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Abstract Let X be a scheme such that the structural sheaf OX have zero higher cohomology
group and M be an OX -module on X . This paper investigate a sufficient condition for a quasi-
coherent module M to have Hi(X,M) = 0 for all i > 0 .

1 Introduction

Throughout this papers, X is assumed to be a scheme, A its ring of global sections i.e A =
OX(X) and M be an OX -module on X .

Recall that, an OX -module M is quasi-coherent if and only if for any affine open U =

SpecB ⊂ X, there exists a B-module M such that M|U ≃ M̃ .
In [12], Serre initiated the study of the Čech cohomology of coherent sheaves on separated

algebraic varieties with their Zariski topology. He proved that coherent sheaves on affine vari-
eties have zero higher cohomology group. Using this theorem, he showed that one may compute
the cohomology of coherent sheaves by using the more down-to-earth Čech cohomology of any
affine open covering of the algebraic variety.

In [5] Grothendieck defined a cohomology theory of sheaves on any topological space by
injective resolutions. In this theory , the emphasis is on the long exact sequence of cohomology
arising from any short exact sequence of sheaves. In algebraic geometry, Grothendieck greatly
extended Serre’s results to quasi-coherent sheaves on schemes. His argument appears to be a
direct translation of serre’s to the more general context and freely employs spectral sequence,
see for instance [6].

In [11], A. Neeman proved that a quasi-affine scheme is affine if and only if the structural
sheaf have zero higher cohomology group. Accordingly to serre’s criterion of affineness, this
mean that if X is quasi-affine and Hi(X,OX) = 0 for all i > 0, then for any quasi-coherent
module M, and for all i > 0, we get Hi(X,M) = 0.

Which allows us, to introduce a new condition on sheaves over a scheme (not necessarly
quasi-affine) to get a similar equivalence, as

X affine ⇐⇒ Hi(X,OX) = 0 , ∀i > 0 + condition on sheaves

In sense that, this condition will be verified in the case of quasi-affine scheme, and we rediscover
Neeman’s result.

Here, it is worth to introduce the condition under which Hi(X,M) = 0 for all i > 0 for a
quasi-coherent module M.

For a scheme X, we say that an OX -module M verify the property (T) if:
(T): For any affine open U of X the canonical morphism M(X) ⊗A OX(U) → M(U) is an
isomorphism.

This paper, contains in addition to the introduction two sections, the first one deals with the
study of the local nature of this property, and we show that if a scheme is quasi-affine, any quasi-
coherent module verify this property. The second section investigate the vanishing of the higher
cohomology group Hi(X,M), where Hi(X,OX) = 0 for all i > 0, and for any quasi-coherent
module, that verify the property (T). At this point, we make the following definitions:

Definition 1.1. Let f : X → Y be a morphism of schemes. f is flat if, for any affine open V of
Y , and any affine open U of X such that f(U) ⊂ V , OX(U) is a flat OY (V )-module.
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Definition 1.2. A scheme is called semi-separated if the intersection of any two affine opens is
affine.

Definition 1.3. A scheme is quasi-affine if it is isomorphic to a quasi-compact open sub-scheme
of an affine scheme.

2 On the property (T)

The following proposition examine the property (T) for affine scheme.

Proposition 2.1. Let X be an affine scheme and U be an affine open of X . Then for any quasi-
coherent OX -module M on X, the natural morphism M(X) ⊗OX (X) OX(U) → M(U) is an
isomorphism.

Before, proving the proposition, we establish the following lemma.

Lemma 2.2. Let A be a ring. If 0 → M0 → M1 → . . . → Mn → 0 is an exact sequence of flat
A-modules, then, for any A-module M , the sequence 0 → M0 ⊗A M → M1 ⊗A M → . . . →
Mn ⊗A M → 0 is exact.

Proof. proposition 2.1 . Note that, since M is quasi-coherent and X is affine then M ≃ M̃ ,
where M = M(X).

First case: If U = D(f) is a principal affine open, where f ∈ A. We get

M(X)⊗OX (X) OX(U) = M ⊗A Af ≃ Mf = M(U)

Second case: If U = Spec(B) is any affine open of X , then it is quasi-compact, and it can be
covered by a finite number of principal affine opens, U0 = D(f0), . . . , Un = D(fn). Since U is
affine then, Hi(U,OU ) = 0 for all i > 0, thus

0 → OX(U) → C0(U,OX) → C1(U,OX) → . . . → Cn(U,OX) → 0

Is an exact sequence of flat B-modules. Since B is a flat A-algebra , then it is an exact sequence
of flat A-modules.
By lemma 2.2, the following sequence
0 → M(X) ⊗A OX(U) →

∏
i M(X) ⊗A OX(Ui) → . . . → M(X) ⊗A Cn(U,OX) → 0 is

exact, where Uij = Ui ∩ Uj . In particular, the sequence
0 → M(X)⊗AOX(U) →

∏
i M(X)⊗AOX(Ui) →

∏
i<j M(X)⊗AOX(Uij) is exact. Yields

that the following commutative diagram

0 // M(X)⊗A OX(U) //

��

∏
i

M(X)⊗A OX(Ui) //

��

∏
i<j

M(X)⊗A OX(Uij)

��

0 // M(U) //
∏
i

M(Ui) //
∏
i<j

M(Uij)

with exact lines. The second line is exact by the fact that Hi(U,M|U ) = 0 for all i > 0. The
second and the third vertical morphisms are isomorphisms, then the first is also an isomorphism
(by the five lemma).

The proposition below establish the relationship between quasi-coherent modules and those
verifies the property (T).

Proposition 2.3. Let X be a scheme, and let M be an OX -module.
If M verify (T), then M is quasi-coherent.
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Proof. Assume that M verify the property (T). Let U = SpecB be an affine open of X and
M = M(U). We show that M|U = M̃ .
Let g ∈ B, we have M|U (D(g)) = M(D(g)). Since D(g) is affine and M verify the property
(T) then, M(D(g)) = M(X)⊗A O(D(g)). Thus

M|U (D(g)) = M(X)⊗A OX(D(g)) = M(X)⊗A Bg

= M(X)⊗A (B ⊗B Bg)

= (M(X)⊗A B)⊗B Bg

= (M(X)⊗A OX(U))⊗B Bg

= M(U)⊗B Bg

= Mg = M̃(D(g))

Hence M|U = M̃ .

The following corollary is an immediate consequence of proposition 2.1 and proposition 2.3.

Corollary 2.4. Let X be an affine scheme, and M be an OX -module, then:
M verify the property (T) if and only if M is quasi-coherent.

In the following theorem, we study the local nature of the property (T).

Theorem 2.5. Let X be a quasi-compact and semi-separated scheme, such that the morphism
X → SpecA is flat , and M be a quasi-coherent OX -module on X. The following statements are
equivalents:

(i) There exist a finite covering of X by affine opens , U0, . . . , Un, such that, for all 0 ≤ i ≤ n;
M(X)⊗OX (X) OX(Ui) = M(Ui).

(ii) M verify (T).

Proof. (2) ⇒ (1): By the quasi-compactness.
(1) ⇒ (2) : Let U = (Ui)0≤i≤n be a covering of X , such that, for all 0 ≤ i ≤ n; M(X)⊗OX (X)

OX(Ui) = M(Ui), and let V be an affine open of X . So V = ∪iVi, where Vi = V ∩ Ui. Since
X is semi-separated, then each open Vi is affine.
The following sequence

0 → OX(V ) →
∏
i

OX(Vi) →
∏
i<j

OX(Vij) → . . . → Cn(V,OX) → 0

is an exact sequence of flats A-modules. Which still exact when tonsoring by the A-module
M(X) (by lemma2.2). In particular, the following sequence

0 → M(X)⊗A OX(V ) →
∏
i

M(X)⊗A OX(Vi) →
∏
i<j

M(X)⊗A OX(Vij)

is exact. But

OX(Vi)⊗A M(X) =
(
OX(Vi)⊗OX (Ui) OX(Ui)

)
⊗A M(X)

= OX(Vi)⊗OX (Ui) (OX(Ui)⊗A M(X))

= OX(Vi)⊗OX (Ui) M(Ui)

= M(Vi)

By the same argument, we have OX(Vij) ⊗A M(X) = M(Vij). So we get the following com-
mutative diagram:
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0 // OX(V )⊗M(X) //

��

∏
i

OX(Vi)⊗M(X) //

��

∏
i<j

OX(Vij)⊗M(X)

��

0 // M(V ) //
∏
i

M(Vi) //
∏
i<j

MX(Vij)

Where the horizontal lines are exact, and the second and the third vertical morphisms are iso-
morphisms. It follows that the first vertical arrow is an isomorphism (by the five lemma).

The next result study the property (T) for quasi-affine scheme.

Theorem 2.6. Let X be a quasi-affine scheme and M be a quasi-coherent OX -module. Then

(i) The morphism X → SpecA is flat.

(ii) M verify the property (T).

The proof of this theorem requires the following lemma.

Lemma 2.7 ([9] Proposition 5.1.6). Let M be a quasi-coherent OX -module on a scheme X. Let
us suppose X is Noetherian or separated and quasi-compact. Then for any f ∈ OX(X) the
canonical homomorphism

M(X)f = M(X)⊗OX (X) OX(X)f → M(Xf )

where Xf := {x ∈ X , fx ∈ O∗
X,x}, is an isomorphism.

Proof. of theorem 2.6 (1) Let X be a quasi-compact open sub-scheme of an affine scheme
Y = SpecB, hence it is separated. Since X is quasi-compact, then there exist f1, . . . , fn ∈ B
such that X = ∪iUi, where Ui = D(fi). Set A = OX(X) and gi = fi|X ∈ A. Let M be a
quasi-coherent OX -module on X. By lemma 1, the morphism

Agi = OX(X)gi → OX(Xgi)

is an isomorphism. But

Xgi = {x ∈ X , gix ∈ O∗
X,x}

= {x ∈ X , fix ∈ O∗
X,x}

= Yfi ∩X

= D(fi) ∩X

= D(fi)

Hence Agi ≃ OX(Xgi) = OY (D(fi)) = Bfi . It follows that Bfi = OX(Ui) is a flat A-module.
Which complete the proof of (1).

(2) According to the lemma 2.7, the morphism

M(X)gi = M(X)⊗OX (X) OX(X)gi → M(Xgi)

is an isomorphism.
Since OX(Ui) = OX(D(fi)) = OY (D(fi)) = Bfi = OX(X)gi , then

M(X)⊗OX (X)OX(D(fi)) = M(X)⊗OX (X)OX(X)gi ≃ M(Xgi) = M(D(fi)) = M(Ui).
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3 Vanishing theorem for a class of quasi-coherent modules

The main result of this section examine the vanishing of the higher cohomology group of an
OX -module that verify the property (T).

Theorem 3.1. Let X be a quasi-compact and semi-separated scheme such that the morphism
X → SpecA is flat, and Hi(X,OX) = 0 for all i > 0. If M is an OX -module that verify (T),
then Hi(X,M) = 0 for all i > 0.

Proof. Let U = (Ui)0≤i≤n be an affine open covering of X, and M be a quasi-coherent OX -
module that verify (T).

Since Hi(X,OX) = 0 for all i > 0, then the sequence

0 → OX(X) → C0(U ,OX) → . . . → Cn(U ,OX) → 0

is exact.
For p ∈ {0, . . . , n}, by definition

Cp(U ,OX) =
∏

i0<...<ip

OX(Ui0,...,ip)

Where Ui0,...,ip = Ui0 ∩ . . . ∩ Uip .
Since X is semi-separated, then Ui0,...,ip is an affine open of X . OX(Ui0,...,ip) is a flat A-module,
by the fact that the morphism X → SpecA is flat. Now Cp(U ,OX) is a finite product of flats
A-modules , then it is a flat A-module. Moreover, A is flat module over itself, then the last
sequence is an exact sequence of flats A-modules. By lemma 2.2, the sequence
0 → A⊗A M(X) → C0(U ,OX)⊗A M(X) → . . . → Cn(U ,OX)⊗A M(X) → 0 is exact.
Now, it remains to show that Cp(U ,OX)⊗A M(X) = Cp(U ,M).
Since Cp(U ,OX) is a finite product of A-modules, and the tensor product commute with finite
product, we have

Cp(U ,OX)⊗A M(X) =
∏

i0<...<ip

(
OX(Ui0,...,ip)⊗A M(X)

)
Let i0 < . . . < ip, since Ui0,...,ip is affine and the OX -module M verify (T), then

OX(Ui0,...,ip)⊗M(X) = M(Ui0,...,ip)

It follow that Cp(U ,OX)⊗M(X) = Cp(U ,M) , hence the sequence

0 → M(X) → C0(U ,M) → . . . → Cn(U ,M) → 0

is exact, consequently Hi(X,M) = 0 for all i ≥ 0.

The corollary below is an immediate consequence of theorem 3.1.

Corollary 3.2. Let X be a quasi-compact and semi-separated scheme. Then, X is affine if and
only if the following statements holds,

(i) The structural sheaf have zero higher cohomology group .

(ii) The morphism X → SpecA is flat.

(iii) Any quasi-coherent OX -module on X verify (T).

Proof. If X is affine, then by Serrs’s vanishing theorem, Hi(X,OX) = 0 for all i > 0, and by
proposition 2.1, any quasi-coherent module verify (T).
Conversely, by theorem 3.1, for any quasi-coherent module M on X , Hi(X,M) = 0, for all
i > 0. Hence X is affine.

In the following corollary we rediscover a known result of A. Neeman [11].

Corollary 3.3. Let X be a quasi-affine scheme. Then,
X is affine if and only if for all i > 0, Hi(X,OX) = 0
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Proof. The direct implication is straightforward. For the converse, since X is quasi-affine, then
by theorem 3.1, the morphism X 7→ SpecA is flat, and any quasi-coherent module M verify
(T). Hence Hi(X,M) = 0 for all i > 0, and for any quasi-coherent module M. Consequently
X is affine.

In the following, we give an example of scheme in which every OX -module that verify the
property (T) has zero higher cohomology group.

Example 3.4. Let B be a ring and X = P1
B = Proj(B[T0, T1]). If M is a quasi-coherent module

on X that verify (T), then Hi(X,M) = 0, for all i > 0.

Proof. Note that OX(X) = B.
Consider the covering U = {U0, U1} of X , where U0 = D+(T0) and U1 = D+(T1). We have
OX(U0) = B[T1/T0] and OX(U1) = B[T0/T1]. Since OX(Ui) for i = 0, 1 are flats B-modules,
then the natural morphism P1

B → SpecB is flat.
The Čech complex is

0 −→ OX(X) −→ OX(U0)×OX(U1) −→ OX(U01) −→ 0

Set T = T0/T1, then OX(U01) = B[T, 1/T ] and the last complex become

0 −→ B −→ B[1/T ]×B[T ]
d−→ B[T, 1/T ] −→ 0

Where d(P,Q) = P −Q. The morphism d is surjective, which implies that Hi(X,OX) = 0 for
all i > 0.
Now, if M is a quasi-coherent OX -module that verify (T), then by theorem 3.1, Hi(X,M) = 0
for all i > 0.
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