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Abstract. In this paper, we discuss the semi-continuity (upper semi-continuity, lower semi-

continuity, upper (K)-semi-continuity and lower (K)-semi-continuity) properties of the maps

associated with best coapproximation. The underlying spaces are metric spaces and metric linear

spaces. The results proved in the paper generalize and extend several known results on the

subject.

1 Introduction and Preliminaries

A kind of approximation, called best coapproximation was introduced in normed linear spaces

by C. Franchetti and M. Furi [1] to obtain some characterizations of real Hilbert spaces among

real Banach spaces. This study was subsequently taken up by many researchers in normed linear

spaces and Hilbert spaces (see e.g. [3],[4],[6],[11]-[13], and references cited therein). But only

a few have taken up this study in more general abstract spaces (see e.g. [7]-[10]). The theory of

best coapproximation is very less developed as compared to the theory of best approximation.

The present paper is also a step in this direction. In this paper, we discuss the semi-continuity

(upper semi-continuity, lower semi-continuity, upper (K)-semi-continuity and lower (K)-semi-

continuity) properties of the maps associated with best coapproximation. The underlying spaces

are metric spaces and metric linear spaces. The results proved in the paper generalize and extend

various known results including those proved in [3] and [13]. Some of the proved results are

similar to those for best approximation maps proved in [2],[5] and [14] for normed linear spaces.

We start with a few de�nitions.

Let G be a non-empty subset of a metric space (X, d). An element g0 ∈ G is called a best

coapproximation (best approximation) to x ∈ X if

d(g0, g) ≤ d(x, g) (d(x, g0) ≤ d(x, g))

for all g ∈ G. The set of all such g0 ∈ G is denoted by RG(x)(PG(x)). The set G is called

co-proximinal (proximinal) if RG(x) (PG(x)) contains at least one element for every x ∈
X . If for each x ∈ X, RG(x)(PG(x)) has exactly one element, then the set G is called co-

Chebyshev (Chebyshev).

We shall denote the set {x ∈ X : RG(x) ̸= ϕ}({x ∈ X : PG(x) ̸= ϕ}) by D(RG)(D(PG))
and the set {x ∈ X : g0 ∈ RG(x)}({x ∈ X : g0 ∈ PG(x)}) by R−1

G (g0)(P
−1

G (g0)). For a subset
A of X, the set RG(A)(PG(A)) is de�ned as RG(A) =

∪
x∈A RG(x)(PG(A) =

∪
x∈A PG(x)).

The set-valued mapping RG(PG) : X → 2G ≡ the collection of all subsets of G de�ned by

RG(x) = {g0 ∈ G : d(g0, g) ≤ d(x, g) for every g ∈ G} (PG(x) = {g0 ∈ G : d(x, g0) ≤
d(x, g) for every g ∈ G}) is called metric co-projection (metric projection).

Remarks:

(i) A proximinal subset of a metric space need not be co-proximinal: In the Euclidian plane

X = R2, the set G = {(x, y) ∈ R2 : x2 + y2 = 1}, being compact subset of R2 is

proximinal. However, G is not co-proximinal as (0, 0) ∈ R2 does not have any best coap-

proximation in G.
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(ii) A co-proximinal subset of a metric space need not be proximinal: Let X = R − {1} and

M = (1, 2], then M is a co-proximinal subset of X but is not proximinal.

(iii) A Chebyshev subset of a metric space need not be co-Chebyshev: Let X = R and G =
[1, 2], then G is Chebyshev but not co-Chebyshev.

(iv) A co-Chebyshev subset of a metric space need not be Chebyshev: Let X = R2 with the

metric d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2| and G = {(x, y) ∈ R2 : x = y}. Then G
is a proximinal subset of (X, d). We have PG(x, y) = {α(x, x)+(1−α)(y, y) : 0 ≤ α ≤ 1}
i.e. G is not Chebyshev, but RG(x, y) = {(x+y

2
, x+y

2
)} i.e. G is co-Chebyshev.

(v) The set RG(x) (PG(x)) is closed if G is closed.

(vi) Every co-proximinal (proximinal) set is closed.

(vii) The set R−1

G (g0)(P
−1

G (g0)) is a closed set for every g0 ∈ G.

(viii) If G is subspace of a metric linear space (X, d), then g0 ∈ RG(x) (g0 ∈ PG(x)) if and only

if x−g0 ∈ R−1

G (0) (x− g0 ∈ P−1

G (0)) andRG(x+g) = RG(x)+g, PG(x+g) = PG(x)+g
for every g ∈ G.

For metric spaces X and Y , a mapping u : X → 2Y is called

(i) upper (K)-semi-continuous (u.(K)-s.c.) if xn → x, yn ∈ u(xn), yn → y imply y ∈ u(x).
(ii) lower (K)-semi-continuous (l.(K)-s.c.) if xn → x, y ∈ u(x) imply the existence of a

sequence {yn} such that yn ∈ u(xn) and yn → y.
(iii) upper semi-continuous (lower semi-continuous) if the set

H = {x ∈ X : u(x)
∩

N ̸= ϕ}

is closed(open) for every closed(open) subset N ⊆ Y .

2 Main Results

It is known (see [7]) that for a closed subset G of a metric space (X, d), the map RG is u.(K)-s.c.

on D(RG). Using this result, we prove our �rst theorem.

Theorem 2.1. Let G be a closed subset of a metric space (X, d) then
(i) For each compact subset A ⊆ D(RG), the subset RG(A) is closed.
(ii) The relations {xn} → x, y ∈ RG(xn) (n = 1, 2, 3, ...) imply y ∈ RG(x).

Proof. (i) Let A be a compact subset of D(RG) and g0 a limit point of RG(A). Then there

exist a sequence {gn} ⊆ RG(A) such that gn → g0. Now, gn ∈ RG(A) implies that there exist

xn ∈ A such that gn ∈ RG(xn) (n = 1, 2, 3, ...). Since A is compact, {xn} has a subsequence

{xnk
} → x. Now, {xnk

} → x, gnk
∈ RG(xnk

) and {gnk
} → g0, so using upper (K)-semi-

continuity of RG, we have g0 ∈ RG(x) ⊆ RG(A) and therefore RG(A) is closed.
(ii) follows from the de�nition of upper (K)-semi-continuity.

A non-empty subset G of a metric space (X, d) is said to be boundedly compact if every

bounded sequence in G has a convergent subsequence in X .

The following result shows that the map RG is u.s.c. if the set R−1

G (0) is boundedly compact.

Theorem 2.2. Let G be a closed linear subspace of a metric linear space (X, d) and R−1

G (0) is
boundedly compact then

(i)RG(x) is compact for each x ∈ D(RG).
(ii)RG is u.s.c. on D(RG).
(iii) RG(A) is compact for each compact subset A of D(RG).

Proof. (i) and (ii) have been proved in [8].

(iii) Let {gn} be a sequence in RG(A) then gn ∈ RG(xn) (n = 1, 2, 3, ...) for some xn ∈ A.
Since A is compact, {xn} has a subsequence {xni} such that {xni} → x ∈ A. As gni ∈
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RG(xni), xni −gni ∈ R−1

G (0). Consider d(xni −gni , 0) = d(xni , gni) ≤ d(xni , 0)+d(0, gni) ≤
2d(xni , 0). This implies that {xni −gni} is a bounded sequence inR−1

G (0) as the sequence {xni}
is bounded.

Since R−1

G (0) is boundedly compact and closed, {xni − gni} has a subsequence {xnim
−

gnim
} → y ∈ R−1

G (0). Also {xnim
} → x ∈ A. Therefore, we have {gnim

} → x − y. Since

d(gnim
, g) ≤ d(xnim

, g) for every g ∈ G we get, x − y ∈ RG(x) ⊆ RG(A). Hence RG(A) is
compact.

Replacing the bounded compactness of R−1

G (0) by bounded compactness of G, the above

result was proved in [7] for metric spaces.

Remarks:

(i) If we take G to be a subset instead of a subspace, then bounded compactness of R−1

G (0)
need not imply compactness of RG(x).
Example: LetX = Rwith the usual metric andG = (−1, 1], thenR−1

G (0) = (−∞,−2]
∪
[2,∞)

is a boundedly compact set but RG(−2) = (−1, 0] is not compact.

(ii) The converse parts of (i) and (ii) of Theorem 2.2 are not true i.e. for a subspace G of a

metric linear space (X, d), if
(a)RG(x) is compact for each x ∈ D(RG) then R−1

G (0) need not be boundedly compact.

(b)RG is u.s.c. on D(RG) then R−1

G (0) need not be boundedly compact.

Example: Let X = l1 and G = {(g, 0, 0, 0, .....) : g ∈ R} ⊆ X , then G is boundedly com-

pact and so RG is u.s.c. and RG(x) is compact for each x ∈ D(RG). But R
−1

G (0) = {x ∈
l1 : ||0− g|| ≤ ||x− g|| for all g ∈ G} = {x ∈ l1 : |g1| ≤ |x1− g1|+ |x2|+ |x3|+ ...} is not
boundedly compact as the sequence {(0, 1, 0, 0, ...), (0, 0, 1, 0, 0, 0, ...),(0, 0, 0, 1, 0, 0, 0...)...}
is a bounded sequence in R−1

G (0) having no convergent subsequence.

(iii) There exist subsets G of a metric space (X, d) such that

(i) RG is u.s.c. on D(RG) but G is not boundedly compact.

(ii) RG(x) is compact for each x ∈ D(RG) but G is not boundedly compact.

Example: Let G = X = l1 then G being an in�nite dimensional space, is not boundedly

compact but R−1

G (0) = {0} is a boundedlly compact set and so RG is u.s.c.

Example: Let X = [1, 2) with the usual metric d and G = [1 + ε, 2), 0 ≤ ε < 0.5. Let
x ∈ X\G be such that d(x, 1 + ε) = δ, then RG(x) = [1 + ε, 1 + ε + δ] i.e. RG(x)
is compact for each x ∈ X but G is not boundedly compact since the bounded sequence

{2− 1

n : n ∈ N} has no subsequence converging in X .

Let G be a closed linear subspace of a metric linear space (X, d). Then the set-valued map-

ping vG of D(RG)/G into 2R
−1

G (0) is de�ned as:

vG(x+G) = {x−RG(x)} = {x− g0 : g0 ∈ RG(x)}.

If x+G = y+G, then x−y ∈ G. This gives, RG(x) = RG(y+(x−y)) = RG(y)+(x−y)
i.e. RG(x) = RG(y) + x − y and so x − RG(x) = y − RG(y). Hence vG is well de�ned. It is

easy to see that vG(x+G) ∈ 2R
−1

G (0).

Since for a closed linear subspace G of a metric linear space (X, d), RG(x) is closed, we
have x−RG(x) is closed i.e. vG(x+G) is closed.

Concerning the upper (K)-semi-continuity of the map vG, we have

Theorem 2.3. Let G be a closed linear subspace of a metric linear space (X, d), then the map-

ping vG is u.(K)-s.c. on D(RG)/G.

Proof. Let xn +G → x+G in D(RG)/G, yn ∈ vG(xn +G) such that yn → y.
Now, xn+G → x+G implies the existence of a sequence {gn} inG such that {xn+gn} → x.

Since yn ∈ vG(xn +G), we have xn − yn ∈ RG(xn), yn → y. Therefore, we have {xn + gn} →
x, xn − yn + gn ∈ RG(xn + gn) and {xn − yn + gn} → x − y. Since RG is upper (K)-semi-

continuous, we have x− y ∈ RG(x) and so y ∈ vG(x+G). Hence vG is u.(K)-s.c.
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Analogous to Theorem 2.1., we have

Theorem 2.4. Let G be a closed linear subspace of a metric linear space (X, d) then
(i) For each compact subset A ⊆ D(RG)/G, the subset vG(A) is closed in R−1

G (0).
(ii) The relation xn + G → x + G in D(RG)/G, y ∈ vG(xn + G) (n = 1, 2, 3, ...) imply

y ∈ vG(x+G).

If G is a closed linear subspace of a metric linear space (X, d), the canonical mapping wG of

X onto X/G is de�ned as wG(x) = x+G, x ∈ X.

For a coproximinal subspace G, we have

Lemma 2.5. Let G be a co-proximinal subspace of a metric linear space (X, d) then

vG(x+G) = w−1

G (x+G)
∩

R−1

G (0)

and so vG = (wG |R−1

G (0))
−1.

Proof. Let z ∈ vG(x + G) = x − RG(x), then z = x − g′ for some g′ ∈ RG(x). Now,

g′ ∈ RG(x) implies that x − g′ ∈ R−1

G (0) i.e. 0 ∈ RG(x − g′) = RG(z) and so z ∈ R−1

G (0).

Hence vG(x+G) ⊆ R−1

G (0). Now wG(z) = wG(x− g′) = x+G implies that z ∈ w−1

G (x+G)

i.e. vG(x+G) ⊆ w−1

G (x+G). Consequently,

vG(x+G) ⊆ w−1

G (x+G)
∩

R−1

G (0). (2.1)

Now suppose z ∈ w−1

G (x+G)
∩
R−1

G (0). Then z = x+ g for some g ∈ G and z ∈ R−1

G (0).

Since z ∈ R−1

G (0), d(0, g′′) ≤ d(z, g′′) for every g′′ ∈ G. Put g′′ = g + g′; g, g′ ∈ G, we get

d(−g, g′) ≤ d(z − g, g′) for every g′ ∈ G. This gives −g ∈ RG(z − g) = RG(x) and therefore

z = x− (−g) ∈ x−RG(x) = vG(x+G) i.e.

w−1

G (x+G)
∩

R−1

G (0) ⊆ vG(x+G). (2.2)

From (2.1) and (2.2), we get vG(x+G) = w−1

G (x+G)
∩

R−1

G (0).

Since by de�nition, for any x+G ∈ X/G, we have

(wG |R−1

G (0))
−1(x+G) = {z ∈ R−1

G (0) : wG(z) = x+G}

= {z ∈ R−1

G (0) : z ∈ w−1

G (x+G)} = w−1

G (x+G)
∩

R−1

G (0) = vG(x+G).

Consequently, we have vG = (wG |R−1

G (0))
−1.

Lemma 2.6. Let G be a co-proximinal subspace of a metric linear space (X, d). Then for any

set A ⊆ X , we have

wG(A) = {x+G ∈ X/G : w−1

G (x+G)
∩

A ̸= ϕ}. (2.3)

Consequently, for any set A ⊆ R−1

G (0), we have

wG |R−1

G (0) (A) = {x+G : vG(x+G)
∩

A ̸= ϕ}.

Proof. Let x + G ∈ wG(A). Then x + G = wG(z) for some z ∈ A which implies that

z ∈ w−1

G (x + G). Now, z ∈ A, z ∈ w−1

G (x + G) imply z ∈ w−1

G (x + G)
∩
A and so

w−1

G (x+G)
∩
A ̸= ϕ.

Conversely, if z ∈ w−1

G (x+G)
∩

A then x+G = wG(z) ∈ wG(A). Thus, we have (2.3).
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Now, if A ⊆ R−1

G (0), then A = R−1

G (0)
∩
A and so from (2.3)

wG |R−1

G (0) (A) = {x+G : w−1

G (x+G)
∩

R−1

G (0))
∩

A ̸= ϕ}.

But, vG(x+G) = w−1

G (x+G)
∩

R−1

G (0). Therefore,

wG |R−1

G (0) (A) = {x+G : vG(x+G)
∩

A ̸= ϕ}.

Using Lemma 2.6, we obtain

Theorem 2.7. LetG be a co-proximinal subspace of a metric linear space (X, d). Then following

statements are equivalent:

(i) vG is u.s.c.

(ii) wG |R−1

G (0) carries closed sets onto closed sets.

Proof. (i)⇒ (ii) Since vG is u.s.c.,H = {x+G ∈ D(RG)/G : vG(x+G)
∩
A ̸= ϕ} is closed for

any closed subset A of R−1

G (0). Using Lemma 2.6, wG |R−1

G (0) (A) = {x+G : vG(x+G)
∩
A ̸=

ϕ} is closed for any closed subset A of R−1

G (0). Hence wG |R−1

G (0) carries closed sets onto closed

sets.

(ii)⇒ (i) Since wG |R−1

G (0) carries closed sets onto closed sets, wG |R−1

G (0) (A) = {x + G :

vG(x+G)
∩
A ̸= ϕ} is closed whenever A is closed in R−1

G (0). Hence vG is u.s.c.

Remark: For the best approximation map, Lemmas 2.5, 2.6 and Theorem 2.7 are given in [14]

for normed linear spaces.

The following theorem also deals with the upper semi-continuity of the map vG.

Theorem 2.8. Let G be a closed linear subspace of a metric linear space (X, d) such that for

every compact subset A of D(RG)/G, the subset vG(A) is compact, then vG is u.s.c.

Proof. Let N be a closed subset of R−1

G (0) and B = {y + G ∈ D(RG)/G : vG(y + G)
∩

N ̸=
ϕ}. Let x0 + G be a limit point of B, then there exist a sequence {xn + G} in B such that

{xn + G} → x0 + G. Since {xn + G} → x0 + G, there exist a sequence {yn} in G such that

{xn + yn} → x0. For each xn +G, choose gn ∈ vG(xn +G). Let A = {xn +G}
∪
{x0 +G}.

Then A is a compact subset of D(RG)/G and so vG(A) is compact. Since {gn} ⊆ vG(A) and
vG(A) is compact, there exist a subsequence {gni} of {gn} such that {gni} → g0 ∈ vG(A).
Since xni − gni ∈ RG(xni), we have xni − gni + yni ∈ RG(xni + yni) i.e.

d(xni − gni + yni , g) ≤ d(xni + yni , g) for every g ∈ G. (2.4)

Since {xni +yni} → x0, {gni} → g0 imply {xni −gni +yni} → x0−g0. Therefore, using (2.4)
d(x0 − g0, g) ≤ d(x0, g) for every g ∈ G i.e. x0 − g0 ∈ RG(x0), g0 ∈ vG(x0 +G)

∩
N . Hence

x0 +G ∈ B and vG is u.s.c.

If we take G to be boundedly compact then we have

Theorem 2.9. Let G be a boundedly compact, closed linear subspace of a metric linear space

(X, d). Then
(i) For each compact subset A of (D(RG))/G, vG(A) is compact.

(ii)vG is u.s.c. on D(RG)/G.

Proof. (i) Let {gn} be a sequence in vG(A). Then there exist xn+G ∈ A such that gn ∈ vG(xn+
G) i.e. {xn + G} is a sequence in a compact set A and so it has a subsequence {xnk

+ G} →
x + G ∈ A. Since {xnk

+ G} → x + G implies that there exist a sequence {ynk
} in G such

that {xnk
+ ynk

} → x. Now, gnk
∈ vG(xnk

+G) implies that xnk
− gnk

∈ RG(xnk
) and so

xnk
− gnk

+ ynk
∈ RG(xnk

+ ynk
). We claim that {xnk

− gnk
+ ynk

} is a bounded sequence in

G. Consider

d(xnk
− gnk

+ ynk
, 0) ≤ d(xnk

− gnk
+ ynk

, g) + d(g, 0) for every g ∈ G
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⇒ d(xnk
− gnk

+ ynk
, 0) ≤ d(xnk

+ ynk
, g) + d(g, 0) for every g ∈ G

i.e. d(xnk
− gnk

+ ynk
, 0) ≤ d(xnk

+ ynk
, 0)

⇒ sup
nk∈N

d(xnk
− gnk

+ ynk
, 0) ≤ sup

nk∈N
d(xnk

+ ynk
, 0) < ∞.

Since G is a boundedly compact, closed subspace, {xnk
− gnk

+ ynk
} has a subsequence

{xnkm
− gnkm

+ ynkm
} → z ∈ G. Also {xnkm

+ ynkm
} → x. Therefore, gnkm

→ x −
z. As d(xnk

− gnk
+ ynk

, g) ≤ d(xnk
+ ynk

, g) for every g ∈ G implies that d(z, g) ≤
d(x, g) for every g ∈ G, z ∈ RG(x) and so x − z ∈ vG(x + G) ∈ vG(A). Hence vG(A)
is compact.

(ii) follows from (i) and Theorem 2.8.

Assuming R−1

G (0) to be boundedly compact, we have

Theorem 2.10. Let G be closed linear subspace of a metric linear space (X, d). If R−1

G (0) is

boundedly compact, then

(i)vG is u.s.c. on D(RG)/G.
(ii) vG(x+G) is compact for each x+G ∈ D(RG)/G.

Proof. (i) LetN be a closed subset of R−1

G (0) and B = {y+G ∈ D(RG)/G : vG(y+G)
∩
N ̸=

ϕ}. Let x0 + G be a limit point of B, then there exist a sequence {xn + G} in B such that

{xn + G} → x0 + G. Since {xn + G} → x0 + G, there exist a sequence {yn} in G such that

{xn + yn} → x0. For each xn +G, choose gn ∈ vG(xn +G). Then xn − gn ∈ RG(xn) and so

gn ∈ R−1

G (0). Since d(gn, 0) ≤ 2d(xn+yn, 0) and {xn+yn} is a convergent sequence, {gn} is a
bounded sequence. The bounded compactness of R−1

G (0) implies that there exist a subsequence

{gni} → g0. Since xni − gni ∈ RG(xni), we have xni − gni + yni ∈ RG(xni + yni) i.e.

d(xni − gni + yni , g) ≤ d(xni + yni , g) for every g ∈ G. (2.5)

Since {xni +yni} → x0, {gni} → g0 imply {xni −gni +yni} → x0−g0. Therefore using (2.5),
d(x0 − g0, g) ≤ d(x0, g) for every g ∈ G i.e. x0 − g0 ∈ RG(x0), g0 ∈ vG(x0 +G)

∩
N . Hence

x0 +G ∈ B and vG is u.s.c.

(ii) Let {x − gn} be a sequence in vG(x + G). Since vG(x + G) is a bounded set, {x − gn}
is a bounded sequence in x − RG(x). Now, x − gn ∈ x − RG(x) i.e. gn ∈ RG(x) and so

x − gn ∈ R−1

G (0). Hence {x − gn} is a bounded sequence in R−1

G (0). Since R−1

G (0) is bound-

edly compact and closed, there exist a subsequence {x − gni} → x − g0 ∈ R−1

G (0). This gives
g0 ∈ RG(x) and so x− g0 ∈ vG(x+G). Hence vG(x+G) is compact.

We shall be needing the following result of Singer [14] for our next theorems.

Lemma 2.11. If X and Y are metric spaces then a mapping u : X → 2Y is l.s.c. if and only if u
is l.(K)-s.c.

Using this lemma, we prove the following:

Theorem 2.12. Let G be a closed linear subspace of a metric linear space (X, d). Then RG is

l.s.c. if and only if vG is l.s.c.

Proof. Assume RG is l.s.c., then using above lemma, we have RG is l.(K)-s.c. We prove that

vG is l.s.c. Let un + G → u + G in D(RG)/G, y ∈ vG(u + G). Since un + G → u + G
implies that there exist a sequence{gn} in G such that {un + gn} → u. Also y ∈ vG(u + G)
implies that u − y ∈ RG(u). Since, {un + gn} → u, u − y ∈ RG(u) and RG is l.(K)-s.c.,

there exist a sequence {zn} such that zn ∈ RG(un + gn) and {zn} → u− y. Put un + gn = tn,
then there exist a sequence {zn} such that tn − zn ∈ tn −RG(tn) and zn → u − y. Now,

tn → u, zn → u − y ⇒ {tn − zn} → y i.e there exist a sequence {tn − zn}, tn − zn ∈ vG(tn)
such that {tn − zn} → y and so vG is l.(K)-s.c. and hence l.s.c.

Conversely, assume that vG is l.s.c. Let un → u in D(RG) and y ∈ RG(u). As y ∈
RG(u) ⇒ u−y ∈ vG(u+G) and un → u ⇒ un+G → u+G. Since vG is l.(K)-s.c., there exist

a sequence {zn}, zn ∈ vG(un + G) such that {zn} → u − y. Now, zn ∈ vG(un + G) implies
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that un − zn ∈ RG(un). Since un → u and zn → u− y, {un − zn} → y. Therefore, there exist
a sequence {un − zn} such that un − zn ∈ RG(un) and {un − zn} → y. This implies that RG is

l.(K)-s.c. and hence l.s.c.

Remark: For normed linear spaces, Theorem 2.12 has been given in [13].

By taking G to be a co-proximinal subspace, we have:

Theorem 2.13. For a co-proximinal subspace G of a metric linear space (X, d), the following

statements are equivalent:

(i) RG is l.s.c.

(ii) vG is l.s.c.

(iii)wG |R−1

G (0) is an open mapping.

Proof. (i)⇔ (ii) follows from Theorem 2.12.

(ii)⇒ (iii) Since vG is l.s.c., the set H = {x+G ∈ X/G : vG(x+G)
∩
A ̸= ϕ} is open for any

open subset A of R−1

G (0).
Using Lemma 2.6, we have

wG |R−1

G (0) (A) = {x+G : vG(x+G)
∩

A ̸= ϕ} (2.6)

i.e. if A is open then by (2.6), wG |R−1

G (0) (A) is also open and so wG |R−1

G (0) is an open mapping.

(iii)⇒(ii) Since wG |R−1

G (0) is an open mapping, wG |R−1

G (0) (A) is open for every open subset

A ⊆ R−1

G (0). Using Lemma 2.6, we get

wG |R−1

G (0) (A) = {x+G : vG(x+G)
∩

A ̸= ϕ}

is open for any open subset A of R−1

G (0) i.e. vG is l.s.c.

Taking the subspace G to be co-Chebyshev, we have

Theorem 2.14. For a co-Chebyshev subspace G of a metric linear space (X, d), the following

are equivalent:

(i) RG is continuous.

(ii)wG |R−1

G (0) is a homeomorphism of R−1

G (0) onto X/G.

(iii) vG = (wG |R−1

G (0))
−1 is continuous.

Proof. (i) ⇔(ii) has been proved in [10].

(iii) ⇒ (ii) Let xn → x in R−1

G (0). Then xn + G → x + G i.e. wG(xn) → wG(x). Hence

wG |R−1

G (0) is continuous. Also (wG |R−1

G (0))
−1 is continuous. SinceG is co-Chebyshev,wG |R−1

G (0)

is one-one and so is a homeomorphism of R−1

G (0) onto X/G.

(ii)⇒ (iii) is trivial.

Remark: For the best approximation map, Theorems 2.13 and 2.14 have been proved in [14] for

normed linear spaces.
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