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Abstract. The concepts of k−prime ideals , k−weakly primary ideals, k− weakly prime

ideals in G−semiring are introduced and their properties studied. We prove that the intersection

of a family of k−weakly prime (primary) ideals of G−semiring that are not prime (primary) is a

k−weakly prime (primary) ideal.

1 Introduction

Semiring, the best algebraic structure which is a common generalization of rings and distribu-

tive lattices, was �rst introduced by American mathematician Vandiver [16] in 1934 but non

trivial examples of semirings have appeared in the studies on the theory of commutative ideals

of rings by German Mathematician Richard Dedekind in 19th century. Semiring is an univer-

sal algebra with two binary operations called addition and multiplication, where one of them

distributive over the other. Bounded distributive lattices are commutative semirings which are

both additively idempotent and multiplicatively idempotent. Most of the semirings have an order

structure in addition to their algebraic structure. A natural example of semiring, which is not a

ring, is the set of all natural numbers under usual addition and multiplication of numbers. In

particular, if I is the unit interval on the real line then (I,max,min) in which 0 is the additive

identity and 1 is the multiplicative identity.The theory of rings and the theory of semigroups have

considerable impact on the development of the theory of semirings. In structure, semirings lie

between semigroups and rings. In semiring multiplicative structure of semiring is not indepen-

dent of additive structure of semiring. Additive and multiplicative structures of a semiring play

an important role in determining the structure of a semiring. Semiring, as the basic algebraic

structure, was used in the areas of theoretical computer science as well as in the solutions of

graph theory, optimization theory and in particular for studying automata, coding theory and

formal languages. Semiring theory has many applications in other branches. Semirings play an

important role in studying matrices and determinants.

As a generalization of ring, the notion of a G−ring was introduced by Nobusawa [14] in 1964.
In 1981, Sen [15] introduced the notion of a G−semigroup as a generalization of semigroup.

The notion of a ternary algebraic system was introduced by Lehmer [8] in 1932. Lister [9]

introduced the notion of a ternary ring. Dutta and Kar [6] introduced the notion of regular ternary

semirings. In 1995, Murali Krishna Rao [10, 12, 13], introduced the notion of a G−semiring

as a generalization of G−ring, ring, ternary semiring and semiring. Murali Krishna Rao and

Venkateswarlu [11]introduced the notion of regular G−incline and �eld G−semiring. The set of

all negative integers Z is not a semiring with respect to usual addition and multiplication but Z
forms a G−semiring.where G = Z. The important reason for the development of G−semiring is

a generalization of results of rings, G−rings, semirings, semigroups, G−semigroups and ternary

semirings.

It is well-known that ideals play an important role in the study of any algebraic structures,

in particular semirings. Lajos , Iseki characterized the ideals of semigroups and the ideals of

semirings respectively. Though semiring is a generalization of a ring, ideals of semiring do not

coincide with ring ideals. For example an ideal of a semiring needs not be the kernel of some

semiring homomorphism. To solve this problem, Henriksen [7] de�ned k−ideals in semirings

to obtain analogues of ring results. Anderson and Smith [2] introduced and studied the concept

of a weakly prime ideal of an associative ring with unity. Dubey [5] studied prime and weakly

prime ideals in semirings. Atani [3] studied k−weakly primary ideals over semirings and Atani
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et al.[4] studied weakly primary ideals of commutative rings. In this paper, we generalize the

results on prime, weakly prime, weakly primary ideal of ring theory and semiring theory studied

by several mathematicians to G−semiring theory. We introduce the concept of k−weakly prime

ideals, k−weakly primary ideals in G−semirings, study their properties and relations between

them.

2 Preliminaries

In this section, we recall some basic notions of semirings and G−semirings.

De�nition 2.1. [1] A set S together with two associative binary operations called addition and

multiplication (denoted by + and · respectively) will be called a semiring provided

(i) addition is a commutative operation.

(ii) multiplication distributes over addition both from the left and from the right.

(iii) there exists 0 ∈ S such that x+ 0 = x and x · 0 = 0 · x = 0 for all x ∈ S.

De�nition 2.2. [10] Let (M,+) and (G,+) be commutative semigroups. If there exists a map-

pingM ×G×M → M (images to be denoted by xαy, x, y ∈ M,α ∈ G) satisfying the following
axioms for all x, y, z ∈ M and α, β ∈ G,

(i) xα(y + z) = xαy + xαz,

(ii) (x+ y)αz = xαz + yαz,

(iii) x(α+ β)y = xαy + xβy

(iv) xα(yβz) = (xαy)βz,

then M is called a G−semiring.

De�nition 2.3. [10] A G−semiring M is said to have zero element if there exists an element

0 ∈ M such that 0+ x = x = x+ 0 and 0αx = xα0 = 0, for all x ∈ M and α ∈ G.

Example 2.4. Every semiring M is a G−semiring with G = M and ternary operation is de�ned

as the usual semiring multiplication

Example 2.5. LetM be the additive semigroup of allm×nmatrices over the set of non negative

rational numbers and G be the additive semigroup of all n × m matrices over the set of non

negative integers.De�ne the ternary operation M × G ×M → M by (a, α, b) → aαb, using the

usual matrix multiplication M is a G−semiring.

De�nition 2.6. [10] A function f : R → M where R and M are G−semirings is said to be

G−semiring homomorphism if f(a + b) = f(a) + f(b) and f(aαb) = f(a)αf(b) for all a, b ∈
R and α ∈ G.

De�nition 2.7. [11] Let M be a semiring. An element 1 ∈ M is said to be unity if for each

x ∈ M there exists α ∈ G such that xα1 = 1αx = x.

Example 2.8. Let M be the set of all rational numbers and G=M is a semigroup with the usual

addition. De�ne the ternary operation M × G × M → M by (a, α, b) → aαb, using the usual

multiplication. Now M is a G−semiring with unity .

De�nition 2.9. [10] Let M be a G−semiring and A be a non-empty subset of M. A is called a

G−subsemiring of M if A is a sub-semigroup of (M,+) and AGA ⊆ A.

De�nition 2.10. [10] LetM be a G−semiring. A subset A ofM is called a left(right) ideal ofM
if A is closed under addition and MGA ⊆ A(AGM ⊆ A). A is called an ideal of M if it is both

a left ideal and a right ideal.

De�nition 2.11. [10] An ideal I of semiringM is called a k−ideal if b ∈ M,a+ b ∈ I and a ∈ I
then b ∈ I.
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De�nition 2.12. [5] An ideal P of semiring M is called a prime ideal of M if for any a, b ∈ M
and ab ∈ P then a ∈ P or b ∈ P.

De�nition 2.13. [5] An ideal P of semiringM is said to be k−prime ideal ofM if P is a k−ideal,
for any x, y ∈ M and xy ∈ P then x ∈ P or y ∈ P.

De�nition 2.14. [5] An ideal P of semiring M is said to be weakly prime ideal of M if 0 ̸=
xαy ∈ P, x, y ∈ M then x ∈ P or y ∈ P.

Every prime ideal of semiringM is a weakly prime ideal.

De�nition 2.15. [5] A k−ideal P of semiring M is called a k−weakly prime ideal if P is a

weakly prime ideal of semiring.

De�nition 2.16. [4] An ideal P of G−semiring M is said to be primary ideal of M if xy ∈
P, x, y ∈ M then x ∈ P or yn ∈ P, n is a positive integer.

De�nition 2.17. [4] An ideal P of semiring M is said to be weakly primary ideal of M if 0 ̸=
xy ∈ P, x, y ∈ M then x ∈ P or yn ∈ P, n is a positive integer. .

De�nition 2.18. [4] A k−ideal P of semiring M is called a k−weakly primary ideal if P is a

weakly primary ideal.

3 k−weakly prime ideals

In this section, we introduce the notion of k−prime ideal, k−weakly prime ideal of G−semirings.

Throughout this paperM is a G−semiring with unity element and zero element.

De�nition 3.1. An ideal P of G−semiring M is said to be k−prime ideal if P is a k−ideal,
xαy ∈ P, α ∈ G and x, y ∈ M then x ∈ P or y ∈ P.

De�nition 3.2. An ideal P of G−semiringM is said to be weakly prime ideal ofM if 0 ̸= xαy ∈
P, α ∈ G, x, y ∈ M then x ∈ P or y ∈ P.

Every k−prime ideal of G−semiring M is a k−weakly prime ideal.

De�nition 3.3. A k−ideal I of G−semiringM is called a k−weakly prime ideal if I is a weakly
prime ideal.

De�nition 3.4. Let I be an ideal of G−semiring M. Then radical of I is de�ned as the set of all

elements x ∈ M such that (xα)nx ∈ I for some n ∈ Z+, for all α ∈ G and it is denoted by

rad(I).

De�nition 3.5. An element x of G−semiring M is said to be nilpotent if there exists a positive

integer n such that (xα)n−1x = 0, for some α ∈ G.

We state the following lemmas, proofs of which are easy and straightforward and so we omit

the proofs.

Lemma 3.6. Let I, J be k−ideals of G−semiring M . Then (I : J) = {r ∈ M | rαj ∈
I, for all α ∈ G, j ∈ J} is a k−ideal.

Lemma 3.7. Let I be a k−ideal of G−semiring M and {0} ̸= A ⊆ M. Then I ⊆ (I : A) ⊆ (I :

AGA).

Lemma 3.8. Let I be a k−ideal of G−semiring M and x ∈ M. Then (I : x) = {r ∈ M | rαx ∈
I, for all α ∈ G} is a k−ideal.

Lemma 3.9. Let M be a G−semiring and x ∈ M. Then (0 : x) = {r ∈ M | rαx = 0, for all

α ∈ G} is a k−ideal.

Lemma 3.10. Let A be a non empty subset of G−semiring M. Then
(i).(I : A) =

∩
a∈A

(I : a) (ii). If A ⊆ I then (I : A) = M.



282 M. Murali Krishna Rao and B. Venkateswarlu

Lemma 3.11. If an ideal of G−semiring M is the union of two k−ideals then it is equal to one

of them.

Theorem 3.12. Let I be a k−ideal of G−semiring M with unity. Then the following statements

are equivalent.

(i) I is a k−weakly prime ideal

(ii) IfA,B are right ideal and left ideal of G−semiringM respectively such that {0} ≠ AGB ⊆
I then A ⊆ I or B ⊆ I.

(iii) If a, b ∈ M such that {0} ̸= aGMGb ⊆ I then a ∈ I or b ∈ I.

Proof. Let I be a k−ideal of G−semiring M with unity.

(i) ⇒ (ii) : Suppose I is a k−weakly prime ideal of G−semiring M , A and B are right ideal and left

ideal of G−semiring M respectively such that {0} ≠ AGB ⊆ I.
Let (A), (B) be ideals generated by A,B respectively.

Then {0} ̸= (A)G(B) ⊆ I ⇒ A ⊆ (A) ⊆ I or B ⊆ (B) ⊆ I.

(ii) ⇒ (iii) : Let {0} ≠ aGMGb ⊆ I, a, b ∈ M.
Then {0} ̸= aGMGMGb ⊆ I
⇒ aGM ⊆ I or MGb ⊆ I, (by (ii))
⇒ a ∈ aGM ⊆ I or b ∈ MGb ⊆ I, since M has an unity .

(iii) ⇒ (i) : Suppose AGB ⊆ I, for ideals A and B of G−semiring M,A * I and B * I. Let a ∈
A \ I, b ∈ B \ I and a′ ∈ A ∩ I, b′ ∈ B ∩ I.
Then a+ a′ /∈ I, b+ b′ /∈ I.
Therefore we have (a+ a′)GMG(b+ b′) ={0} which is a contradiction.

Hence I is a k−weakly prime ideal.

Theorem 3.13. Let A be a k−ideal of G−semiring M. If any ideals I, J of G−semiring M with

{0} ≠ IGJ ⊆ A and I ⊆ A or J ⊆ A then A is a k−weakly prime ideal of G−semiring M.

Proof. Let A be a k−ideal of G−semiring M and ideals I, J of G−semiring M with {0} ̸=
IGJ ⊆ A and I ⊆ A or J ⊆ A. Suppose 0 ̸= xαy ∈ A.

⇒(xαy)GM ⊆ A and MG(xαy) ⊆ A

⇒(xαyGM)G(MGxαy) ⊆ A

⇒xGMGMGy ⊆ A.

Since xGM and MGy are right ideal and left ideal respectively,by Theorem 3.12, xGM ⊆ A or

MGy ⊆ A. Since M is a G−semiring with unity, there exist α, β ∈ G such that xα1 = x and

1βy = y. Therefore x ∈ A or y ∈ A. Hence A is a k−weakly prime ideal of G−semiringM.

Theorem 3.14. Let I be a k−weakly prime ideal but not a k−prime ideal of G−semiring M. If
aαb = 0, for some a, b ∈ M \ I, α ∈ G then aαI = Iαa = {0}.

Proof. Let I be a k−weakly prime ideal but not a k−prime ideal of G−semiringM and aαb = 0,
for some a, b ∈ M \ I, α ∈ G.
Suppose aαi1 ̸= 0, for some i1 ∈ I1, α ∈ G. Then 0 ̸= aα(b+ i1) ∈ I.
Since I is a k−weakly prime ideal, we have a ∈ I or b+ i1 ∈ I
⇒ a ∈ I or b ∈ I, which is a contradiction.
Hence aαI = {0}. Similarly we can prove Iαa = {0}.

Theorem 3.15. Let I be a k−ideal of G−semiring M.If I is a k−weakly prime ideal but not a

prime ideal then IGI = {0}.

Proof. Let I be a k−ideal of G−semiring M.Suppose I is a weakly prime ideal but not a prime

ideal and IGI ̸= {0}. Then there exist i1, i2 ∈ I, α ∈ G such that i1αi2 ̸= 0 and aαb = 0 for

some a, b /∈ I. By Theorem 3.14, we have 0 ̸= (a+ i1)α(b+ i2) = i1αi2 ∈ I
⇒ a+ i1 ∈ I or b+ i2 ∈ I
⇒ a ∈ I or b ∈ I, which is a contradiction.
Hence IGI = {0}.
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The following example shows that an ideal I in a G−semiring Msatisfying IGI = {0}. need
not be a weakly prime ideal

Example 3.16. Let M =

{(
a 0

0 0

)∣∣∣a ∈ Z+
12

}
and G = M. Then M is a commutative

G−semiring and I =

{(
0 0

0 0

)(
6 0

0 0

)}
is the ideal such that IGI = {0}.

We have

(
2 0

0 0

)(
1 0

0 0

)(
3 0

0 0

)
∈ I. But

(
2 0

0 0

)
,

(
3 0

0 0

)
/∈ I.

Hence I is not a weakly prime ideal of G−semiring M.

De�nition 3.17. An element x in a G−semiringM is said to be nilpotent if there exist a positive

integer n, α ∈ G such that (xα)nx = 0.

Theorem 3.18. Let A be a k−weakly prime ideal of G−semiring M and A be not a prime. Then

rad(A) = rad(0).

Proof. Let A be a k−weakly prime ideal of G−semiring M and A not be a prime.

Clearly rad(0) ⊆ rad(A). By Theorem 3.15, we have AGA = 0.
⇒ A ⊆ rad(0).
⇒ rad(A) ⊆ rad(0).
Hence rad(0) = rad(A).

Nil M denotes the set of all nilpotent elements of M.

Corollary 3.19. Let I be a k−weakly prime ideal of G−semiring M. If I is not a prime ideal of

M then I ⊆ Nil M.

Theorem 3.20. Every k−ideal of G−semiring M is a k−weakly prime ideal if and only if for

any ideals A,B of G−semiring M, we have AGB = A orAGB = B or AGB = {0}.

Proof. Suppose every k−ideal of G−semiring M is a k−weakly prime ideal.

Let A,B be ideals of G−semiring M and AGB ̸= {0}. Then AGB is a k−weakly prime ideal.

{0} ≠ AGB ⊆ AGB
⇒ A = AGB or B = AGB.

Converse is obvious.

Corollary 3.21. Every k−ideal of G−semiring M is a k−weakly prime ideal. Then any ideal A
of G−semiring M is AGA = A or AGA = {0}.

Theorem 3.22. Let I be a k−weakly prime ideal and not a prime ideal of commutative G−semiring

M. If x ∈ NilM then either x ∈ I or xGI = {0}.

Proof. Let I be a k−weakly prime ideal and not a prime ideal of commutative G−semiring M,
x ∈ NilM and xGI ̸= {0}. Then there exist a least positive integer n and α ∈ G such that

(xα)nx = 0.
0 ̸= xα(i+ (xα)n−1x) = xαi ∈ I, for some i ∈ I.
Suppose x /∈ I then i+ (xα)n−1x ∈ I ⇒ 0 ̸= (xα)n−1x ∈ I ⇒ x ∈ I.
Therefore for each x ∈ NilM, xGI ̸= {0} then x ∈ I.
Suppose z /∈ I, for some z ∈ NilM. Then there exists the least positive integer n such that

(zα)nz = 0.
Suppose iαz ̸= 0, for some α ∈ G and i ∈ I.
⇒ ((zα)n−2z + i)αz = iαz ̸= 0

⇒ (zα)n−2z + i ∈ I or z ∈ I.
In both cases, we have a contradiction. Hence IGz = {0}.

De�nition 3.23. An ideal I of G−semiring M is said to be semiprime if I = rad(I).

Theorem 3.24. A semiprime ideal I of commutative G−semiring M if and only if the quotient

G−semiring M/I has no nonzero nilpotent elements.
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Proof. Suppose I is a semiprime ideal of commutative G−semiring M. Let a + rad(I) be a

nilpotent element of M/rad(I). Then

(a+ rad(I)α)n−1(a+ rad(I)) = rad(I), for some positive integer n, α ∈ G

⇒(aα)na+ rad(I) = rad(I)

⇒(aα)na ∈ rad(I)

⇒(aα)mna ∈ I, for some positive integerm

⇒a ∈ rad(I)

⇒a+ rad(I) = rad(I).

Hence M/rad(I) has no nonzero nilpotent elements.

Conversely suppose that M/I has no nonzero nilpotent elements and a ∈ rad(I). Then

(aα)na ∈ I, for some positive integer n, α ∈ G

⇒(aα)na+ I = I

⇒((a+ I)α)n(a+ I) = I

⇒a+ I is a nilpotent of M/I

⇒a+ I = I

⇒a ∈ I.

Therefore rad(I) ⊆ I. We have I ⊆ rad(I). Hence I = rad(I). Thus I is a semiprime ideal of

G−semiring M.

Theorem 3.25. Let I be a proper k−ideal of G−semiring M . Then I is a k−weakly prime ideal

of M if and only if (I : x) = I ∪ (0 : x), for x ∈ M \ I.

Proof. Let I be a proper k−weakly prime ideal of G−semiringM . Clearly I ∪ (0 : x) ⊆ (I : x).
Let y ∈ (I : x). Then yαx ∈ I, for all α ∈ G.
Suppose yαx ̸= 0, for all α ∈ G, x /∈ I. Then y ∈ I, since I is weakly prime ideal.

Suppose yαx = 0, for all α ∈ G. Then y ∈ (0 : x). Therefore (I : x) ⊆ I ∪ (0 : x).
Hence for x ∈ M \ I, (I : x) = I ∪ (0 : x).

Conversely suppose that 0 ̸= xαy ∈ I, α ∈ G and x ∈ M \ I. Then y ∈ (I : x) and hence

y ∈ I. Therefore I is a k−weakly prime ideal of M.

The following corollary follows from Lemmas 3.8 , 3.9, 3.11 and Theorem 3.25

Corollary 3.26. If I is a k−weakly prime ideal of G−semiringM . Then (I : x) = I or (I : x) =
(0 : x), for x ∈ M \ I.

Theorem 3.27. Let A be a k−weakly prime ideal of G−semiring M and A be not a prime. Then

AG rad(0) = {0}.

Proof. Let A be a k−weakly prime ideal of G−semiring M, A be not a prime and aαb ∈
AG rad(0), where a ∈ A,α ∈ G and b ∈ rad(0). If b ∈ A then aαb ∈ AGA = {0}. Hence
aαb = 0.
Suppose b /∈ A then by Corollary 3.26, we have (A : b) = (0 : b) or (A : b) = A.
Suppose (A : b) = (0 : b). ⇒ aαb ∈ A ⊆ (A : b) = (0 : b)
⇒ aαb = 0, for all α ∈ G.
So suppose (A : b) = A. Since b ∈ rad(0), there exists n ∈ Z+ such that (bα)nb = 0, for all
α ∈ G

And suppose (bα)n−1b ̸= 0. Then 0 ̸= (bα)n−1b ∈ (A : b) = A.
Since A is a weakly prime, b ∈ A, which is a contradiction.
Hence AG rad(0) = {0}.

Theorem 3.28. Let M be a G−semiring and A,B be k−weakly prime ideals but are not prime.

Then AGB = {0}.
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Proof. Let M be a G−semiring, A,B be k−weakly prime ideals but are not prime and aαb ∈
AGB, where a ∈ A,α ∈ G, b ∈ B.
Since BGB = {0}, we have B ⊆ rad(0). Then aαb ∈ AGB ⊆ AGrad(0) = {0}.
Therefore aαb = 0. Hence AGB = {0}.

The following theorems proofs are easy so we omit the proofs

Theorem 3.29. If f : M → N is a G−semiring homomorphism of G−semirings M and N and

P is a k−ideal of G−semiring M then f(P ) is a k−ideal of G−semiring N.

Theorem 3.30. If f : M → N is a G−semiring homomorphism of G−semirings M and N and

P is a k−ideal of G−semiring N then f−1(P ) is a k−ideal of G−semiring M.

Theorem 3.31. If f : M → N is a G−semiring homomorphism of G−semirings M and N
and P is a k−weakly prime ideal of G−semiring N then f−1(P ) is a k−weakly prime ideal of

G−semiring M.

Proof. Suppose f : M → N is a G−semiring homomorphism of G−semirings M and N and P
is a k−weakly prime ideal of G−semiring N. By Theorem 3.30, f−1(P ) is a k−ideal.

Let 0 ̸= xαy ∈ f−1(P ), x, y ∈ M,α ∈ G. Then

0 ̸= f(xαy) ∈ P

⇒0 ̸= f(x)αf(y) ∈ P

⇒f(x) or f(y) ∈ P, since P is a k−weakly prime ideal

⇒x ∈ f−1(P ) or y ∈ f−1(P ).

Hence f−1(P ) is a k−weakly prime ideal of G−semiring M.

Theorem 3.32. Let A be a k−weakly prime ideal of G−semiring and A be not a prime. If I and

J are ideals of M with {0} ≠ IGJ ⊆ A then either I ⊆ A or J ⊆ A.

Proof. Let A be a k−weakly prime ideal of G−semiring and I, J be ideals of M with {0} ̸=
IGJ ⊆ A such that I * A and J * A.
Suppose A is not a prime then AGA = {0}. Let aαb ∈ IGJ, a ∈ I, b ∈ J, α ∈ G.
First suppose that a ∈ I \A and aαJ ⊆ A, for all α ∈ G.
So that J ⊆ (A : a) ⊆ A, since A is a k−weakly prime ideal.

Since J * A, aαJ = { 0 } , for all α ∈ G.
Therefore aαb = 0, for all α ∈ G.
If a ∈ A ∩ I, b ∈ A then aαb ∈ AGA = {0}.
Similarly if b ∈ J \A, we can prove aαb = 0.
Therefore IGJ = {0}, which is a contradiction.
Hence either I ⊆ A or J ⊆ A.

Theorem 3.33. Let M be a G−semiring and {Ai}i∈I be a family of k−weakly prime ideals that

are not prime. Then A = ∩{Ai}i∈I is a k−weakly prime ideal of M.

Proof. LetM be a G−semiring , {Ai}i∈I be a family of k−weakly prime ideals that are not prime

and A = ∩{Ai}i∈I . By Theorem 3.18, we have rad(Ai) = rad(0) ̸= M and Ai ⊆ rad(0) ̸= M.
Hence A is a proper ideal of M.
Suppose that a, b ∈ M such that 0 ̸= aαb ∈ A but b /∈ A.
Then there exists s ∈ I such that b /∈ As and 0 ̸= aαb ∈ As ⊆ rad(As) = rad(0) = rad(Ai),
for all i ∈ I, α ∈ G.
Then there exists n such that 0 ̸= (aα)na ∈ Ai, for all i ∈ I, α ∈ G and therefore a ∈ Ai, for all
i ∈ I, since Ai is a k−weakly prime ideal.

Hence a ∈ A. Thus A is a k−weakly prime ideal of M.
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4 k−weakly primary ideals

In this section, we introduce the notion of primary ideal and k−weakly primary ideal of G−semiring.

De�nition 4.1. An ideal P of G−semiring M is said to be primary ideal of M if xαy ∈ P, α ∈
G, x, y ∈ M then x ∈ P or (yβ)ny ∈ P, for all β ∈ G for positive integer n.

De�nition 4.2. An ideal P of G−semiring M is said to be weakly primary ideal of M if 0 ̸=
xαy ∈ P, α ∈ G, x, y ∈ M then x ∈ P or (yβ)ny ∈ P, for all β ∈ G, n is a positive integer.

De�nition 4.3. A k−ideal I of G−semiring M is called a k−weakly primary ideal if I is a

weakly primary ideal.

Theorem 4.4. Let I be a proper k−ideal of G−semiringM . Then I is a k−weakly primary ideal

of M if and only if (I : x) = I ∪ (0 : x), for x ∈ M \ rad(I).

Proof. Let I be a proper k−weakly ideal of G−semiring M and x ∈ M \ rad(I).
Clearly I ∪ (0 : x) ⊆ (I : x). Suppose y ∈ (I : x).
Then xαy ∈ I, for all α ∈ G.
If xαy ̸= 0, for all α ∈ G, then y ∈ I, since I is a k−weakly primary ideal of M.
If xαy = 0, for all α ∈ G then y ∈ (0 : x).
Therefore (I : x) ⊆ I ∪ (0 : x).
Hence for x ∈ M \rad(I), (I : x) = I∪(0 : x). Conversely Suppose that 0 ̸= xαy ∈ rad(I), α ∈
G and x ∈ M \ rad(I). Then y ∈ (I : x) and hence y ∈ I. Therefore I is a k−weakly primary

ideal of M.

The following corollary follows from Lemmas 3.8 , 3.9, 3.11 and Theorem 4.4

Corollary 4.5. If I is a k−weakly primary ideal of G−semiring M . Then (I : x) = I or

(I : x) = (0 : x), for x ∈ M \ rad(I).

Lemma 4.6. Let I be a k−primary ideal of G−semiring M. If a ∈ I and a + b ∈ rad(I) then
b ∈ rad(I).

Proof. Let I be a k−primary ideal of G−semiring M,a ∈ I and a+ b ∈ rad(I).
Then there exists a positive integer n such that {(a+ b)α}n(a+ b) = c+ (bα)nb ∈ I,
where c ∈ I, for all α ∈ G and hence (bα)nb ∈ I, for all α ∈ G.
Hence b ∈ rad(I).

Theorem 4.7. Let I be a k−weakly primary ideal of G−semiring M. If I is not a primary then

IGI = {0}

Proof. Let I be a k−weakly primary ideal of G−semiring M and I be not a primary.

Suppose IGI ̸= {0}. Then there exist x, y ∈ I and α ∈ G such that xαy ∈ I.
If xαy = 0, xαI ⊆ I then there exists d ∈ I such that xαd ̸= 0

and hence xαd = xαd+ xαy = xα(d+ y).
Therefore x ∈ I or ((d+ y)γ)n(d+ y) ∈ I, for all γ ∈ G.
Suppose x /∈ I. Then d+ y ∈ rad(I) and hence y ∈ rad(I), by Lemma 4.6.

Suppose xαI = {0}, yαI = 0 and IαI ̸= {0}.
Then there exist e, f ∈ I such that eαf ̸= 0, α ∈ G, 0 ̸= eαf = (x+ e)α(y + f) ∈ I
⇒ x+ e ∈ I or ((y + f)γ)n(y + f) ∈ I.
⇒ x ∈ I or y + f ∈ rad(I).
⇒ x ∈ I or y ∈ rad(I).
⇒ I is a primary, which is a contradiction.

Hence IGI = {0}.

Theorem 4.8. Let A be a k−weakly primary ideal of G−semiring M and A be not a primary.

Then rad(A) = rad(0).

Proof. Let A be a k−weakly primary ideal of G−semiring M and A not be a primary.

rad(0) ⊆ rad(A). By Theorem 4.7, we have AGA = {0}.
⇒ A ⊆ rad(0).
⇒ rad(A) ⊆ rad(0).
Hence rad(0) = rad(A).
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The following theorem can be veri�ed easily.

Theorem 4.9. Let M and S be G1 and G2semirings respectively. If we de�ne

(i).(x, y) + (z, w) = (x+ z, y + w)
(ii).(x, y)(α, β)(z, w) = (xαz, yβw), for all (x, y), (z, w) ∈ M × S and (α, β) ∈ G1 × G2. Then
M × S is G1 × G2−semiring.

De�nition 4.10. LetM×S be a G1×G2−semiring. An element (1, 1) ∈ M×S is said to be unity

of M × S if for each (a, b) ∈ M × S there exists (α, β) ∈ G1 × G2 such that (a, b)(α, β)(1, 1) =
(a, b).

Proof of the following theorem which is similar to corresponding result in ring theory,so we

omit the proof

Theorem 4.11. Let M = M1 ×M2 where each Mi, i = 1, 2 be a commutative G−semiring with

unity element. Then

(i). If I1 is an ideal of M1 then Rad(I1 ×M2) = RadI1 ×M2.
(ii). If I2 is an ideal of M2 then Rad(M1 × I2) = M1 ×RadI2.

Theorem 4.12. Let M = M1 ×M2 and G = G1 × G2, where Mi is a commutative Gi−semiring

with unity, (i = 1, 2). If P1 is a primary ideal of G1semiring M1 then P1 ×M2 is a primary ideal

of G1 × G2−semiring of M.

Proof. Let M = M1 × M2 and G = G1 × G2, where Mi is a commutative Gi−semiring with

unity, (i = 1, 2) and P1 is a primary ideal of G1−semiring M1.

Let (a, b)(α, β)(c, d) = (aαc, bβd) ∈ P1 ×M2, where (a, b), (c, d) ∈ M1 ×M2

and(α, β) ∈ G1 × G2.

⇒aαc ∈ P1

⇒a ∈ P1 or c ∈ RadP1, since P1 is a primary

⇒(a, b) ∈ P1 ×M2 or (c, d) ∈ RadP1 ×M2 = Rad(P1 ×M2), by Theorem 4.11.

Thus P1 ×M2 is a primary ideal of M .

Corollary 4.13. Let M1 × M2 where Mi is a commutative Gisemiring with unity, (i = 1, 2). If
P2 is a primary ideal of G2semiring M2 then M1 × P2 is a primary ideal of G1 × G2−semiring

M1 ×M2.

Theorem 4.14. Let M = M1 ×M2 and G = G1 × G2.
where Mi is a commutative Gi−semiring with unity, (i = 1, 2.). If P is a weakly primary ideal

of G−semiring M then either P = {(0, 0)} or P is a primary.

Proof. Let P = P1×P2 be a weakly primary ideal ofM. Suppose that P ̸= {(0, 0)}. Then there
exists an element (a, b) ∈ P with (a, b) ̸= (0, 0).

⇒(0, 0) ̸= (a, 1)(α, β)(1, b) ∈ P, (α, β) ∈ G1 × G2.

⇒(a, 1) or (1, b) ∈ RadP.

If (a, 1) ∈ P then P = P1 ×M2. Let cαd ∈ P1 when c, d ∈ M1, α ∈ G1

(0, 0) ̸= (c, 1)(α, β)(d, 1)

(cαd, 1β1) ∈ P

⇒ (c, 1) ∈ P or (d, 1) ∈ RadP = Rad(P1 ×M2) = RadP1 ×M2.

⇒ c ∈ P1 or d ∈ RadP1.

Therefore P1 is a primary. Hence by Theorem 4.12, P is a primary.

Now (1, b) ∈ RadP = Rad(P1 × P2) = P1 ×RadP2.
⇒ (1, (bβ)n−1b) ∈ P, β ∈ G. So P = M1 × P2.
Therefore P2 is a primary.Hence by Corollary 4.13, P is a primary.
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Theorem 4.15. Let M be a G−semiring and {Ai}i∈I be a family of a k−weakly primary ideals

that are not primary. Then A = ∩{Ai}i∈I is a k−weakly primary ideal of M.

Proof. Let M be a G−semiring,{Ai}i∈I be a family of k−weakly primary ideals that are not

prime and A = ∩{Ai}i∈I .
By Theorem 4.8, we have rad(Ai) = rad(0) ̸= M for each i, so A is a proper ideal of M.
Suppose that a, b ∈ M such that 0 ̸= aαb ∈ A and b /∈ A.
⇒ there exists s ∈ I, such that b /∈ As and 0 ̸= aαb ∈ As

⇒ a ∈ rad(As) = rad(0) = rad(Ai), for all i ∈ I
⇒ there exists n such that 0 ̸= (aα)na ∈ Ai, for all i ∈ I
⇒ (aα)na ∈ A.
Thus A is a k−weakly primary ideal of M.
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