ON (m, n)-REGULAR le-SEMIGROUPS AND (m, n)-IDEAL ELEMENTS

Noor Mohammad Khan, Ahsan Mahboob and Abdus Salam

Communicated by Mohammad Ashraf

MSC 2010 Classifications: Primary 20M99, 13F10; Secondary 13A15, 13M05.

Keywords and phrases: le-semigroup, (m, n)-ideal element, (m, n)-quasi-ideal element.

Abstract After characterizing (m, n)-ideal elements of (m, n)-regular $\forall e$ -semigroups in terms of its (m, 0)-ideal elements and (0, n)-ideal elements as well as the minimality of (m, n)-ideal elements of (m, n)-regular *le*-semigroups in terms of its minimal (m, 0)-ideal elements and minimal (0, n)-ideal elements, the minimality of (m, n)-quasi-ideal elements in *le*-semigroups has been studied. We, then, use (m, 0)-ideal elements, (0, n)-ideal elements, (m, n)-ideal elements and (m, n)-quasi-ideal elements of *le*-semigroups to characterize (m, n)-regular *le*-semigroups.

1 Introduction and Preliminaries

The notion of the left (resp. right) ideal element of an ordered semigroup was introduced in [1] as an element a of an ordered semigroup S such that $xa \leq a$ (resp. $ax \leq a$) for each $x \in S$. In [6, 7], Kehayopulu studied left (resp. right) duo regular, left-regular and left duo *poe*-semigroups. In [11], kehayopulu characterized the idempotent ideal elements of *le*-semigroups in terms of semisimple elements while intra-regular *le*-semigroup in terms of prime and semiprime ideal elements. In [12], kehayopulu Characterized left simple ve-semigroups in terms of left ideal elements. The concept of (m, n)-ideals in semigroups was introduced by S. Lajos. Thereafter, several authors studied (m, n)-ideals in various algebraic structures such as rings, semirings and ordered semigroups etc. Kehayopulu [3], studied (m, n)-ideal elements and (m, n)-quasi-ideal elements in *poe*-semigroups and *le*-semigroups.

Definition 1.1. Let S be a non-empty set, the triplet $(S, ., \le)$ is called po-semigroup if (S, .) is a semigroup and (S, \le) is a partially ordered set such that

$$a \leq b \Rightarrow ac \leq bc$$
 and $ca \leq cb$

for all $a, b, c \in S$. A *po*-semigroup with a greatest element "e" (i.e. for each $a \in S, a \leq e$) is said to be a *poe*-semigroup.

Let S be a poe-semigroup. An element $a \in S$ is called a subsemigroup element if $a^2 \leq a$ and a is called a left (resp. a right) ideal element of S if $ea \leq a$ (resp. $ae \leq a$). It is called an idealelement of S if it is both a left and a right-ideal element of S. A subsemigroup element a is called a bi-ideal element if $aea \leq a$. If we drop the subsemigroup condition from bi-ideal element, then it is called a generalized bi-ideal element. An element a of S is called an idempotent-element if $a = a^2$. An element a is called a quasi-ideal element if $ae \wedge ea$ exists and $ae \wedge ea \leq a$. An element $z \in S$ is called a zero-element of S if za = az = z and $z \leq a$ for each $a \in S$. The zero element, if exists, is unique. we shall denote it, in whatever follows, by the symbol 0. A poe-semigroup S is called regular (left-regular, right-regular) if $a \leq aea$ ($a \leq ea^2, a \leq a^2e$) for each $a \in S$. A poe-semigroup S is said to be commutative if ab = ba for each $a, b \in S$.

Definition 1.2. A *poe-semigroup* S is said to be $\lor e$ -semigroup if it is an upper semilattice under \lor and

$$c(a \lor b) = ca \lor cb$$
 and $(a \lor b)c = ac \lor bc$

for all $a, b, c \in S$. A $\forall e$ -semigroup which is also a lattice is said to be an *le*-semigroup.

It is well known that in a *po*-semigroup S,

 $a \leq b \Leftrightarrow a \wedge b = a \text{ and } a \vee b = b$

for all $a, b \in S$.

Definition 1.3. Let S be a *poe*-semigroup and m, n be non-negative integers. An element a of S is called an (m, n)-ideal element of S if $a^m ea^n \leq a$.

Remark 1.4. Throughout the paper, we shall use the convention $a^0b = ba^0 = b$, for each $a, b \in S$. In particular for m = 0, n = 1 (resp. m = 1, n = 0 and m = 1 = n), a is a left-ideal element (resp. a right-ideal element and generalized bi-ideal element). Clearly each left-ideal element (resp. each right-ideal element and each generalized bi-ideal element) is a (0, n)-ideal element for each positive integer n (resp. (m, 0)-ideal element for each positive integer m and (m, n)ideal element for each positive integers m, n). Therefore the concept of a (0, n)-ideal element (resp. (m, 0)-ideal element and (m, n)-ideal element) is the generalization of a left-ideal element (resp. a right-ideal element and a generalized bi-ideal element).

Remark 1.5. For each non-negative integers m and n, any (m, 0)-ideal element (resp. (0, n)-ideal element) is an (m, n)-ideal element as $a^m ea^n \le a^m e \le a$ $(a^m ea^n \le ea^n \le a)$.

Definition 1.6. An element q of a *poe*-semigroup S is called an (m,n)-quasi-ideal element of S (m, n positive integers) if $q^m e \wedge eq^n$ exists and $q^m e \wedge eq^n \leq q$. Clearly every quasi-ideal element is an (m, n)-quasi-ideal element for each positive integers m and n such that $q^m e \wedge eq^n$ exists.

We denote by (a), $\langle a \rangle_{\langle m,n \rangle}$ and $(a)_{\langle m,n \rangle}$, the ideal-element, (m,n)-ideal element and (m,n)-quasi-ideal element of S generated by the element a of S i.e. the least ideal-element, the least (m,n)-ideal element and the least (m,n) quasi-ideal element of S greater than the element a and given by [3, 11] as follows:

$$(a) = a \lor ea \lor ae \lor eae$$

$$< a >_{} = a \lor a^{m}ea^{n}$$

$$(a)_{} = a \lor (a^{m}e \land ea^{n}).$$

Thus $a \in S$, is an ideal (resp. (m, n)-ideal, (m, n) quasi-ideal) element if and only if (a) = a (resp. $\langle a \rangle_{\langle m,n \rangle} = a$, $(a)_{\langle m,n \rangle} = a$).

2 Minimality of quasi-ideal element

Let S be a $\forall e$ -semigroup and m, n be positive integers. An (m, n)-ideal element a is said to be minimal if for each (m, n)-ideal element b of S such that

 $b \leq a \Rightarrow a = b.$

Similarly, we may define minimal (m, n)-quasi-ideal.

Proposition 2.1. Let S be a $\forall e$ -semigroup and m,n be positive integers. If S is (m, n)-regular, then for each (m, n)-ideal element a of S there exists (m, 0)-ideal element b and (0, n)-ideal element c of S such that a = bc.

Proof. Let a be an (m, n)-ideal element of S. Then $a^m ea^n \leq a$. As S is (m, n)-regular, $a \leq a^m ea^n$. Therefore $a = a^m ea^n$. Since S is (m, n)-regular, $\langle a \rangle_{\langle m, n \rangle} = a^m e$ and $\langle a \rangle_{\langle 0, n \rangle} = ea^n$. Thus we have

$$\langle a \rangle_{\langle m,0 \rangle} \langle a \rangle_{\langle 0,n \rangle} = a^m eea^n$$

= $a^m ea^n$ (as S is (m,n) -regular, $ee = e$)
= a .

Remark 2.2. Let S be a *poe*-semigroup and m, n be positive integers. If S is (m, n)-regular, then the (m, 0) and the (0,n)-ideal elements of S are idempotents.

Proposition 2.3. Let S be a $\forall e$ -semigroup and m,n be positive integers. If S is (m, n)-regular, then for each (m, 0)-ideal element a and for each element b of S, the element ab is an (m, n)-ideal element of S

Proof. Let a be an (m, 0)-ideal element of S and b be an element of S. Now

$$(ab)^{m}e(ab)^{n}$$

$$= \underbrace{(ab)(ab)\dots(ab)}_{m\text{-times}} e\underbrace{(ab)(ab)\dots(ab)}_{n\text{-times}}$$

$$= \underbrace{(ab)((ab)\dots(ab)}_{m\text{-times}} e\underbrace{(ab)(ab)\dots)(ab)}_{n\text{-times}}$$

$$\leq (ab)e(ab)$$

$$= a(bea)b$$

$$\leq aeb$$

$$= a^{m}eb \quad (by \text{ Remark } 2.2)$$

$$\leq ab.$$

By Propositions 2.1 and 2.3, we have following:

Theorem 2.4. Let S be a $\forall e$ -semigroup and m,n be positive integers. If S is (m, n)-regular, then an element a of S is an (m, n)-ideal element of S if and only if there exist (m, 0)-ideal b and (0, n)-ideal element c of S such that a = bc.

Lemma 2.5. Let S be a $\lor e$ -semigroup and m,n be positive integers. If S is (m, n)-regular, then for each $a \in S$, $\langle a \rangle_{\langle m,n \rangle} = \langle a \rangle_{\langle m,0 \rangle} \langle a \rangle_{\langle 0,n \rangle}$.

Proof. As S is (m, n)-regular, $\langle a \rangle_{\langle m,n \rangle} = a^m e a^n$, $\langle a \rangle_{\langle m,0 \rangle} = a^m e$ and $\langle a \rangle_{\langle 0,n \rangle} = ea^n$. Now

$$\begin{array}{lll} < a >_{} &=& a^m e a^n \\ &=& a^m e e a^n & (ee = e \text{ as } S \text{ is } (m,n) \text{-regular}) \\ &=& _{} _{<0,n>}, \end{array}$$

as required.

Theorem 2.6. [15] Let S be an le-semigroup and m,n be non-negative integers. Then S is (m, n)-regular if and only if $a \wedge b = a^m b^n$ (or by Remark 2.2, $a \wedge b = ab$) for each (m, 0)-ideal element a and for each (0, n)-ideal element b of S.

Theorem 2.7. Let S be an le-semigroup and m,n be positive integers. If S is (m, n)-regular, then an element a of S is a minimal (m, n)-ideal element of S if and only if a=bc for some minimal (m, 0)-ideal element b and (0, n)-ideal element c of S.

Proof. Let *a* be a minimal (m, n)-ideal element of *S*. As *S* is (m, n)-regular $\langle a \rangle_{\langle m,n \rangle} = a$. Thus, by Lemma 2.5, $a = \langle a \rangle_{\langle m,0 \rangle} \langle a \rangle_{\langle 0,n \rangle}$. Next we show that $\langle a \rangle_{\langle m,0 \rangle}$ is a minimal (m, 0)-ideal element of *S*. For this, assume that *a'* be any (m, 0)-ideal element of *S* such that $a' \leq \langle a \rangle_{\langle m,0 \rangle}$. As *S* is (m, n)-regular, by Theorem 2.6, $\langle a \rangle_{\langle m,0 \rangle} \wedge \langle a \rangle_{\langle 0,n \rangle} = \langle a \rangle_{\langle m,0 \rangle} \langle a \rangle_{\langle 0,n \rangle} = \langle a \rangle_{\langle m,0 \rangle} \langle a \rangle_{\langle 0,n \rangle} = \langle a \rangle_{\langle m,0 \rangle} \langle a \rangle_{\langle 0,n \rangle} = a$. By Proposition 2.3, $a' \langle a \rangle_{\langle 0,n \rangle}$ is an (m, n)-ideal element of *S*. Since $a' \langle a \rangle_{\langle 0,n \rangle} \leq a$, by minimality of (m, n)-ideal element *a* of *S*, we

have $a' < a >_{<0,n>} = a$. Therefore $< a >_{<m,0>} \land < a >_{<0,n>} = a' \land < a >_{<0,n>}$. As $a \le < a >_{<m,0>} \land < a >_{<0,n>}$, $a \le a' \land < a >_{<0,n>}$ implies that $a \le a'$. Thus $< a >_{<m,0>} \le a'$. Therefore $a' = < a >_{<m,0>}$. So $< a >_{<m,0>}$ is a minimal (m, 0)-ideal element of S. Similarly $< a >_{<0,n>}$ is a minimal (0, n)-ideal element of S.

Conversely assume that a be an element of S such that a = bc for some minimal (m, 0)-ideal element b and (0, n)-ideal element c of S. By Theorem 2.4, a is an (m, n)-ideal element of S. To show that a is a minimal (m, n)-ideal element of S, let a' be an (m, n)-ideal element of S such that $a' \leq a$. Then $a'^m e \leq a^m e \leq (bc)^m e = (bc)(bc)...(bc)e \leq be \leq b^m eb^n e \leq b^m e \leq b$. As $a'^m e$ is a (m, 0)-ideal element of S and b is a minimal (m, 0)-ideal element, $a'^m e = b$. Similarly $ea'^n = c$. By hypothesis, $a = bc = a'^m eea'^n = \leq a'^m ea'^n \leq a'$. Hence a is a minimal (m, n)-ideal element of S.

Lemma 2.8. Let x be any minimal (m, n)-quasi-ideal element of an le-semigroup S and $a \in S$ be such that $a \leq x$. Then $x = a^m e \wedge ea^n$.

Proof. Assume that x is a minimal (m, n)-quasi-ideal element of S and $a \in S$ be such that $a \leq x$. Since $a^m e$ and ea^n are (m, 0)-right and (0, n)-ideal elements of S respectively, $a^m e \wedge ea^n$ is an (m, n)-quasi-ideal element of S. Now $a^m e \wedge ea^n \leq x$. So, by minimality of $x, a^m e \wedge ea^n = x$, as required.

Proposition 2.9. Each minimal (m, n)-quasi-ideal element of an le-semigroup S is the infimum of a minimal (m, 0)-ideal element and a minimal (0, n)-ideal element of S.

Proof. Let x be any minimal (m, n)-quasi-ideal element of S. Then, by Lemma 2.8, $x = a^m e \land ea^n$ for each $a \in S$ such that $a \leq x$. Now to complete the proof, it is sufficient to show that $a^m e$ and ea^n are, respectively, minimal (m, 0) and minimal (0, n)-ideal elements of S. To show that $a^m e$ is a minimal (m, 0)-ideal element of S, take any (m, 0)-ideal element $c \in S$ such that $c \leq a^m e$. Then $c \land ea^n \leq a^m e \land ea^n = x$. Since $c \land ea^n$ is a (m, n)-quasi-ideal element of S, $c \land ea^n = x$. Therefore $x \leq c$ implies that $a^m e \leq x^m e \leq c^m e \leq c$. So $a^m e = c$ i.e. $a^m e$ is a minimal (m, 0)-ideal element of S. Similarly we may show that ea^n is a minimal (0, n)-ideal element of S.

Proposition 2.10. Let S be an le-semigroup and x be any (m,n)-quasi-ideal element of S. If $x = a \land b$, where a and b are minimal (m, 0)-ideal element and minimal (0, n)-ideal element of S respectively, then x is a minimal (m, n)-quasi-ideal element of S.

Proof. Assume that $x = a \wedge b$ for any minimal (m, 0)-ideal element a and minimal (0, n)-ideal element b of S respectively. Therefore $x \leq a$ and $x \leq b$. Let y be any (m, n)-quasi-ideal element of S such that $y \leq x$. Then $y^m e \leq x^m e \leq a^m e \leq a$ and $ey^n \leq ex^n \leq eb^n \leq b$. As $y^m e$ and ey^n are (m, 0)-ideal element and (0, n)-ideal element of S respectively, by minimality of a and $b, y^m e = a$ and $ey^n = b$. Therefore $x = a \wedge b = y^m e \wedge ey^n \leq y$. So x = y. Hence x is a minimal (m, n)-quasi-ideal element of S.

Now combining Propositions 2.9 and 2.10, we get:

Theorem 2.11. Let S be an le-semigroup and x be a (m, n)-quasi-ideal element of S. Then x is a minimal (m, n)-quasi-ideal element of S if and only if x is the infimum of a minimal (m, 0)-ideal element and a minimal (0, n)-ideal element of S.

Corollary 2.12. Let S be an le-semigroup. Then S has at least one minimal (m, n)-quasi-ideal element if and only if S has at least one minimal (m, 0)-ideal element and at least one minimal (0, n)-ideal element.

Theorem 2.13. [3] Let S be an le-semigroup, $a \in S$ and m, n be non-negative integers. Then the following are equivalent:

- (1) S is < m, n >-regular;
- (2) $a^m ea^n = a$ for each (m, n)-ideal element of S;
- (3) $q^m eq^n = a$ for each (m, n)-quasi-ideal element of S;

- (4) $(\langle a \rangle_{\langle m,n \rangle})^m e(\langle a \rangle_{\langle m,n \rangle})^n = \langle a \rangle_{\langle m,n \rangle}$ for each $a \in S$;
- (5) $((a)_{<m,n>})^m e((a)_{<m,n>})^n = (a)_{<m,n>}$ for each $a \in S$.

Lemma 2.14. [3] Let S be a \lor e-semigroup, $a \in S$ and $m, n, k \ge 0$ be integers. Then

- (1) $(a \vee a^m e a^k)^m e = a^m e;$
- (2) $e(a \vee a^k ea^n)^n = ea^n$;
- (3) $\langle a \rangle_{\langle m,n \rangle}$ exists and $\langle a \rangle_{\langle m,n \rangle} = a \vee a^m e a^n$.

In whatever follows, $I_{(m,0)}$, $I_{(0,n)}$, $I_{(m,n)}$ and $Q_{(m,n)}$ denote the sets of all (m, 0), (0, n), (m, n)-ideal elements and (m, n)-quasi-ideal elements of the *le*-semigroup S respectively

Theorem 2.15. Let S be an le-semigroup and m, n be non-negative integers. Then S is (m, n)-regular if and only if $b \wedge c \leq b^m c^n$ for each $b \in I_{(m,n)}$ and for each $c \in I_{(0,n)}$.

Proof. The statement is trivially true for m = 0 = n. If m = 0 and $n \neq 0$ or $m \neq 0$ and n = 0, then the result follows by Theorem 2.13. So, let $m \neq 0$, $n \neq 0$, $B \in I_{(m,n)}$ and $L \in I_{(0,n)}$. As S is (m, n)-regular, we have

$$(b \wedge c)$$

$$\leq (b \wedge c)^{m} e(b \wedge c)^{n}$$

$$\leq b^{m} e c^{n}$$

$$\leq b^{m} c$$

$$= b^{m} c c \text{ (by Remark 2.2)}$$

$$= b^{m} c c c \text{ (by Remark 2.2)}$$

$$\vdots$$

$$\leq b^{m} c^{n}.$$

Therefore $b \wedge c \leq b^m c^n$.

Conversely assume that $b \wedge c \leq b^m c^n$ for each $b \in I_{(m,n)}$ and for each $c \in I_{(0,n)}$. Take any $a \in S$. As $\langle a \rangle_{\langle m,n \rangle} \in I_{(m,n)}$ and $\langle a \rangle_{\langle 0,n \rangle} \in I_{(0,n)}$, we have

$$\langle a \rangle_{\langle m,n \rangle} = \langle a \rangle_{\langle m,n \rangle} \wedge e \leq (\langle a \rangle_{\langle m,n \rangle})^m e^n \quad \text{(by hypothesis)}$$
$$\leq (\langle a \rangle_{\langle m,n \rangle})^m e = a^m e \qquad \text{(by Lemma 2.14)}.$$

Similarly $\langle a \rangle_{\langle 0,n \rangle} \leq ea^n$. As $a^m e \in I_{(m,n)}$ and $ea^n \in I_{(0,n)}$, by hypothesis

$$\{a\} \leq \langle a \rangle_{\langle m,n \rangle} \land \langle a \rangle_{\langle 0,n \rangle} \leq a^m e \land ea^n$$
$$= (a^m e)^m (ea^n)^n$$
$$\leq a^m ea^n.$$

Hence S is (m, n)-regular.

Similarly we may prove the following:

Theorem 2.16. Let S be an le-semigroup and m, n be non-negative integers. Then S is (m, n)-regular if and only if $a \wedge b \leq a^m b^n$ for each $b \in I_{(m,n)}$ and for each $a \in I_{(m,0)}$.

Lemma 2.17. [3] Let S be an le-semigroup, $a \in S$ and m, n be any positive integers.

(1)
$$(a \lor (a^m e \land ea^n))^m e \le a^m e;$$

(2) $e(a \lor (a^m e \land ea^n))^n \le ea^n;$

(3) (a) < m,n > exists and (a) $< m,n > = a \lor (a^m e \land ea^n)$.

Theorem 2.18. Let S be an le-semigroup and m, n be non-negative integers. Then S is (m, n)-regular if and only if $q \wedge c \leq q^m c^n$ for each $q \in Q_{(m,n)}$ and for each $c \in I_{(0,n)}$.

Proof. Statement follows by Theorem 2.15 because each (m, n)-quasi-ideal element of S is an (m, n)-ideal element of S.

Conversely assume that $qc \leq q^m c^n$ for each (m, n)-quasi-ideal element q and for each (0, n)-ideal element c of S. Let $a \in S$. As $(a)_{\leq m,n \geq}$ is an (m, n)-quasi-ideal element and e is a (0, n)-hyperideal of S, we have

$$(a)_{} = (a)_{} \land e \le ((a)_{})^m e^n$$
 (by hypothesis)
 $\le ((a)_{})^m e = a^m e$ (by Lemma 2.17).

Similarly $\langle a \rangle_{\langle 0,n \rangle} \leq ea^n$. As $(a)_{\langle m,n \rangle}$ and ea^n are (m,n)-quasi-ideal element and (0,n)-ideal element of S, by hypothesis, we have

$$\{a\} \leq (a)_{\langle m,n \rangle} \wedge \langle a \rangle_{\langle 0,n \rangle} \leq a^m e \wedge e a^n$$
$$= (a^m e)^m (ea^n)^n$$
$$\leq a^m e a^n.$$

Hence, S is (m, n)-regular.

Similarly we may prove the following:

Theorem 2.19. Let S be an le-semigroup and m, n be non-negative integers. Then S is (m, n)-regular if and only if $a \land q \leq a^m q^n$ for each (m, n)-quasi-ideal element q and for each (m, 0)-ideal element a of S.

Theorem 2.20. Let S be an le-semigroup and m, n be non-negative integers. Then S is (m, n)-regular if and only if $a \wedge c = a^m c \wedge ac^n$ for each (m, 0)-ideal element a and for each (0, n)-ideal element c of S.

Proof. The statement is trivially true for m = 0 = n. If $m \neq 0$ and n = 0, then we have to show that S is (m, 0)-regular if and only if $a = a^m e$ which directly follows by Theorem 2.13. Similarly when m = 0 and $n \neq 0$, then the result follows by Theorem 2.13. So, let $m \neq 0$, $n \neq 0$, a be any (m, 0)-ideal element and c be any (0, n)-ideal element of S. As S is (m, n)-regular, By Remark 2.2 and Theorem 2.6, $a \wedge c = a^m c^n = a^m c$ and $a \wedge c = a^m c^n = ac^n$. So $a \wedge c = a^m c \wedge ac^n$.

Conversely assume that $a \wedge c = a^m c \wedge ac^n$ for each (m, 0)-ideal element a and for each (0, n)-ideal element c of S. Let $t \in S$. As $\langle t \rangle_{\langle m, 0 \rangle}$ is an (m, 0)-ideal element and e is a (0, n)-ideal element of S, we have

$$< t >_{< m,0>} = < t >_{< m,0>} \land e = (< t >_{< m,0>})^m e \land < t >_{< m,0>} e^n$$
 (by hypothesis)
 $\leq (< t >_{< m,0>})^m e = t^m e$ (by Lemma 2.14).

Similarly $\langle t \rangle_{\langle 0,n \rangle} \leq et^n$. As $t^m e$ and et^n are (m, 0)-ideal element and (0, n)-ideal element of S respectively, by hypothesis, we have

Hence S is (m, n)-regular.

Corollary 2.21. Let S be an le-semigroup and m, n be non-negative integers. Then the following are equivalent:

- (1) S is (m, n)-regular;
- (2) $b \wedge c \leq b^m c^n$ for each $b \in I_{(m,n)}$ and for each $c \in I_{(0,n)}$;
- (3) $q \wedge c \leq q^m c^n$ for each $q \in Q_{(m,n)}$ and for each $c \in I_{(0,n)}$;
- (4) $a \wedge b \leq a^m b^n$ for each $b \in I_{(m,n)}$ and for each $a \in I_{(m,0)}$;
- (5) $a \wedge q \leq a^m q^n$ for each $q \in Q_{(m,n)}$ and for each $a \in I_{(m,0)}$;
- (6) $c \wedge a = a^m c \wedge ac^n$ for each $a \in I_{(m,0)}$ and for each $c \in I_{(0,n)}$.

References

- [1] G. Birkhoff, Lattice theory, Amer. Math. Soc. Coll. Publ., Vol. XXV, Providence, (1967).
- [2] J. M. Howie, An Introduction to Semigroup Theory, Academic Press, (1976).
- [3] N. Kehayopulu, Generalized ideal elements in poe-semigroups, Semigroup Forum 25, 213-222 (1982).
- [4] N. Kehayopulu, On intra-regular $\lor e$ -semigroups, Semigroup Forum 19, 111-121 (1980).
- [5] N. Kehayopulu, A characterization of regular le-semigroups, Semigroup Forum 23, 85-86 (1981).
- [6] N. Kehayopulu, On regular and intra-regular poe-semigroups, Semigroup Forum 29, 255-257 (1984).
- [7] N. Kehayopulu, On left (resp. right) duo regular poe-semigroups, Semigroup Forum 31, 123-125 (1985).
- [8] N. Kehayopulu, On Left Regular and Left Duo poe-Semigroups, Semigroup Forum 44, 306-313 (1992).
- [9] N. Kehayopulu. On prime, weakly prime ideals in ordered semigroups, Semigroup Forum 44, 341-346 (1992).
- [10] N. Kehayopulu, On regular le-semigroups, Semigroup Forum 49, 267-269 (1994).
- [11] N. Kehayopulu, On le-semigroups, Turk J Math. 40, 310-316 (2016).
- [12] N. Kehavopulu, The role of the ideal elements in studying the structure of some ordered semigroups, Turk J Math. 41, 1144-1154 (2017).
- [13] N. M. Khan, A. Mahboob and M. A. Khan, On characterizations of generalized Green-Kehayopulu type (m,n)-relations on le-semigroups, (Communicated).
- [14] S. Lajos, Generalized ideals in semigroups, Acta Sci. Math. 2, 217-222 (1961).
- [15] A. Mahboob and N. M. Khan, (m, n)-ideal elements and Ordered semigroups, (Communicated).
- [16] A. Mahboob and N. M. Khan, ideal elements and Ordered semigroups, (Communicated).
- [17] P. Petro and E. Pasku, The Green-Kehayopulu relation H in le-semigroups, Semigroup Forum 65, 33-42 (2002).
- [18] E. Pasku and P. Petro, The Relation B in le-semigroups, Semigroup Forum 75, 427-437 (2007).

Author information

Noor Mohammad Khan, Ahsan Mahboob and Abdus Salam, Department of Mathematics, Aligarh Muslim University, Aligarh, 202002, India.

E-mail: noormohammad.khan@gmail.com