
Palestine Journal of Mathematics

Vol. 6(Special Issue: II) (2017) , 297–307 © Palestine Polytechnic University-PPU 2017

On a Class of α−para Kenmotsu manifolds with semi-symmetric
metric connection

Rajendra Prasad and Sushil Kumar

Communicated by Ayman Badawi

MSC 2010 Classifications: 53C15, 53C15, 53C25.

Keywords and phrases: Semi-symmetric metric connection, Curvature tensor, Ricci curvature tensor.

Sushil Kumar is thankful to UGC, New Delhi (India) for a fellowship.

Abstract. In this paper we investigate α−para Kenmotsu manifold with semi-symmetric
metric connection. We have found the relations between curvature tensors, Ricci tensors and
scalar curvature of α−para Kenmotsu manifold with semi-symmetric metric connection and with
metric connection. Also, we have proved some results on quasi-projectively flat, ξ−projectively
flat, φ−projectively flat, conformally flat and ξ−concircularly flat α−para Kenmotsu manifolds.
We have given two examples of it.

1 Introduction

In 1985, almost paracontact geometry was introduced by Kaneyuki and Williams [10] and then it
was continued by many authors. A systematic study of almost paracontact metric manifolds was
carried out by Zamkovoy [19]. However such structures were also studied by Buchner and Rosca
[[4], [5], [15]], Rossca and Vanhecke [12]. The curvature identities for different classes of almost
paracontact metric manifolds were obtained in [6]. Further almost para-Hermitian structures on
the tangent bundle of an almost para-coHermitian manifolds was studied by Bejan [1]. A class of
α−para Kenmotsu manifolds was studied by Srivastava and Srivastava [13] and ξ−conformally
flat contact metric manifolds was studied by Zhen et al. [20].

We can observe from the form of the concircular curvature tensor that pseudo-Riemannian
manifolds with vanishing concircular curvature tensor are of constant curvature [[3], [16]]. Thus
one can imagine of the concircular curvature tensor as a measure of the failure of a pseudo-
Riemannian manifold to be of constant curvature.

Hayden introduced semi- symmetric linear connections on a Riemannian manifold [9]. LetM
be an n−dimensional Riemannian manifold of class C∞−endowed with the Riemannian metric
g and ∇ be the Levi- Civita connection on Mn.

A linear connection
−
∇ defined on Mn is said to be semi- symmetric [8] if its torsion tensor

T is of the form T (X,Y ) = η(Y )X − η(X)Y , where ξ is a vector field and η is a 1−form
defined by g(X, ξ) = η(X), for all vector fields X ∈ χ(Mn), where χ(Mn) is the set of all

differentiable vector fields on Mn. A semi- symmetric connection
−
∇ is called a semi-symmetric

metric connection, if it further satisfies ∇g = 0. A relation between the semi-symmetric metric

connection
−
∇ and the Levi-Civita connection∇ on Mn has been obtained by Yano [17] which is

given by

−
∇XY = ∇XY + η(Y )X − g(X,Y )ξ. (1.1)

This paper is organized as follows. In Section 3, we have obtained curvature tensors and
Ricci tensors of α−paracontact Kenmotsu manifold with semi symmetric metric connection. In
Section 4, we have found the relation between a second-order parallel tensor and the associated
metric on an α−para Kenmotsu manifold with semi symmetric metric connection. In Section
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5, 6, 7 and 8, we have focussed on some flat conditions for α −para Kenmotsu manifold with
semi symmetric metric connection.

2 Preliminaries

A differentiable manifoldMn of dimension n is said to have an almost paracontact (φ, ξ, η)−structure
if it admits an (1, 1) tensor field φ, a unique vector field ξ, 1−form η such that:

φ2 = I − η ⊗ ξ, φξ = 0, η ◦ φ = 0 , (2.1)

η(ξ) = 1, (2.2)

for any vector fields X,Y on Mn. The manifold Mn equipped with an almost paracontact
structure (φ, ξ, η) is called almost paracontact manifold. In addition, if an almost paracontact
manifold admits a pseudo-Riemannian metric satisfying:

g(X, ξ) = η(X), (2.3)

g(φX, φY ) = −g(X,Y ) + η(X)η(Y ), (2.4)

g(φX, Y ) = −g(X,φY ), (2.5)

for any vector fields X,Y on Mn, then (φ, ξ, η, g), is called an almost paracontact metric struc-
ture and the manifold Mn equipped with an almost paracontact metric structure is called an
almost paracontact metric manifold. Further in addition, if the structure (φ, ξ, η, g), satisfies

dη(X,Y ) = g(X,φY ), (2.6)

for any vector fields X,Y on Mn. Then the manifold is called paracontact metric manifold and
the corresponding structure (φ, ξ, η, g) is called a paracontact structure with the associated metric
g [19].

On an almost paracontact metric manifold, one defines the (1, 2) tensor field Nφ by

Nφ = [φ, φ]− 2dη ⊗ ξ, (2.7)

where [φ, φ] is the Nijenhuis tensor of φ. IfNφ vanishes identically, then we say that the manifold
Mn is a normal almost paracontact metric manifold. The normality condition implies that the
almost paracomplex structure J defined on Mn ×R by

J(X,λ
d

dt
) = (φX + λξ, η(X)

d

dt
),

is integrable. Here X is tangent to Mn, t is the coordinate on R and λ is a differentiable function
on Mn ×R.

For an almost paracontact metric 3−dimensional manifold M3, the following three condi-
tions are mutually equivalent [14]:

(i) there exist smooth functions α, β on M3 such that

(∇Xφ)Y = β(g(X,Y )ξ − η(Y )X) + α(g(φX, Y )ξ − η(Y )φX), (2.8)

(ii)M3 is normal,
(iii) there exist smooth functions α, β on M3 such that

∇Xξ = α(X − η(X)ξ) + βφX, (2.9)

where ∇ is the Levi-Civita connection of pseudo−Riemannian metric g.
A normal almost paracontact metric 3−dimensional manifold is called
(A) Para-Cosymlectic manifold if α = β = 0 [6],
(B) quasi-para Sasakian manifold if and only if α = 0 and β 6= 0 [7],
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(C) β−para Sasakian manifold if and only if α = 0 and β is a non-zero constant, in particular
para Sasakian manifold if β = −1 [19],

(D) α−para Kenmotsu manifold if α is a non-zero constant and β = 0 [20], in particular para
Kenmotsu manifold if α = 1 [2].

For a 3−dimensional manifold M3 with an almost para−contact metric structure (φ, ξ, η, g)
one can also construct a local orthonormal basis as follows:

Let U be coordinate neighbourhood on M and e1 any vector field on U orthogonal to ξ.
Then φe1 is a vector field orthogonal to both e1, ξ and ||φe1||2 = −1. So, we have g(e1, e1) =
1, g(φe1, φe1) = −1 and g(ξ, ξ) = 1. Hence we obtain orthonormal basis {e1, φe1, ξ} called a
φ−basis [19].

Remark 2.1. Since the Ricci tensor of Levi-Civita connection ∇ is given by

S(Y, Z) = g(R(e1, Y )Z, e1)− g(R(φe1, Y )Z, φe1) + g(R(ξ, Y )Z, ξ).

On an n−dimensional connected almost paracontact pseudo−Riemannian manifold Mn the
curvature tensor R [11] and the projective curvature tensor P [18] are defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (2.10)

P (X,Y )Z = R(X,Y )Z − 1
n− 1

[g(QY,Z)X − g(QX,Z)Y ], (2.11)

where Q denotes the Ricci operator.
Let M3(φ, ξ, η, g) be an α−para Kenmotsu manifold [13], then we have

R(X,Y )Z = (
r

2
+ 2α2){g(Y, Z)X − g(X,Z)Y } (2.12)

−( r
2
+ 3α2){η(X)g(Y,Z)− η(Y )g(X,Z)}ξ

+(
r

2
+ 3α2){η(X)Y − η(Y )X}η(Z).

Replace Z = ξ in equation (2.12), we get

R(X,Y )ξ = α2{η(X)Y − η(Y )X}, (2.13)

S(Y, Z) = (
r

2
+ α2)g(Y,Z)− (

r

2
+ 3α2)η(Y )η(Z), (2.14)

S(Y, ξ) = −2α2η(Y ), (2.15)

S(ξ, ξ) = −2α2,

(∇Xφ)Y = α(g(φX, Y )ξ − η(Y )φX), (2.16)

∇Xξ = α(X − η(X)ξ). (2.17)

From equation (1.1), we have

−
∇Xξ = (1 + α)(X − η(X)ξ). (2.18)
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3 Curvature tensor on α−para Kenmotsu manifold with semi-symmetric
metric connection

Let M3 be a 3−dimensional α−para Kenmotsu manifold. The curvature tensor
−
R of M3 with

respect to the semi-symmetric metric connection
−
∇ is defined by

−
R(X,Y )Z =

−
∇X

−
∇Y Z −

−
∇Y

−
∇XZ −

−
∇ [X,Y ]Z. (3.1)

By using equations (1.1), (2.2), (2.3), (2.17) and (2.18), we get

−
R(X,Y )Z = R(X,Y )Z − (1 + 2α)[g(Y, Z)X − g(X,Z)Y ] (3.2)

+(1 + α)[η(Y )X − η(X)Y ]η(Z)

+(1 + α)[η(X)g(Y,Z)− η(Y )g(X,Z)]ξ.

From equation (3.2), we obtain that the curvature tensor
−
R satisfies:

−
R(X,Y )Z +

−
R(Y,Z)X +

−
R(Z,X)Y = 0, (3.3)

Taking inner product of equation (3.2) with U and using equation (2.3), we have

g(
−
R(X,Y )Z,U) (3.4)

= g(R(X,Y )Z,U)− (1 + 2α)[g(Y, Z)g(X,U)− g(X,Z)g(Y,U)]
+(1 + α)[η(Y )g(X,U)− η(X)g(Y,U)]η(Z)

+(1 + α)[η(X)g(Y,Z)− η(Y )g(X,Z)]η(U).

Let {e1, φe1, ξ} be a local orthonormal φ−basis of vector fields on α−para Kenmotsu mani-
fold M3. Then, we get

−
S(Y,Z) = (−1 +

r

2
− 3α+ α2)g(Y, Z) + (1− r

2
+ α− 3α2)η(Y )η(Z). (3.5)

From equation (3.5), we have

−
r = −2 + r − 8α, (3.6)

where
−
r scalar curvature with semi-symmetric metric connection.

Replace Y = ξ in equation (3.5), using (2.2) and (2.3), we get

−
S(Y, ξ) = −2α(1 + α)η(Y ). (3.7)

From equation (3.2) in interchange X to Y , we have

−
R(Y,X)Z = R(Y,X)Z − (1 + 2α)[g(X,Z)Y − g(Y, Z)X] (3.8)

+(1 + α)[η(X)Y − η(Y )X]η(Z)

+(1 + α)[η(Y )g(X,Z)− η(X)g(Y,Z)]ξ.

From equations (3.2) and (3.8), we get

−
R(Y,X)Z = −

−
R(X,Y )Z, (3.9)

where R(X,Y )Z = −R(Y,X)Z.
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Replace Z = ξ in equation (3.2), using equations (2.3) and (2.13), we have

−
R(X,Y )ξ = α(1 + α)(η(X)Y − η(Y )X). (3.10)

Replace X = ξ in equation (3.10) and using equation (2.3), we get

−
R(ξ, Y )ξ = α(1 + α)(Y − η(Y )ξ). (3.11)

4 Second-Order Parallel Tensor Field

Definition 4.1. A tensor T of second order is said to be a second-order parallel tensor if
−
∇T = 0,

where
−
∇ denotes the operator of covariant differentiation with respect to the associated semi-

symmetric metric connection.

Here, we give the following result which established the relation between a second-order
parallel tensor and the associated metric on an α−para Kenmotsu manifold with semi-symmetric
metric connection.

Theorem 4.2. On an α−para Kenmotsu manifold M3 with semi-symmetric metric connection a
second-order parallel tensor is a constant multiple of the associated metric g .

Proof. Let h denote a symmetric (0, 2)−tensor field α−para Kenmotsu manifold with semi-

symmetric metric connection on M3 such that
−
∇h = 0.

Then the condition satisfies

−
R(X,Y ).h = 0,

−
R(X,Y ).h(Z,U) = 0.

Then, we have

h(
−
R(X,Y )Z,U) + h(Z,

−
R(X,Y )U) = 0, (4.1)

for any vector fields X,Y, Z, U ∈ χ(M3). Substituting X = Z = U = ξ in equation (4.1),
we obtain

h(
−
R(ξ, Y )ξ, ξ) + h(ξ,

−
R(ξ, Y )ξ) = 0. (4.2)

Using equation (3.2), we get

h(Y, ξ) = η(Y )h(ξ, ξ). (4.3)

Differentiating equation (4.3) with respect to semi-symmetric metric connection along an
arbitrary X ∈ χ(M3), using equations (2.18) and (4.3), we get

h(X,Y ) = g(X,Y )h(ξ, ξ). (4.4)

Again, Differentiating equation (4.4) with semi-symmetric metric connection covariantly along
any vector field on M3 it can be easily seen that h(ξ, ξ) is constant.

Let us suppose that h is a parallel 2−form on M3 α−para Kenmotsu manifold with semi-
symmetric metric, that is

h(X,Y ) = −h(Y,X) and
−
∇h = 0. (4.5)

Theorem 4.3. Let M3 be an α−para Kenmotsu manifold with semi-symmetric metric connec-
tion. Then non-zero parallel 2−forms h cannot occur on M3.
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Proof. For h the parallel form, we have from equation (4.5) that

h(ξ, ξ) = 0. (4.6)

Differentiating equation (4.6) covariantly with semi-symmetric metric connection along ar-
bitrary X ∈ χ(M) and using equations (2.18) and (4.6), we have

h(X, ξ) = 0. (4.7)

Next, differentiating equation (4.7) covariantly with semi-symmetric metric connection along
any arbitrary Y ∈ χ(M) and using equation (2.18) and (4.7), we have

h(X,Y ) = 0. (4.8)

5 Quasi-Projectively flat and ξ−Projectively flat α−para Kenmotsu
manifold with semi-symmetric metric connection

Let Mn be an n−dimensional α−para Kenmotsu manifold. The Projective curvature tensor
−
P

of type (1, 3) with semi-symmetric metric connection is defined by

−
P (X,Y )Z =

−
R(X,Y )Z − 1

(n− 1)
[
−
S(Y,Z)X −

−
S(X,Z)Y ]. (5.1)

(i) An α−para Kenmotsu manifoldMn is said to be quasi-Projectively flat with semi-symmetric
metric connection, if

g(
−
P (φX, Y )Z, φU) = 0. (5.2)

(ii)An α−para Kenmotsu manifold Mn is said to be ξ−Projectively flat with semi-symmetric
metric connection, if the condition satisfies

−
P (X,Y )ξ = 0.

Theorem 5.1. A 3−dimensional quasi-Projectively flat α−para Kenmotsu manifold M3 with
semi-symmetric metric connection is η−Einstein manifold.

Proof. From equation (5.1), we have

−
P (X,Y )Z =

−
R(X,Y )Z − 1

2
[
−
S(Y,Z)X −

−
S(X,Z)Y ].

Taking inner product of above equation with U , we get

g(
−
P (X,Y )Z,U) = g(

−
R(X,Y )Z,U)− 1

2
[
−
S(Y, Z)g(X,U)−

−
S(X,Z)g(Y,U)]. (5.3)

Replace X = φX and U = φU in equation (5.3), we get

g(
−
P (φX, Y )Z, φU) (5.4)

= g(
−
R(φX, Y )Z, φU)− 1

2
[
−
S(Y,Z)g(φX, φU)−

−
S(φX,Z)g(Y, φU)].

From equations (5.2) and (5.4), using equations (3.2) and (3.5), we get
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g(R(φX, Y )Z, φU) (5.5)

= (
1
2
+
r

4
+
α

2
+
α2

2
)g(Y,Z)g(φX, φU)− (

1
2
+
r

4
+
α

2
+
α2

2
)g(φX,Z)g(Y, φU)

−(1
2
+
r

4
+
α

2
+

3α2

2
)η(Y )η(Z)g(φX, φU).

Let {e1, φe1, ξ} be a local orthonormal basis of vector fields on α−para Kenmotsu manifold
M3. Then, we get

S(Y, Z) = (1 +
r

2
+ α+ α2)g(Y,Z)− 3

2
(1 +

r

2
+ α+ 3α2)η(Y )η(Z). (5.6)

Theorem 5.2. If M3 be an α−para Kenmotsu manifold with semi-symmetric metric connection,
then M3 is ξ−Projectively flat.

Proof. Putting Z = ξ in equation (5.1), using equations (2.13), (3.2) and (3.7), we get

−
P (X,Y )ξ = 0.

Hence the theorem is proved.

6 φ−Projectively flat α−para Kenmotsu manifold with semi-symmetric
metric connection

Let Mn be an n−dimensional α−para Kenmotsu manifold with semi-symmetric metric connec-

tion is said to be φ−Projectively flat, if φ2(
−
P (φX, φY )φZ) = 0, where

−
P is the Projective curva-

ture tensor of α−para Kenmotsu manifold with semi-symmetric metric connection. SupposeMn

be a φ−Projectively flat α−para Kenmotsu manifold with semi-symmetric metric connection. It
is known that

φ2(
−
P (φX, φY )φZ) = 0 holds if and only if g(

−
P (φX, φY )φZ, φU)) = 0 (6.1)

for any vector fields X,Y, Z, U ∈ TMn.

Theorem 6.1. A 3−dimensional φ−Projectively flat α−para Kenmotsu manifold M3 with semi-
symmetric metric connection is η−Einstein manifold.

Proof. We take equation (5.4), replace Y = φY and U = φU , using equation (6.1), then

g(
−
P (φX, φY )φZ, φU) (6.2)

=
1
2
[
−
S(φY, φZ)g(φX, φU)−

−
S(φX, φZ)g(φY, φU)].

Using equations (3.2) and (3.5), we get

g(R(φX, φY )φZ, φU) = (
1
2
+
r

4
+
α

2
+
α2

2
)g(φY, φZ)g(φX, φU) (6.3)

−(1
2
+
r

4
+
α

2
+
α2

2
)g(φX, φZ)g(φY, φU).

Let {e1, φe1, ξ} be a local orthonormal basis of vector fields on α−para Kenmotsu manifold
M3. Then, we get

S(Y, Z) = (1 +
r

2
+
α

2
+ α2)g(Y,Z)− (1 +

r

2
+
α

2
+ α2)η(Y )η(Z). (6.4)
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7 Weyl conformal flat curvature tensor on α−para Kenmotsu manifold with
semi-symmetric metric connection

The Weyl conformal curvature tensor
−
C of type (1, 3) of Mn an n−dimensional α−para Ken-

motsu manifold with semi-symmetric metric connection is given by

−
C(X,Y )Z (7.1)

=
−
R(X,Y )Z − 1

(n− 2)
[
−
S(Y, Z)X −

−
S(X,Z)Y + g(Y,Z)

−
QX

−g(X,Z)
−
QY ] +

−
r

(n− 1)(n− 2)
[g(Y,Z)X − g(X,Z)Y ],

where
−
Q Ricci operator with respect to the semi-symmetric metric connection.

An α−para Kenmotsu manifold Mn is said to be Weyl conformal flat with semi-symmetric

metric connection, if
−
C = 0

Theorem 7.1. Let M3 be a 3-dimensional Weyl conformal flat α−para Kenmotsu manifold M3

with semi-symmetric metric connection is η−Einstein manifold

Proof. Taking inner product equation (7.1) with U , we get

g(
−
C(X,Y )Z,U) (7.2)

= g(
−
R(X,Y )Z,U)− [

−
S(Y,Z)g(X,U)−

−
S(X,Z)g(Y, U)

+g(Y, Z)g(
−
QX,U)− g(X,Z)g(

−
QY,U)]

+

−
r

2
[g(Y,Z)g(X,U)− g(X,Z)g(Y, U)].

An α−para Kenmotsu manifold M3 is said to be Weyl conformal flat with semi-symmetric met-

ric connection, if g(
−
C(X,Y )Z,U) = 0 and using equations (2.12), (2.14), (2.15), (2.16), (3.2), (3.4), (3.5)

and (3.6), we get

S(Y, Z) = (
r

2
+ α2)g(Y,Z)− (

r

2
+ 3α2)η(Y )η(Z).

8 ξ−concircularly flat α−para Kenmotsu manifold with semi-symmetric
metric connection

Let (Mn, g) be an n-dimensional α−para Kenmotsu manifold with semi-symmetric metric con-

nection. The con-circular curvature tensor
−
L [16] of Mndefined by

−
L(X,Y )Z =

−
R(X,Y )Z − r

n(n− 1)
[g(Y,Z)X − g(X,Z)Y ], (8.1)

for vector fields X,Y, Z ∈ TMn.
A α−para Kenmotsu manifold Mn is said to be ξ−concircularly flat with semi-symmetric

metric connection, if the condition satisfies
−
L(X,Y )ξ = 0.

Theorem 8.1. Let M3 be an α−para Kenmotsu manifold with semi-symmetric metric connec-
tion. Then M3 is ξ−con-circularly flat if and only if r = (1− 2α− 6α2).
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Proof. From equation (8.1), we have

−
L(X,Y )Z =

−
R(X,Y )Z − r

6
[g(Y,Z)X − g(X,Z)Y ].

Putting Z = ξ in above equation, using (2.14) and (3.2), we get

−
L(X,Y )ξ = (

−1 + r + 2α+ 6α2

6
)[η(X)Y − η(Y )X]. (8.2)

This implies that
−
L(X,Y )ξ = 0 if and only if r = (1− 2α− 6α2).

Example 8.2. Let 3−dimensional manifoldM3 = R2×R_ ⊂ R3 with the standard Cartesian co-
ordinates (x, y, z). Define the almost paracontact structure (φ, ξ, η) with semi-symmetric metric
connection on M3 by

φe1 = e2, φe2 = e1, φe3 = 0, ξ = e3, η = dZ (8.3)

where e1 =
∂
∂x , e2 =

∂
∂y , and e3 =

∂
∂z . By calculations,

[φ, φ](ei, ej)− 2dη(ei, ej) = 0; 1 ≤ i < j ≤ 3 (8.4)

which implies that the structure is normal.
Let g be the pseudo-Riemannian metric defined by

g(e1, e1) = exp(2z), g(e2, e2) = − exp(2z), g(e3, e3) = 1, (8.5)

g(e1, e2) = 0, g(e1, e3) = 0, g(e2, e3) = 0

Let ∇ Levi-Civita connection with metric g, then we given

[e1, e2] = 0, [e1, e3] = 0, [e2, e3] = 0

For Levi-Civita connection ∇ of the metric g is given by

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y ) + g([X,Y ], Z)

−g([Y, Z], X) + g([Z,X], Y )

which is known as Koszuls formula, we have

∇e1e1 = − exp(2z)e3, ∇e1e2 = 0, ∇e1e3 = e1 (8.6)

∇e2e1 = 0, ∇e2e2 = exp(2z)e3, ∇e2e3 = e2

∇e3e1 = e1, ∇e3e2 = e2, ∇e3e3 = 0

Therefore, the semi-symmetric metric connection on M is given by

∇e1e1 = −2 exp(2z)e3, ∇e1e2 = 0, ∇e1e3 = 2e1 (8.7)

∇e2e1 = 0, ∇e2e2 = 2 exp(2z)e3, ∇e2e3 = 2e2

∇e3e1 = e1, ∇e3e2 = e2, ∇e3e3 = 0

Now, for ξ = e3, above results satisfies

−
∇Xξ = (1 + α)(X − η(X)ξ)

with α = 1. Consequently M3(φ, ξ, η, g) is α−para Kenmotsu manifold with semi-symmetric
metric connection.
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Example 8.3. Let 3−dimensional manifoldM3 = R2×R_ ⊂ R3 with the standard Cartesian co-
ordinates (x, y, z). Define the almost paracontact structure (φ, ξ, η) with semi-symmetric metric
connection on M3 by

φe1 = e2, φe2 = −e1, φe3 = 0, ξ = e3, η = dZ (8.8)

where e1 = x ∂
∂x , e2 = y ∂

∂y , and e3 =
∂
∂z . By calculations,

[φ, φ](ei, ej)− 2dη(ei, ej) = 0; 1 ≤ i < j ≤ 3 (8.9)

which implies that the structure is normal. Let g be the pseudo-Riemannian metric defined by

g(e1, e1) = exp(z), g(e2, e2) = − exp(z), g(e3, e3) = 1, (8.10)

g(e1, e2) = 0, g(e1, e3) = 0, g(e2, e3) = 0

Let ∇ Levi-Civita connection with metric g, then we given

[e1, e2] = 0, [e1, e3] = 0, [e2, e3] = 0.

We have

∇e1e1 = −1
2

exp(z)e3, ∇e1e2 = 0, ∇e1e3 =
e1

2
(8.11)

∇e2e1 = 0, ∇e2e2 =
1
2

exp(z)e3, ∇e2e3 =
e2

2

∇e3e1 =
e1

2
, ∇e3e2 =

e2

2
, ∇e3e3 = 0

Therefore, the semi-symmetric metric connection on M is given by

∇e1e1 = −3
2

exp(z)e3, ∇e1e2 = 0, ∇e1e3 =
3
2
e1 (8.12)

∇e2e1 = 0, ∇e2e2 =
3
2

exp(z)e3, ∇e2e3 =
3
2
e2

∇e3e1 =
e1

2
, ∇e3e2 =

e2

2
, ∇e3e3 = 0

Now, for ξ = e3, above results satisfies

−
∇Xξ = (1 + α)(X − η(X)ξ)

with α = 1
2 . Consequently M3(φ, ξ, η, g) is α−para Kenmotsu manifold with semi-symmetric

metric connection.
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