0. Replacing
x by xz, we obtain (y − g(y))RF (z) = 0. Since F ̸= 0, then g(y) = y, for all y ∈ R. In this
case, we have F (xyz) = zF (xy) = zyF (x) = yzF (x), that is, [y, z]F (x) = 0, which implies
[y, z]RF (x) = 0. Since F ̸= 0, then R is commutative, which contradicts our hypothesis. Thus,
F = 0.

As an application of Theorem 2.14, we obtain the following corollary, whose is a more gen-
eralization of ([10], Theorem 1.1).
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Corollary 2.16. Let R be a prime ring. If R is noncommutative, then there exists no nonzero left
generalized derivation F associated with a left derivation d.

The following example proves that the primeness hypothesis in Theorems 2.1, 2.3 and 2.8 is
not superfluous.

Example 2.17. Let R = Q[X] × T , where T is a noncommutative 2-torsion-free ring and set
F (P, t) = d(P, t) = (P ′, 0). It is obvious that R is a noncommutative ring and d is a derivation
of R such that [d(r), s] = 0, for all r, s ∈ R.
It is easy to verify that F is a generalized derivation of R which satisfies the conditions of
Theorem 2.1, 2.3 and 2.8; however R is a noncommutative ring and F (x) ̸= λx, for any λ ∈ C,
the extended centroid of R.
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