Some theorems for Carlitz's twisted (h,q)-Euler polynomials under S_{4}

Ugur Duran and Mehmet Acikgoz

Communicated by Ayman Badawi
MSC 2010 Classifications: Primary 11S80, 11B68; Secondary 05A19, 05A30.
Keywords and phrases: p-adic invariant integral on \mathbb{Z}_{p}; Invariant under S_{4}; Symmetric identities; Carlitz's twisted q-Euler polynomials.

Abstract. The main purpose of this paper is to give some symmetric identities for Carlitz's twisted q-Euler polynomials related to the p-adic invariant integral on \mathbb{Z}_{p} under symmetric group of degree four denoted by S_{4}.

1 Introduction

Recently, many mathematicians have studied on symmetric identities of some special functions. For example, Duran et al. [3] on q-Genocchi polynomials, Duran et al. [4] on weighted q Genocchi polynomials, Araci et al. [1] on the new family of Euler numbers and polynomials, Araci et al. [2] on q-Frobenious Euler polynomials, moreover, Dolgy et al. [5] on h-extension of q-Euler polynomials and furthermore, Kim [6] on q-Euler numbers and polynomials of higher order have worked extensively by using p-adic q-integrals on \mathbb{Z}_{p}.

Along this paper, we use the following notations: \mathbb{N} denotes the set of all natural numbers, \mathbb{N}^{*} denotes the set of all positive natural numbers, \mathbb{Z}_{p} denotes the ring of p-adic rational integers, \mathbb{Q} denotes the field of rational numbers, \mathbb{Q}_{p} denotes the field of p-adic rational numbers and \mathbb{C}_{p} denotes the completion of algebraic closure of \mathbb{Q}_{p} in which p be an any odd prime number.

The normalized absolute value with respect to the theory of p-adic analysis is given by $|p|_{p}=$ p^{-1}. When one mentions q-extension, q can be taken to be an indeterminate, a p-adic number $q \in$ \mathbb{C}_{p} with $|q-1|_{p}<p^{-\frac{1}{p-1}}$ and $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$, or a complex number $q \in \mathbb{C}$ with $|q|<1$. For whichever x, the q-extension of x is defined as $[x]_{q}=\frac{1-q^{x}}{1-q}=1+q+q^{2}+\cdots q^{x-1}$. Observe that $\lim _{q \rightarrow 1}[x]_{q}=x$ (see [2-6, 8-10]).

For

$$
f \in U D\left(\mathbb{Z}_{p}\right)=\left\{f \mid f: \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p} \text { is uniformly differentiable function }\right\}
$$

the p-adic invariant integral on \mathbb{Z}_{p} is defined [6] by

$$
\begin{equation*}
I_{-1}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{-1}(x)=\lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} f(x)(-1)^{x} \tag{1.1}
\end{equation*}
$$

In view of the integral (1.1), one can derive with ease that

$$
I_{-1}\left(f_{n}\right)=(-1)^{n} I_{-1}(f)+2 \sum_{l=0}^{n-1}(-1)^{n-l-1} f(l)
$$

where $f_{n}(x)$ implies $f(x+n)$. One can take a glance at the references [1], [2], [3], [4], [5], [8].
The Euler polynomials $E_{n}(x)$ are defined by means of the the following Taylor series expansion at $t=0$:

$$
\begin{equation*}
\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!}=\frac{2}{e^{t}+1} e^{x t}, \quad(|t|<\pi) \tag{1.2}
\end{equation*}
$$

Subrogating $x=0$ in the Eq. (1.2) yields $E_{n}(0):=E_{n}$ known as n-th Euler number (see e.g., [6], [7], [8], [9],).

Let $T_{p}={ }_{N \geq 1} C_{p^{N}}=\lim _{N \rightarrow \infty} C_{p^{N}}$, in which $C_{p^{N}}=\left\{w: w^{p^{N}}=1\right\}$ is the cyclic group of order p^{N}. For $w \in T_{p}$, we denote by $\phi_{w}: \mathbb{Z}_{p} \rightarrow C_{p}$ the locally constant function $\ell \rightarrow w^{\ell}$. For $q \in C_{p}$ with $|1-q|_{p}<1$ and $w \in T_{p}$, in [9], Ryoo described the Carlitz's twisted q-Euler polynomials by the following p-adic invariant integral on \mathbb{Z}_{p} :

$$
\begin{equation*}
\mathcal{E}_{n, q, w}(x)=\int_{\mathbb{Z}_{p}} w^{y}[x+y]_{q}^{n} d \mu_{-1}(y) \quad(n \geq 0) \tag{1.3}
\end{equation*}
$$

Letting $x=0$ into the Eq. (1.3) gives $E_{n, q, w}(0):=E_{n, q, w}$ dubbed as n-th Carlitz's twisted q-Euler numbers.

Taking $w=1$ and $q \rightarrow 1$ in the Eq. (1.3) yields to

$$
E_{n}(x):=\int_{\mathbb{Z}_{p}}(x+y)^{n} d \mu_{-1}(y)
$$

In the next section, we derive some novel symmetric identities of Carlitz's twisted q-Euler polynomials associated with the fermionic p-adic invariant integral on \mathbb{Z}_{p} under S_{4}.

2 Symmetric Identities for $\boldsymbol{E}_{n, q, w}(\boldsymbol{x})$ under \boldsymbol{S}_{4}

Let $w_{i} \in \mathbb{N}$ be a natural number which satisfies the condition $w_{i} \equiv 1(\bmod 2)$, in which $i \in \mathbb{Z}$ lies in $1 \leq i \leq 4$. From the Eqs. (1.1) and (1.3), we consider

$$
\begin{gathered}
\int_{\mathbb{Z}_{p}} w^{w_{1} w_{2} w_{3} y} e^{\left[w_{1} w_{2} w_{3} y+w_{1} w_{2} w_{3} w_{4} x+w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k\right]_{q} t} d \mu_{-1}(y) \\
=\lim _{N \rightarrow \infty} \sum_{y=0}^{p^{N}-1}(-1)^{y} w^{w_{1} w_{2} w_{3} y} e^{\left[w_{1} w_{2} w_{3} y+w_{1} w_{2} w_{3} w_{4} x+w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k\right]_{q} t} \\
=\lim _{N \rightarrow \infty} \sum_{l=0}^{w_{4}-1} \sum_{y=0}^{p^{N}-1}(-1)^{l+y} w^{w_{1} w_{2} w_{3}\left(l+w_{4} y\right)} \\
\times e^{\left[w_{1} w_{2} w_{3}\left(l+w_{4} y\right)+w_{1} w_{2} w_{3} w_{4} x+w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k\right]_{q} t}
\end{gathered}
$$

Taking

$$
\sum_{i=0}^{w_{1}-1} \sum_{j=0}^{w_{2}-1} \sum_{k=0}^{w_{3}-1}(-1)^{i+j+k} w^{w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k}
$$

on the both sides of the above equation yields

$$
\begin{gather*}
I=\sum_{i=0}^{w_{1}-1} \sum_{j=0}^{w_{2}-1} \sum_{k=0}^{w_{3}-1}(-1)^{i+j+k} w^{w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k} \tag{2.1}\\
\times \int_{\mathbb{Z}_{p}} w^{w_{1} w_{2} w_{3} y} e^{\left[w_{1} w_{2} w_{3} y+w_{1} w_{2} w_{3} w_{4} x+w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k\right]_{q} t} d \mu_{-1}(y) \\
=\lim _{N \rightarrow \infty} \sum_{i=0}^{w_{1}-1} \sum_{j=0}^{w_{2}-1} \sum_{k=0}^{w_{3}-1} \sum_{l=0}^{w_{4}-1} \sum_{y=0}^{p^{N}-1}(-1)^{i+j+k+y+l} w^{w_{1} w_{2} w_{3}\left(l+w_{4} y\right)+w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k} \\
\times e^{\left[w_{1} w_{2} w_{3}\left(l+w_{4} y\right)+w_{1} w_{2} w_{3} w_{4} x+w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k\right]_{q} t}
\end{gather*}
$$

Notice that Eq. (2.1) is invariant for any permutation $\sigma \in S_{4}$. Therefore, we present the following theorem.

Theorem 2.1. Let $w_{i} \in \mathbb{N}$ be a natural number which satisfies the condition $w_{i} \equiv 1(\bmod 2)$, in which $i \in \mathbb{Z}$ lies in $1 \leq i \leq 4$ and $n \geq 0$. Then the following

$$
\begin{aligned}
I= & \sum_{i=0}^{w_{\sigma(1)}-1} \sum_{j=0} \sum_{k=0}^{w_{\sigma(2)}-1}(-1)^{i+j+k} w^{w_{\sigma(3)}-1} w_{\sigma(4)} w_{\sigma(2)} w_{\sigma(3)} i+w_{\sigma(4)} w_{\sigma(1)} w_{\sigma(3)} j+w_{\sigma(4)} w_{\sigma(1)} w_{\sigma(2)} k \\
& \times \int_{\mathbb{Z}_{p}} w^{w_{\sigma(1)} w_{\sigma(2)} w_{\sigma(3)}\left(l+w_{\sigma(4)} y\right)} \\
& \times e^{\left[w_{\sigma(1)} w_{\sigma(2)} w_{\sigma(3)} y+w_{\sigma(1)} w_{\sigma(2)} w_{\sigma(3)} w_{\sigma(4)} x+w_{\sigma(4)} w_{\sigma(2)} w_{\sigma(3)} i+w_{\sigma(4)} w_{\sigma(1)} w_{\sigma(3)} j+w_{\sigma(4)} w_{\sigma(1)} w_{\sigma(2)} k\right]_{q} t} d \mu_{-1}(y)
\end{aligned}
$$

holds true for any $\sigma \in S_{4}$.
From the definition of q-number $[x]_{q}$ we readily derive that

$$
\begin{align*}
& {\left[w_{1} w_{2} w_{3} y+w_{1} w_{2} w_{3} w_{4} x+w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k\right]_{q} } \tag{2.2}\\
= & {\left[w_{1} w_{2} w_{3}\right]_{q}\left[y+w_{4} x+\frac{w_{4}}{w_{1}} i+\frac{w_{4}}{w_{2}} j+\frac{w_{4}}{w_{3}} k\right]_{q^{w_{1} w_{2} w_{3}}} }
\end{align*}
$$

which gives

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} w^{w_{1} w_{2} w_{3} y} e^{\left[w_{1} w_{2} w_{3} y+w_{1} w_{2} w_{3} w_{4} x+w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k\right]_{q} t} d \mu_{-1}(y) \tag{2.3}\\
& =\sum_{n=0}^{\infty}\left[w_{1} w_{2} w_{3}\right]_{q}^{n}\left(\int_{\mathbb{Z}_{p}} w^{w_{1} w_{2} w_{3} y}\left[y+w_{4} x+\frac{w_{4}}{w_{1}} i+\frac{w_{4}}{w_{2}} j+\frac{w_{4}}{w_{3}} k\right]_{q^{w_{1} w_{2} w_{3}}}^{n} d \mu_{-1}(y)\right) \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left[w_{1} w_{2} w_{3}\right]_{q}^{n} \mathcal{E}_{m, q^{w_{1} w_{2} w_{3}}, w^{w_{1} w_{2} w_{3}}}\left(w_{4} x+\frac{w_{4}}{w_{1}} i+\frac{w_{4}}{w_{2}} j+\frac{w_{4}}{w_{3}} k\right) \frac{t^{n}}{n!}
\end{align*}
$$

From Eq. (2.3), we have

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} w^{w_{1} w_{2} w_{3} y}\left[w_{1} w_{2} w_{3} y+w_{1} w_{2} w_{3} w_{4} x+w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k\right]_{q} d \mu_{-1}(y) \tag{2.4}\\
& =\left[w_{1} w_{2} w_{3}\right]_{q}^{n} \mathcal{E}_{m, q^{w_{1} w_{2} w_{3}}, w^{w_{1} w_{2} w_{3}}}\left(w_{4} x+\frac{w_{4}}{w_{1}} i+\frac{w_{4}}{w_{2}} j+\frac{w_{4}}{w_{3}} k\right), \text { for } n \geq 0
\end{align*}
$$

Hereby, from the Theorem 2.1 and Eq. (2.4), we procure the following theorem.
Theorem 2.2. Let $w_{i} \in \mathbb{N}$ be a natural number which satisfies the condition $w_{i} \equiv 1(\bmod 2)$, in which $i \in \mathbb{Z}$ lies in $1 \leq i \leq 4$ and $n \geq 0$. For $n \geq 0$, the following

$$
\begin{aligned}
& I=\left[w_{\sigma(1)} w_{\sigma(2)} w_{\sigma(3)}\right]_{q}^{n} \sum_{i=0}^{w_{\sigma(1)}-1} \sum_{j=0}^{w_{\sigma(2)}-1} \sum_{k=0}^{w_{\sigma(3)}-1}(-1)^{i+j+k} \\
& \times w^{w_{\sigma(4)}} w_{\sigma(2)} w_{\sigma(3)} i+w_{\sigma(4)} w_{\sigma(1)} w_{\sigma(3)} j+w_{\sigma(4)} w_{\sigma(1)} w_{\sigma(2)} k \\
& \times \mathcal{E}_{m, q^{w_{\sigma(1)} w_{\sigma(2)} w_{\sigma(3)}}, w^{w_{\sigma(1)} w_{\sigma(2)} w_{\sigma(3)}}\left(w_{\sigma(4)} x+\frac{w_{\sigma(4)}}{w_{\sigma(1)}} i+\frac{w_{\sigma(4)}}{w_{\sigma(2)}} j+\frac{w_{\sigma(4)}}{w_{\sigma(3)}} k\right), ~(s)}
\end{aligned}
$$

holds true for any $\sigma \in S_{4}$.
By using the definitions of $[x]_{q}$ and binomial theorem:

$$
\begin{align*}
& {\left[y+w_{4} x+\frac{w_{4}}{w_{1}} i+\frac{w_{4}}{w_{2}} j+\frac{w_{4}}{w_{3}} k\right]_{q^{w_{1} w_{2} w_{3}}}^{n} } \tag{2.5}\\
= & \sum_{m=0}^{n}\binom{n}{m}\left(\frac{\left[w_{4}\right]_{q}}{\left[w_{1} w_{2} w_{3}\right]_{q}}\right)^{n-m}\left[w_{2} w_{3} i+w_{1} w_{3} j+w_{1} w_{2} k\right]_{q^{w_{4}}}^{n-m} \\
& \times q^{m\left(w_{2} w_{3} w_{4} i+w_{1} w_{3} w_{4} j+w_{1} w_{2} w_{4} k\right)}\left[y+w_{4} x\right]_{q^{w_{1} w_{2} w_{3}}}^{m} .
\end{align*}
$$

Appliying $\int_{\mathbb{Z}_{p}} w^{w_{1} w_{2} w_{3} y} d \mu_{-1}(y)$ on the both sides of the above gives

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} w^{w_{1} w_{2} w_{3} y}\left[y+w_{4} x+\frac{w_{4}}{w_{1}} i+\frac{w_{4}}{w_{2}} j+\frac{w_{4}}{w_{3}} k\right]_{q^{w_{1} w_{2} w_{3}}}^{n} d \mu_{-1}(y) \tag{2.6}\\
= & \sum_{m=0}^{n}\binom{n}{m}\left(\frac{\left[w_{4}\right]_{q}}{\left[w_{1} w_{2} w_{3}\right]_{q}}\right)^{n-m}\left[w_{2} w_{3} i+w_{1} w_{3} j+w_{1} w_{2} k\right]_{q^{w_{4}}}^{n-m} \\
& \times q^{m\left(w_{2} w_{3} w_{4} i+w_{1} w_{3} w_{4} j+w_{1} w_{2} w_{4} k\right)} \int_{\mathbb{Z}_{p}} w^{w_{1} w_{2} w_{3} y}\left[y+w_{4} x\right]_{q^{w_{1} w_{2} w_{3}}}^{m} d \mu_{-1}(y) \\
= & \sum_{m=0}^{n}\binom{n}{m}\left(\frac{\left[w_{4}\right]_{q}}{\left[w_{1} w_{2} w_{3}\right]_{q}}\right)^{n-m}\left[w_{2} w_{3} i+w_{1} w_{3} j+w_{1} w_{2} k\right]_{q^{w_{4}}}^{n-m} \\
& \times q^{m\left(w_{2} w_{3} w_{4} i+w_{1} w_{3} w_{4} j+w_{1} w_{2} w_{4} k\right)} \mathcal{E}_{m, q^{w_{1} w_{2} w_{3}, w^{w_{1} w_{2} w_{3}}}\left(w_{4} x\right) .}
\end{align*}
$$

By the Eq. (2.6), we procure

$$
\begin{align*}
& {\left[w_{1} w_{2} w_{3}\right]_{q}^{n} \sum_{i=0}^{w_{1}-1} \sum_{j=0}^{w_{2}-1} \sum_{k=0}^{w_{3}-1}(-1)^{i+j+k} w^{w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k} } \\
& \times \int_{\mathbb{Z}_{p}} w^{w_{1} w_{2} w_{3} y}\left[y+w_{4} x+\frac{w_{4}}{w_{1}} i+\frac{w_{4}}{w_{2}} j+\frac{w_{4}}{w_{3}} k\right]_{q^{w_{1} w_{2} w_{3}}}^{n} d \mu_{-1}(y) \tag{2.7}\\
&= \sum_{m=0}^{n}\binom{n}{m}\left[w_{1} w_{2} w_{3}\right]_{q}^{m}\left[w_{4}\right]_{q}^{n-m} \mathcal{E}_{n, q^{w_{1} w_{2} w_{3}}, w^{w_{1} w_{2} w_{3}}\left(w_{4} x\right) \sum_{i=0}^{w_{1}-1} \sum_{j=0}^{w_{2}-1}} \\
& \quad \sum_{k=0}^{w_{3}-1}(-1)^{i+j+k} w^{w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k} q^{m\left(w_{4} w_{2} w_{3} i+w_{4} w_{1} w_{3} j+w_{4} w_{1} w_{2} k\right)} \\
& \times\left[w_{2} w_{3} i+w_{1} w_{3} j+w_{1} w_{2} k\right]_{q^{w_{4}}}^{n-m} \\
&=\left.\sum_{m=0}^{n}\binom{n}{m}\left[w_{1} w_{2} w_{3}\right]_{q}^{m}\left[w_{4}\right]_{q}^{n-m} \mathcal{E}_{n, q^{w_{1} w_{2} w_{3}, w^{w_{1} w_{2} w_{3}}}\left(w_{4} x\right)}\right) U_{n, q^{w_{4}, w^{w_{4}}}\left(w_{1}, w_{2}, w_{3} \mid m\right)}
\end{align*}
$$

where

$$
\begin{align*}
& U_{n, q, w}\left(w_{1}, w_{2}, w_{3} \mid m\right) \tag{2.8}\\
& =\sum_{i=0}^{w_{1}-1} \sum_{j=0}^{w_{2}-1} \sum_{k=0}^{w_{3}-1}(-1)^{i+j+k} w^{w_{2} w_{3} i+w_{1} w_{3} j+w_{1} w_{2} k} \\
& \times q^{m\left(w_{2} w_{3} i+w_{1} w_{3} j+w_{1} w_{2} k\right)}\left[w_{2} w_{3} i+w_{1} w_{3} j+w_{1} w_{2} k\right]_{q}^{n-m} .
\end{align*}
$$

Last of all, from Eqs. (2.7) and (2.8), we obtain the following theorem.
Theorem 2.3. Let $w_{i} \in \mathbb{N}$ be a natural number which satisfies the condition $w_{i} \equiv 1(\bmod 2)$, in which $i \in \mathbb{Z}$ lies in $1 \leq i \leq 4$ and $n \geq 0$. Hence, the following expression

$$
\begin{aligned}
& \sum_{m=0}^{n}\binom{n}{m}\left[w_{\sigma(1)} w_{\sigma(2)} w_{\sigma(3)}\right]_{q}^{m}\left[w_{\sigma(4)}\right]_{q}^{n-m} \\
& \times \mathcal{E}_{n, q^{w_{\sigma(1)} w_{\sigma(2)} w_{\sigma(3)}}, w^{w_{\sigma(1)} w_{\sigma(2)} w_{\sigma(3)}}}\left(w_{\sigma(4)} x\right) U_{n, q^{w_{\sigma(4)}}, w^{w_{\sigma(4)}}}\left(w_{\sigma(1)}, w_{\sigma(2)}, w_{\sigma(3)} \mid m\right)
\end{aligned}
$$

holds true for some $\sigma \in S_{4}$.

References

[1] S. Araci, M. Acikgoz, A. Bagdasaryan, E. Şen, The Legendre polynomials associated with Bernoulli, Euler, Hermite and Bernstein polynomials, Turkish Journal of Analysis and Number Theory, Vol. 1, No. 1, pp. 1-3 (2013).
[2] S. Araci, U. Duran, M. Acikgoz, Symmetric identities involving q-Frobenius-Euler polynomials under Sym (5), Turkish Journal of Analysis and Number Theory, Vol. 3, No. 3, pp. 90-93 (2015).
[3] U. Duran, M. Acikgoz, A. Esi, S. Araci, Some new symmetric identities involving qGenocchi polynomials under S_{4}, Journal of Mathematical Analysis, Vol 6, Issue 4 (2015), pages 22-31.
[4] U. Duran, M. Acikgoz, S. Araci, Symmetric identities involving weighted q-Genocchi polynomials under S_{4}, Proceedings of the Jangjeon Mathematical Society, 18 (2015), No. 4, pp 455-465.
[5] D. V. Dolgy, D. J. Kang,T. Kim, B. Lee, Some new identities on the twisted (h,q)-Euler numbers and q-Bernstein polynomials, Journal of Computational Analysis \& Applications (2012), Vol. 14 Issue 1, pp. 974-984.
[6] T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \mathbb{Z}_{p}, Russian Journal of Mathematical Physics, 16, 484491 (2009).
[7] H. Ozden, Y. Simsek and I. N. Cangul, Euler polynomials associated with p-adic q-Euler measure, General Mathematics Vol. 15, Nr. 2-3 (2007), 24-37.
[8] C. S. Ryoo, Symmetric properties for Carlitz's twisted (h,q)-Euler polynomials associated with p-adic q-integral on \mathbb{Z}_{p}, International Journal of Mathematical Analysis, Vol. 9 (2015), no. 40, 1947-1953.
[9] C. S. Ryoo, Symmetric properties for Carlitz's twisted q-Euler numbers and polynomials associated with p-adic integral on \mathbb{Z}_{p}, International Journal of Mathematical Analysis, Vol. 9 (2015), no. 83, 4129-4134.
[10] Y. Simsek, Complete sum of products of (h,q)-extension of Euler polynomials and numbers, Journal of Difference Equations and Applications, Volume 16, Issue 11, (2010), 1331-1348.

Author information

Ugur Duran and Mehmet Acikgoz, Department of Mathematics, Faculty of Arts and Science, University of Gaziantep, TR-27310 Gaziantep, Turkey, TURKEY.
E-mail: duran.ugur@yahoo.com
Received: January 2, 2016.
Accepted: November 24, 2016.

