Short note on Cohen-Macaulay and Gorenstein amalgamated duplication

Fuad Ali Ahmed Almahdi and Mohammed Tamekkante

Communicated by Najib Mahdou

MSC 2010 Classifications: 13C14, 13D05, 13D07, 13H10.

Keywords and phrases: Cohen-Macaulay rings, Gorenstein rings, amalgamated duplication.

Abstract Let A be a commutative ring and let I be an ideal of A. The amalgamated duplication of A along I is the subring of $A \times A$ given by $A \bowtie I = \{(a, a + i)/a \in A, i \in I\}$. In this paper, we are interested in understanding when $A \bowtie I$ is Cohen-Macaulay (resp. Gorenstein) in the general (not necessarily local) case.

1 Introduction

Throughout, all rings considered are commutative with unity and all modules are unital. Let A be a ring and I and ideal of A, and $\pi : A \to A/I$ the canonical surjection. The amalgamated duplication of A along I, denoted by $A \bowtie I$, is the special pullback (or fiber product) of π and π ; i.e., the subring of $A \times A$ given by

$$A \bowtie I := \pi \times_{A/I} \pi = \{(a, a+i) \mid a \in A, i \in I\}$$

This construction was introduced and its basic properties were studied by D'Anna and Fontana in [5, 6] and then it was investigated by D'Anna in [4] with the aim of applying it to curve singularities (over algebraic closed fields) where he proved that the amalgamated duplication of an algebroid curve along a regular canonical ideal yields a Gorenstein algebroid curve [4, Theorem 14 and Corollary 17]. Let A be a Noetherian local ring of Krull dimension d and I be an ideal of A. In [4], it is proved that $A \bowtie I$ is Cohen-Macaulay if and only if A is Cohen-Macaulay and I is a maximal Cohen-Macaulay A-module. Moreover, in [1], the authors showed that $A \bowtie I$ is Gorenstein if and only if A is Cohen-Macaulay and I is a canonical module for A, and then A/I is Cohen-Macaulay with dim (A/I) = d - 1 (if I is a non unit proper ideal). In this paper, we study when $A \bowtie I$ is Cohen-Macaulay (resp. Gorenstein) in the general (not necessarily local) case. As general reference for terminology and well-known results, we refer the reader to [2].

2 Results

The study of Cohen-Macaulay (resp. Gorenstein) rings is based on the localization of rings with their maximal ideals. Hence, we need the following lemma.

Lemma 2.1. Let m be a maximal ideal of A and set

$$\mathfrak{m} \bowtie I := (\mathfrak{m} \times A) \cap (A \bowtie I) = \{(m, m+i) \mid m \in \mathfrak{m}, i \in I\}$$

and

$$\overline{\mathfrak{m}} := (A \times \mathfrak{m}) \cap (A \bowtie I) = \{(a, a+i) \mid a \in A, i \in I, a+i \in \mathfrak{m}\}$$

Let M be a maximal ideal of $A \bowtie I$ *. Then,*

(i) $I \times I \subseteq M \Leftrightarrow \exists \mathfrak{m} \in Max(A)$ such that $I \subseteq \mathfrak{m}$ and $M = \overline{\mathfrak{m}} = \mathfrak{m} \bowtie I$. In this case, we have

$$(A \bowtie I)_M \cong A_{\mathfrak{m}} \bowtie I_{\mathfrak{m}}$$

(ii) $I \times I \not\subseteq M \Leftrightarrow \exists \mathfrak{m} \in \operatorname{Max}(A)$ such that $I \not\subseteq \mathfrak{m}$ and $M = \overline{\mathfrak{m}}$ or $M = \mathfrak{m} \bowtie I$. In this case,

$$(A \bowtie I)_M \cong A_{\mathfrak{m}}$$

Consequently, we have

$$\operatorname{Max}\left(A \bowtie I\right)\right) = \{\overline{\mathfrak{m}}, \mathfrak{m} \bowtie I \mid \mathfrak{m} \in \operatorname{Max}(A)\}$$

Proof. (1) (\Rightarrow) Assume that $I \times I \subseteq M$, and consider the ideal \mathfrak{m} of A given by

$$\mathfrak{m} := \{m \in A \mid \exists i \in I \text{ such that } (m, m+i) \in M\}$$

Clearly, the fact that $I \times I \subseteq M$ forces $I \subseteq \mathfrak{m}$. So, we can see easily that $M = \mathfrak{m} \bowtie I = \overline{\mathfrak{m}}$. Moreover, by [4, Proposition 2.5], we have $\frac{A \bowtie I}{\mathfrak{m} \bowtie I} \cong \frac{A}{\mathfrak{m}}$. Hence, \mathfrak{m} is a maximal ideal of A. (\Leftarrow) Follows from the isomorphism of rings $\frac{A \bowtie I}{\mathfrak{m} \bowtie I} \cong \frac{A}{\mathfrak{m}}$.

The last statement follows from [4, Proposition 2.7].

(2) (\Rightarrow) Assume $I \times I \not\subseteq M$. Applying [7, Lemma 1.1.4(3)], to the following conductor square with conductor Ker(μ_1) = $I \times I$, where ι_2 is the natural embedding, μ_1 is the canonical surjection, and for each $a \in A$ and $i \in I$, $\mu_2(a, a + i) = \overline{a}$ and $\iota_1(\overline{a}) = (\overline{a}, \overline{a})$.

there is a unique prime Q of $A \times A$ such that $I \times I \nsubseteq Q$ and

$$M = Q \cap A \bowtie I$$
 with $(A \times A)_Q = (A \bowtie I)_M$.

Then either $Q = \mathfrak{m} \times A$ or $Q = A \times \mathfrak{m}$ for some prime ideal \mathfrak{m} of A such that $I \nsubseteq \mathfrak{m}$. That is, $M = \overline{\mathfrak{m}}$ or $M = \mathfrak{m} \bowtie I$. Accordingly, we'll have

$$(A \bowtie I)_M \cong A_{\mathfrak{m}}$$

Moreover, by [4, Proposition 2.5], we have $\frac{A \bowtie I}{M} \cong \frac{A}{\mathfrak{m}}$. Hence, \mathfrak{m} is a maximal ideal of A. (\Leftarrow) Follows from that last isomorphism of rings.

The characterization of $A \bowtie I$ to be Cohen-Macaulay (resp. Gorenstein) is already done in the local case in [1, 4]. The results found are formed as follows.

Lemma 2.2 ([1, Theorem 1.8]). Let A be a local ring and I a non-zero prpoer ideal of A. Then,

- (i) The ring $A \bowtie I$ is Cohen-Macaulay if and only if A is Cohen-Macaulay and I is a maximal Cohen-Macaulay A-module.
- (ii) The ring $A \bowtie I$ is Gorenstein if and only if A is Cohen-Macaulay and I is a canonical A-module.

Remark 2.3. In our proofs, we encountered two trivial cases. The first one is when I = A. In this case, $A \bowtie A = A \times A$ (which is not local certainly) but it is well known that $A \times A$ is Cohen-Macaulay (resp. Gorenstein) if and only if A is Cohen-Macaulay (resp. Gorenstein), and certainly I = A is a maximal Cohen-Macaulay (resp. canonical) A-module. The second trivial case is when I = (0). In this case $A \bowtie (0) \cong A$ which is trivially Cohen-Macaulay (resp. Gorenstein) when A is Cohen-Macaulay (resp. Gorenstein).

The notations and the facts of the previous lemmas and remark will be used in the sequel without explicit reference.

The first result characterize when $A \bowtie I$ is Cohen-Macaulay (resp. Gorenstein) in the general case. For a given A-module M, let Supp(M) denote the support of M, that is;

$$\operatorname{Supp}(M) = \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid M_{\mathfrak{p}} \neq (0) \}$$

Proposition 2.4. Let A be a ring and I a non zero ideal of A. Then,

- (i) the ring $A \bowtie I$ is Cohen-Macaulay if and only if A is Cohen-Macaulay and $I_{\mathfrak{m}}$ is a maximal Cohen-Macaulay $A_{\mathfrak{m}}$ -module for each $\mathfrak{m} \in \operatorname{Supp}(I) \cap \operatorname{Max}(A)$.
- (ii) the ring $A \bowtie I$ is Gorenstein if and only if A is Cohen-Macaulay, $I_{\mathfrak{m}}$ is a canonical $A_{\mathfrak{m}}$ module for each $\mathfrak{m} \in \operatorname{Supp}(I) \cap \operatorname{Max}(A)$ and type $(A_{\mathfrak{m}}) = 1$ for each $m \in \operatorname{Max}(A) \setminus \operatorname{Supp}(I)$.

Proof. Assume that $A \bowtie I$ is a Cohen-Macaulay rings (resp. Gorenstein ring) and let \mathfrak{m} be a maximal ideal of A. If $I \subseteq \mathfrak{m}$, then $\mathfrak{m} \bowtie I$ is a maximal ideal of $A \bowtie I$ and $(A \bowtie I)_{\mathfrak{m} \bowtie I} \cong A_{\mathfrak{m}} \bowtie I_{\mathfrak{m}}$ is a Cohen-Macaulay ring (resp. Gorenstein ring). Then, either $I_{\mathfrak{m}} = (0)$ and $A_{\mathfrak{m}} \bowtie I_{\mathfrak{m}} \cong A_{\mathfrak{m}}$ is a Cohen-Macaulay ring (resp. Gorenstein ring and so Cohen-Macaulay of type 1 by [2, Theorem 3.2.10]), or $I_{\mathfrak{m}} \neq (0)$, and so $A_{\mathfrak{m}}$ is Cohen-Macaulay and $I_{\mathfrak{m}}$ is a maximal Cohen-Macaulay (resp. canonical) $A_{\mathfrak{m}}$ -module. Now, if $I \nsubseteq \mathfrak{m}$. There exists a maximal ideal M of $A \bowtie I$ such that $(A \bowtie I)_M \cong A_{\mathfrak{m}}$, and then $A_{\mathfrak{m}}$ is Cohen-Macaulay (resp. Gorenstein and so Cohen-Macaulay) and $I_{\mathfrak{m}} = A_{\mathfrak{m}}$ is a maximal Cohen-Macaulay (resp. Gorenstein and so Cohen-Macaulay) and $I_{\mathfrak{m}} = A_{\mathfrak{m}}$ is a maximal Cohen-Macaulay (resp. canonical) $A_{\mathfrak{m}}$ -module. Consequently, A is Cohen-Macaulay, $I_{\mathfrak{m}}$ is a maximal Cohen-Macaulay (resp. canonical) $A_{\mathfrak{m}}$ -module for each $\mathfrak{m} \in \text{Supp}(I) \cap \text{Max}(A)$ (resp. and $A_{\mathfrak{m}}$ of type 1 for each $\mathfrak{m} \in \text{Max}(A) \setminus \text{Supp}(I)$).

Now, we will prove the converse implication in the assertion (1) (resp. (2)). Let M be a maximal ideal of $A \bowtie I$. If $I \times I \subseteq M$, there exists a maximal ideal $I \subseteq \mathfrak{m}$ of A such that $M = \mathfrak{m} \bowtie I$ and we have $(A \bowtie I)_M \cong A_{\mathfrak{m}} \bowtie I_{\mathfrak{m}}$. If $I_{\mathfrak{m}} = (0)$, then $(A \bowtie I)_M \cong A_{\mathfrak{m}}$ which is a Cohen-Macaulay ring (resp. Cohen-Macaulay ring of type 1, and so Gorenstein). Otherwise, $I_{\mathfrak{m}}$ is a maximal Cohen-Macaulay (resp. canonical) $A_{\mathfrak{m}}$ -module and certainly $A_{\mathfrak{m}}$ is a Cohen-Macaulay ring. Thus, $(A \bowtie I)_M$ is a Cohen-Macaulay ring (resp. Gorenstein ring). Now, suppose that $I \times I \nsubseteq M$. There exist a maximal ideal \mathfrak{m} of A such that $I \oiint \mathfrak{m}$ and $(A \bowtie I)_M \cong A_{\mathfrak{m}}$ which is Cohen-Macaulay (resp. and $I_{\mathfrak{m}} = A_{\mathfrak{m}}$ is a canonical module, on so $A_{\mathfrak{m}}$ is Gorenstein by [2, Theorem 3.3.7]). Accordingly, $A \bowtie I$ is a Cohen-Macaulay ring (resp. Gorenstein ring).

Corollary 2.5. Let A be a ring and I a non zero ideal of A. Then,

- (i) If A is a Cohen-Macaulay ring and I is a maximal Cohen-Macaulay A-module, then $A \bowtie I$ is a Cohen-Macaulay ring.
- (ii) If A is Cohen-Macaulay ring and I is a canonical A-module, then $A \bowtie I$ is a Gorenstein ring.

Proof. By definition, I is a maximal Cohen-Macaulay (resp. canonical) A-module if I_m is a maximal Cohen-Macaulay (canonical) A_m -module for each $\mathfrak{m} \in Max(A)$. Moreover, it is known that if I is a canonical A-module then Supp(I) = Spec(A) and so $Max(A) \setminus Supp(I) = \emptyset$. Thus, our corollary follows directly from Proposition 2.4.

Corollary 2.6. Let I be a proper ideal of A such that $ann(I) \subseteq Jac(A)$. Then,

- (i) the ring $A \bowtie I$ is Cohen-Macaulay ring if and only if A is Cohen-Macaulay and I is a maximal Cohen-Macaulay A-module.
- (ii) the ring $A \bowtie I$ is Gorenstein ring if and only if A is Cohen-Macaulay and I is a canonical *A*-module.

Proof. Since $\operatorname{ann}_A(I) \subseteq Jac(A)$, we have $I \neq (0)$. Moreover, since A must be Noetherian in the context of our corollary (by [4, Remark 2.1]), we have $\operatorname{Supp}(I) = \operatorname{V}(\operatorname{ann}_A(I))$ (by [8, Theorem 3.3.22]). Hence, $\operatorname{Supp}(I) \cap \operatorname{Max}(A) = \operatorname{Max}(A)$ and $\operatorname{Max}(A) \setminus \operatorname{Supp}(I) = \emptyset$. Thus, the equivalences in (1) and (2) follow immediately from Proposition 2.4.

In [4, Theorem 11], D'Anna proved that if A is a local Cohen-Macaulay ring and I is proper ideal, then $A \bowtie I$ is Gorenstein if and only of A has a canonical module ω_A and $I \cong \omega_A$. In D'Anna's proof, this is deduced from [4, Proposition 3]. But Shapiro (in [10]) pointed an error in [4, Proposition 3] and showed that it is true if and only if $\operatorname{ann}(I) = (0)$ ([10, Lemma 2.1]. Thus, we conclude that if A is a local Cohen-Macaulay ring and I is proper ideal containing a non-zerodivisor element such that $A \bowtie I$ is Gorenstein then I is a canonical module. The next corollary which a particular case of Corollary 2.7 recovers the D'Anna's result corrected by Shapiro. **Corollary 2.7.** Let I be a proper ideal of A such that ann(I) = (0). Then,

- (i) the ring $A \bowtie I$ is Cohen-Macaulay ring if and only if A is Cohen-Macaulay and I is a maximal Cohen-Macaulay A-module.
- (ii) the ring $A \bowtie I$ is Gorenstein ring if and only if A is Cohen-Macaulay and I is a canonical *A*-module.

Recall that a ring R is called *quasi-Frobenius* [9] if it Noetherian and self injective. The quotient R/I where R is a principal ideal domain and I is any nonzero ideal of R is a classical example of quasi-Frobenius ring. Several characterizations of quasi-Frobenius rings were given in [9]. The characterization of $R \bowtie I$ to be quasi-Frobenius was done in [3]. However, we will find it again by using Proposition 2.4.

Corollary 2.8. The ring $A \bowtie I$ is quasi-Frobenius if and only if A is quasi-Frobenius and I is generated by an idempotent.

Proof. Following [4, Remark 2.1], dim $(R \bowtie I) = \dim(R)$, and $R \bowtie I$ is Noetherian if and only if R is Noetherian. Thus, $A \bowtie I$ is Artinian if and only if A is Artinian. Moreover, recall that a ring is quasi-Frobenius if and only if it an Artinian Gorenstein ring.

(⇒) Assume that $A \bowtie I$ is quasi-Frobenius. Then, $A \bowtie I$ is Artinian, and so is A. Then, A_m is Artinian for each $\mathfrak{m} \in \operatorname{Max}(A)$. On the other hand, over local Artinian rings, the canonical module is the injective hull of the residue field. Thus, following Proposition 2.4, for each $\mathfrak{m} \in \operatorname{Max}(A)$, I_m is (0) or injective. Thus, I is an injective ideal since A is Noetherian and so it is generated by an idempotent element. Consequently, $I_m = (0)$ or $I_m = A_m$. If $I_m = (0)$, we have, by Proposition 2.4 again, type(A_m) = 1. Thus, A_m a Gorenstein Artinian ring, and so quasi-Frobenius. If $I_m = A_m$ then A_m is self injective. Consequently, A is self injective, and so it is quasi-Frobenius.

(\Leftarrow) Assume that A is quasi-Frobenius and I is generated by an idempotent. For each $\mathfrak{m} \in Max(A)$, $A_{\mathfrak{m}}$ is Gorenstein, and so type $(A_{\mathfrak{m}}) = 1$. Moreover, for each $\mathfrak{m} \in Supp(I) \cap Max(A)$, $I_{\mathfrak{m}} = A_{\mathfrak{m}}$, and so it is a canonical $A_{\mathfrak{m}}$ -module. Thus, $A \bowtie I$ is Gorenstein. Hence, since $A \bowtie I$ is Artinian (because A is Artinian), we conclude that $A \bowtie I$ is quasi-Frobenius.

Cohen-Macaulay (resp. canonical) modules have not necessary a finite projective dimension. However, when this is the case, we have the following result.

Proposition 2.9. Let I be a proper ideal of A such that $pd_B(I) < \infty$. Then,

- (i) the ring $A \bowtie I$ is a Cohen-Macaulay ring if and only if A is Cohen-Macaulay and I is projective.
- (ii) the ring $A \bowtie I$ is a Gorenstein ring if and only if A is Gorenstein and I is projective.

Proof. (1) (\Rightarrow) Assume that $A \bowtie I$ is a Cohen-Macaulay ring. Following Proposition 2.4, it suffices to prove that I is projective. Since A is Noetherian, we have to prove that I_m is projective for each $\mathfrak{m} \in \operatorname{Max}(A)$ such that $I_{\mathfrak{m}} \neq (0)$. Let \mathfrak{m} be such maximal ideal of A. Using Auslander-Buchsbaum formula (since $\operatorname{pd}_{A_m}(I_{\mathfrak{m}}) < \infty$), we have

$$\operatorname{pd}_{A_{\mathfrak{m}}}(I_{\mathfrak{m}}) + \operatorname{depth}(I_{\mathfrak{m}}) = \operatorname{depth}(A_{\mathfrak{m}})$$

On the other hand, from Proposition 2.4, $I_{\mathfrak{m}}$ is a maximal Cohen-Macaulay $A_{\mathfrak{m}}$. Thus, depth $(I_{\mathfrak{m}}) =$ depth $(A_{\mathfrak{m}})$, and so $pd_{A_{\mathfrak{m}}}(I_{\mathfrak{m}}) = 0$. Consequently, I is projective.

(\Leftarrow) Assume that A is Cohen-Macaulay and I is projective. Let m be a maximal ideal of A such that $I_{\mathfrak{m}} \neq (0)$. Then, I_m is a non zero free ideal of $A_{\mathfrak{m}}$. Thus, it is generated by a non-zerodivisor element, and so dim $(I_{\mathfrak{m}}) = \dim(A_{\mathfrak{m}})$. On the other hand, by the Auslander-Buchsbaum formula, we have depth $(I_{\mathfrak{m}}) = \operatorname{depth}(A_{\mathfrak{m}})$. Thus, since depth $(A_{\mathfrak{m}}) = \dim(A_{\mathfrak{m}})$, it is clear that $I_{\mathfrak{m}}$ is a maximal Cohen-Macaulay $A_{\mathfrak{m}}$ -module. Consequently, from Proposition 2.4, $A \bowtie I$ is a Cohen-Macaulay ring.

 $(2)(\Rightarrow)$ Assume that $A \bowtie I$ is a Gorenstein ring. From (1), it suffices to prove that A is Gorenstein. Let $\mathfrak{m} \in Max(A)$. If $I_{\mathfrak{m}} = (0)$, from Proposition 2.4, $A_{\mathfrak{m}}$ is a Cohen-Macaulay ring of type 1, and so it is a Gorenstein ring. Otherwise, $I_{\mathfrak{m}}$ is a canonical $A_{\mathfrak{m}}$ -module. Moreover, since

I is projective, $I_{\mathfrak{m}}$ is non zero free ideal of $A_{\mathfrak{m}}$. Hence, $I_{\mathfrak{m}} \cong A_{\mathfrak{m}}$. Thus, from [2, Theorem 3.3.7], $A_{\mathfrak{m}}$ is Gorenstein. Consequently, *A* is Gorenstein.

(\Leftarrow) Assume that A is Gorenstein and I is projective. Then, for each $\mathfrak{m} \in \operatorname{Max}(A)$, $A_{\mathfrak{m}}$ is Gorenstein, and so type $(A_{\mathfrak{m}}) = 1$. Thus, following Proposition 2.4, it suffices to show that $I_{\mathfrak{m}}$ is a canonical $A_{\mathfrak{m}}$ -module for each $\mathfrak{m} \in \operatorname{Supp}(I) \cap \operatorname{Max}(A)$. As in $(1)(\Leftarrow)$, we can prove that, for each $\mathfrak{m} \in \operatorname{Supp}(I) \cap \operatorname{Max}(A)$, I_m is a maximal Cohen-Macaulay $A_{\mathfrak{m}}$ -module which is generated by a non-zerodivisor element. Thus, $I_{\mathfrak{m}} \cong A_{\mathfrak{m}}$. Hence, $\operatorname{id}_{A_{\mathfrak{m}}}(I_{\mathfrak{m}}) = \operatorname{id}_{A_{\mathfrak{m}}}(A_{\mathfrak{m}}) < \infty$, and $\operatorname{dim}_{A_{\mathfrak{m}}/\mathfrak{m}A_{\mathfrak{m}}}\operatorname{Ext}_{A_{\mathfrak{m}}}^{t}(A_{\mathfrak{m}}/\mathfrak{m}A_{\mathfrak{m}}, I_{\mathfrak{m}}) = \operatorname{dim}_{A_{\mathfrak{m}}/\mathfrak{m}A_{\mathfrak{m}}}\operatorname{Ext}_{A_{\mathfrak{m}}}^{t}(A_{\mathfrak{m}}/\mathfrak{m}A_{\mathfrak{m}}, A_{\mathfrak{m}}) = 1$ with $t = \operatorname{depth}(A_{\mathfrak{m}}) = \operatorname{depth}(I_{\mathfrak{m}})$. Thus, $I_{\mathfrak{m}}$ is a canonical $A_{\mathfrak{m}}$ -module. Consequently, $A \bowtie I$ is a Gorenstein ring.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number (G.P.R-3-38). The author would like also to thank the anonymous referee and the editors for their valuable comments and suggestions.

References

- H. Ananthnarayan, L. Avramov, and W. Frank Moore, Connected sums of Gorenstein local rings, J. Reine Rngew. Math. 667, 149–176 (2012).
- [2] W. Bruns and J. Herzog, *Cohen-Macaulay Rings*, Cambridge Stud. Adv. Math. 39, Cambridge University press, Cambridge (1993).
- [3] M. Chhiti, N. Mahdou and M. Tamekkante, Self injective amalgamated duplication along an ideal, J. Algebra Appl. 12, 1350033 (2013).
- [4] M. D'Anna, A construction of Gorenstein rings, J. Algebra 306, 507-519 (2006).
- [5] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6, 443–459 (2007).
- [6] M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, *Ark. Mat.* 45, 241–252 (2007).
- [7] M. Fontana, J. A. Huckaba and I. J. Papick, Prüfer Domains, Marcel Dekker, New York (1997).
- [8] S. Glaz, Commutative Coherent Rings, Lecture Notes in Math. 1371, Springer-Verlag, Berlin (1989).
- [9] W.K. Nicholson and M.F. Yousif, *Quasi-Frobenius Rings*, Cambridge Tracts in Math. 158, Cambridge University Press, Cambridge (2003).
- [10] J. Shapiro, On a construction of Gorenstein rings proposed by M. D'Anna, J. Algebra 323, 1155–1158 (2010).

Author information

Fuad Ali Ahmed Almahdi, Department of Mathematics, Faculty of Sciences, King Khalid University, P. O. Box. 9004, Abha, Saudi Arabia.

E-mail: fuadalialmahdy@hotmail.com

Mohammed Tamekkante, Department of Mathematics, Faculty of Science, University Moulay Ismail Meknes, Box 11201, Zitoune, Morocco.. E-mail: tamekkante@yahoo.fr