ADDITIVITY OF MULTIPLICATIVE ISOMORPHISMS IN GAMMA RINGS

Kenan Çağlar DÜKEL and Yılmaz ÇEVEN
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 16Y99, 16W20; Secondary 03G05.
Keywords and phrases: Gamma rings, idempotent element, Peirce decomposition, multiplicative isomorphism.

Abstract

In this paper, some results given by Martindale III and Rickart are generalized to the Γ-rings. Using generalized Peirce decomposition of a Γ-ring given by Mukherjee, it is obtained that any multiplicative isomorphism of Γ-ring M onto an arbitrary Γ-ring N is additive.

1 Introduction and Preliminaries

Let R and S be arbitrary associative rings (not necessarily with identity elements). A one-toone mapping σ of R onto S such that $\sigma(x y)=\sigma(x) \sigma(y)$ for all $x, y \in R$ is called a multiplicative isomorphism of R onto S. The question of when a multiplicative isomorphism is additive has been considered by Rickart [8] and also by Johnson [3]. Martindale III is generalized the main theorem of Rickart's paper in [6] and removed a condition from the theorem. Martindale III, using Peirce decomposition of a ring, showed that any multiplicative isomorphism of R onto an arbitrary ring S is additive.

The concept of a Γ-ring was introduced by Nobusawa in [5] as a generalization of the ring theory and generalized by Barnes [1] as follows: Let $(M,+)$ and $(\Gamma,+)$ be additive Abelian groups. If there exists a mapping $M \times \Gamma \times M \rightarrow M$ (the image of (a, α, b) is denoted by $a \alpha b$ where $a, b \in M$ and $\alpha \in \Gamma$) satisfying the conditions
(i) $(x+y) \alpha z=x \alpha z+y \alpha z$,
(ii) $x \alpha(y+z)=x \alpha y+x \alpha z$,
(iii) $x(\alpha+\beta) z=x \alpha z+x \beta z$,
(iv) $x \alpha(y \beta z)=(x \alpha y) \beta z$
for all x, y, z in M and α, β in Γ, then M is called a Γ-ring.
Every ring is a Γ-ring and many notions on the ring theory are generalized to the Γ-ring.
Mukherjee [7] is generalized and extended some results on Γ-rings obtained by some researchers.

In this paper, some results given by Martindale III and Rickart are generalized to the Γ-rings. Using generalized Peirce decomposition of a Γ-ring given by Mukherjee, it is obtained that any multiplicative isomorphism of Γ-ring M onto an arbitrary Γ-ring N is additive.

A Γ-ring M is said to be a prime gamma ring if and only if $a \Gamma M \Gamma b=0$ for $a, b \in M$ implies $a=0$ or $b=0$ and M is called completely prime if and only if $a \Gamma b=0$ implies $a=0$ or $b=0$.
Theorem 1.1. [9] Let M be a prime gamma ring. U be a nonzero ideal of M. Then, for $a, b \in M$,
(i) if $U \Gamma a=0$ or $a \Gamma U=0$ then $a=0$,
(ii) if $a \Gamma U \Gamma b=0$ then $a=0$ or $b=0$.

An element e in a Γ-ring is said to be an idempotent, if there exists $\gamma \in \Gamma$ such that $e \gamma e=e$. In this case we also say that e is γ-idempotent.

The following result can be termed as generalized Peirce Decomposition of a gamma ring M.

Theorem 1.2. [7] If e is an idempotent of M then

$$
M=e \gamma M \gamma e \oplus e \gamma M \gamma(1-e) \oplus(1-e) \gamma M \gamma e \oplus(1-e) \gamma M \gamma(1-e)
$$

In this Theorem, taking e_{1}, e_{2} instead of e and $1-e$, respectively, we can write the Peirce

Decomposition of a gamma ring M as

$$
M=e_{1} \gamma M \gamma e_{1} \oplus e_{1} \gamma M \gamma e_{2} \oplus e_{2} \gamma M \gamma e_{1} \oplus e_{2} \gamma M \gamma e_{2} .
$$

Then letting $M_{i j}=e_{i} \gamma M \gamma e_{j}$, we may write M as

$$
M=M_{11} \oplus M_{12} \oplus M_{21} \oplus M_{22}
$$

It is also known that $e_{i} \gamma e_{j}=e_{i}$, if $i=j$, and $e_{i} \gamma e_{j}=0$, if $i \neq j$.

2 The Main Part

Definition 2.1. Let M and N gamma rings. A one-to-one mapping φ of M onto N such that $\varphi(x \gamma y)=\varphi(x) \gamma \varphi(y)$ for all $x, y \in M$ will be called a multiplicative isomorphism of M onto N.

In this part, e is an idempotent element of M such that $e \neq 0$ and $e \neq 1$ (M need not have an identity) and φ is a multiplicative isomorphism of M onto N. Also $e_{1}=e$ and $e_{2}=1-e$.
Theorem 2.1. Let M and N be two Γ-rings. Then $\varphi(0)=0$.
Proof. Since $0 \in N$ and φ is onto, $\varphi(x)=0$ for some $x \in M$. Then we have

$$
\varphi(0)=\varphi(0 \gamma x)=\varphi(0) \gamma \varphi(x)=0 .
$$

Theorem 2.2 Let M be a prime Γ-ring, N be a Γ-ring. Then
(i) $\varphi\left(x_{11}+x_{12}\right)=\varphi\left(x_{11}\right)+\varphi\left(x_{12}\right)$,
(ii) $\varphi\left(x_{11}+x_{21}\right)=\varphi\left(x_{11}\right)+\varphi\left(x_{21}\right)$,
(iii) $\varphi\left(x_{22}+x_{12}\right)=\varphi\left(x_{22}\right)+\varphi\left(x_{12}\right)$,
(iv) $\varphi\left(x_{22}+x_{21}\right)=\varphi\left(x_{22}\right)+\varphi\left(x_{21}\right)$
where $x_{i j} \in M_{i j}$.
Proof. (i) For $x_{11}, x_{12} \in M$, since $\varphi\left(x_{11}\right)+\varphi\left(x_{12}\right) \in N$ and φ is onto, we have an element $y \in M$ such that $\varphi(y)=\varphi\left(x_{11}\right)+\varphi\left(x_{12}\right)$. Taking $x_{11}=e_{1} \gamma m \gamma e_{1}, x_{12}=e_{1} \gamma m \gamma e_{2}$ and $a_{11}=e_{1} \gamma n \gamma e_{1}$, for $a_{11} \in M_{11}$, where e_{1} is an idempotent element and $e_{2}=1-e_{1}$, we have ($x_{11}+$ $\left.x_{12}\right) \gamma a_{11}=x_{11} \gamma a_{11}+x_{12} \gamma a_{11}=x_{11} \gamma a_{11}$ since $x_{12} \gamma a_{11}=0$. Then we get, ,

$$
\begin{aligned}
\varphi\left(y \gamma a_{11}\right) & =\varphi(y) \gamma \varphi\left(a_{11}\right) \\
& =\left(\varphi\left(x_{11}\right)+\varphi\left(x_{12}\right)\right) \gamma \varphi\left(a_{11}\right) \\
& =\varphi\left(x_{11}\right) \gamma \varphi\left(a_{11}\right)+\varphi\left(x_{12}\right) \gamma \varphi\left(a_{11}\right) \\
& =\varphi\left(x_{11} \gamma a_{11}\right)+\varphi\left(x_{12} \gamma a_{11}\right) \\
& =\varphi\left(\left(x_{11}+x_{12}\right) \gamma a_{11}\right)+\varphi(0) \\
& =\varphi\left(\left(x_{11}+x_{12}\right) \gamma a_{11}\right) .
\end{aligned}
$$

Hence we obtain $y \gamma a_{11}=\left(x_{11}+x_{12}\right) \gamma a_{11}$ since φ is one to one. Similarly we can see that $y \gamma a_{12}=\left(x_{11}+x_{12}\right) \gamma a_{12}$ for $a_{12} \in M_{12}, y \gamma a_{21}=\left(x_{11}+x_{12}\right) \gamma a_{21}$ for $a_{21} \in M_{21}, y \gamma a_{22}=\left(x_{11}+\right.$ $\left.x_{12}\right) \gamma a_{22}$ for $a_{22} \in M_{22}$. Hence since
$a_{11}+a_{12}+a_{21}+a_{22}=a \in M$, it is obtained that $\left(y-\left(x_{11}+x_{12}\right)\right) \gamma M=0$. Since M is a prime Γ-ring, by Theorem 1.1, we have $y-\left(x_{11}+x_{12}\right)=0$ or $y=x_{11}+x_{12}$. That is

$$
\varphi\left(x_{11}+x_{12}\right)=\varphi\left(x_{11}\right)+\varphi\left(x_{12}\right)
$$

(ii) It is obtained $M \gamma\left(y-\left(x_{11}+x_{12}\right)\right)=0$ with similar operations. Since M is a prime Γ ring, by Theorem 1.1 , we get $\varphi\left(x_{11}+x_{21}\right)=\varphi\left(x_{11}\right)+\varphi\left(x_{21}\right)$, consequently.
(iii) and (iv) is can be seen similarly.

Theorem 2.3. Let M be a prime Γ-ring, N be a Γ-ring. Then

$$
\varphi\left(u_{12}+v_{12}\right)=\varphi\left(u_{12}\right)+\varphi\left(v_{12}\right)
$$

for all $u_{12}, v_{12} \in M_{12}$.

Proof: Since $\varphi\left(u_{12}\right)+\varphi\left(v_{12}\right) \in N$ and φ is onto, we have an element $y \in M$ such that $\varphi(y)=\varphi\left(u_{12}\right)+\varphi\left(v_{12}\right)$. For $a_{11} \in M_{11}$, taking $a_{11}=e_{1} \gamma n \gamma e_{1}, u_{12}=e_{1} \gamma m \gamma e_{2}$ and $v_{12}=e_{1} \gamma r \gamma e_{2}$, we have $u_{12} \gamma a_{11}=0$ and $v_{12} \gamma a_{11}=0$. Hence

$$
\begin{aligned}
\varphi\left(y \gamma a_{11}\right) & =\varphi(y) \gamma \varphi\left(a_{11}\right) \\
& =\left(\varphi\left(u_{12}\right)+\varphi\left(v_{12}\right)\right) \gamma \varphi\left(a_{11}\right) \\
& =\varphi\left(u_{12}\right) \gamma \varphi\left(a_{11}\right)+\varphi\left(v_{12}\right) \gamma \varphi\left(a_{11}\right) \\
& =\varphi\left(u_{12} \gamma a_{11}\right)+\varphi\left(v_{12} \gamma a_{11}\right) \\
& =\varphi(0)+\varphi(0) \\
& =0
\end{aligned}
$$

Since φ is one to one, we get $y \gamma a_{11}=0$. Similarly, we see that $y \gamma a_{12}=0$ for $a_{12} \in M_{12}$. Also for $a_{21}=e_{2} \gamma k \gamma e_{1} \in M_{21}$, using the fact that $e_{1} \gamma a_{21}=0, e_{1} \gamma v_{12} \gamma a_{21}=v_{12} \gamma a_{21}$ and $u_{12} \gamma v_{12} \gamma a_{21}=0$, we obtain

$$
\begin{aligned}
\varphi\left(y \gamma a_{21}\right) & =\varphi(y) \gamma \varphi\left(a_{21}\right) \\
& =\left[\varphi\left(u_{12}\right)+\varphi\left(v_{12}\right)\right] \gamma \varphi\left(a_{21}\right) \\
& =\left[\varphi\left(e_{1}\right)+\varphi\left(u_{12}\right)\right] \gamma\left[\varphi\left(a_{21}\right)+\varphi\left(v_{12} \gamma a_{21}\right)\right] \\
& =\varphi\left(e_{1}+u_{12}\right) \gamma \varphi\left(a_{21}+v_{12} \gamma a_{21}\right), \text { by Theorem } 2.2 \text { (i) and (ii) } \\
& =\varphi\left(\left(e_{1}+u_{12}\right) \gamma\left(a_{21}+v_{12} \gamma a_{21}\right)\right) \\
& =\varphi\left[\left(u_{12}+v_{12}\right) \gamma a_{21}\right] .
\end{aligned}
$$

Hence since φ is one to one, we get $y \gamma a_{21}=\left(u_{12}+v_{12}\right) \gamma a_{21}$. Similarly we see that $y \gamma a_{22}=\left(u_{12}+v_{12}\right) \gamma a_{22}$. Therefore, it follows that $\left(y-\left(u_{12}+v_{12}\right)\right) \gamma M=0$, and so by Theorem 1.1., $y=u_{12}+v_{12}$, that is $\varphi\left(u_{12}+v_{12}\right)=\varphi\left(u_{12}\right)+\varphi\left(v_{12}\right)$.

Theorem 2.4. Let M be a prime Γ-ring, N be a Γ-ring. Then $\varphi\left(u_{11}+v_{11}\right)=\varphi\left(u_{11}\right)+\varphi\left(v_{11}\right)$ for all $u_{11}, v_{11} \in M_{11}$.
Proof. Since $\varphi\left(u_{11}\right)+\varphi\left(v_{11}\right) \in N$ and φ is onto, we have an element $y \in M$ such that $\varphi(y)=\varphi\left(u_{11}\right)+\varphi\left(v_{11}\right)$. For $a_{12} \in M_{12}$, we get, since $u_{11} \gamma a_{12}, v_{11} \gamma a_{12} \in M_{12}$,

$$
\begin{aligned}
\varphi\left(y \gamma a_{12}\right) & =\varphi(y) \gamma \varphi\left(a_{12}\right) \\
& =\left[\varphi\left(u_{11}\right)+\varphi\left(v_{11}\right)\right] \gamma \varphi\left(a_{12}\right) \\
& =\varphi\left(u_{11}\right) \gamma \varphi\left(a_{12}\right)+\varphi\left(v_{11}\right) \gamma \varphi\left(a_{12}\right) \\
& =\varphi\left(u_{11} \gamma a_{12}\right)+\varphi\left(v_{11} \gamma a_{12}\right) \\
& =\varphi\left(u_{11} \gamma a_{12}+v_{11} \gamma a_{12}\right), \text { by Theorem } 2.3 .
\end{aligned}
$$

Since φ is one to one, this shows that $y \gamma a_{12}=u_{11} \gamma a_{12}+v_{11} \gamma a_{12}$. That is, $\left(y-\left(u_{11}+v_{11}\right)\right) \gamma a_{12}=0$ or $\left(y-\left(x_{11}+u_{11}\right)\right) \gamma M_{12}=0$. Now let $y=y_{11}+y_{12}+y_{21}+y_{22}$. Then since $e_{1} \gamma u_{11}=u_{11}, e_{1} \gamma v_{11}=v_{11}$, $e_{1} \gamma y_{11}=y_{11}, e_{1} \gamma y_{12}=y_{12}, e_{1} \gamma y_{21}=0$ and $e_{1} \gamma y_{22}=0$, we obtain

$$
\begin{aligned}
\varphi(y) & =\varphi\left(u_{11}\right)+\varphi\left(v_{11}\right) \\
& =\varphi\left(e_{1} \gamma u_{11}\right)+\varphi\left(e_{1} \gamma v_{11}\right) \\
& =\varphi\left(e_{1}\right) \gamma \varphi\left(u_{11}\right)+\varphi\left(e_{1}\right) \gamma \varphi\left(v_{11}\right) \\
& =\varphi\left(e_{1}\right) \gamma\left[\varphi\left(u_{11}\right)+\varphi\left(v_{11}\right)\right] \\
& =\varphi\left(e_{1}\right) \gamma \varphi(y) \\
& =\varphi\left(e_{1}\right) \gamma \varphi\left(y_{11}+y_{12}+y_{21}+y_{22}\right) \\
& =\varphi\left[e_{1} \gamma\left(y_{11}+y_{12}+y_{21}+y_{22}\right)\right] \\
& =\varphi\left(y_{11}+y_{12}\right) .
\end{aligned}
$$

Since φ is one to one, we have $y=y_{11}+y_{12}$. Furthermore, we get

$$
\begin{aligned}
\varphi(y) & =\varphi\left(u_{11}\right)+\varphi\left(v_{11}\right) \\
& =\varphi\left(u_{11} \gamma e_{1}\right)+\varphi\left(v_{11} \gamma e_{1}\right), \text { since } u_{11} \gamma e_{1}=u_{11}, \text { and } v_{11} \gamma e_{1}=v_{11} \\
& =\varphi\left(u_{11}\right) \gamma \varphi\left(e_{1}\right)+\varphi\left(v_{11}\right) \gamma \varphi\left(e_{1}\right) \\
& =\left(\varphi\left(u_{11}\right)+\varphi\left(v_{11}\right)\right) \gamma \varphi\left(e_{1}\right) \\
& =\varphi(y) \gamma \varphi\left(e_{1}\right) \\
& =\varphi\left(y_{11}+y_{12}\right) \gamma \varphi\left(e_{1}\right) \\
& =\varphi\left(\left(y_{11}+y_{12}\right) \gamma e_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\varphi\left(y_{11} \gamma e_{1}+y_{12} \gamma e_{1}\right) \\
& =\varphi\left(y_{11}\right), \text { since } y_{12} \gamma e_{1}=0 .
\end{aligned}
$$

Since φ is one to one, we have $y=y_{11} \in M_{11}$. Therefore $y-\left(x_{11}+u_{11}\right) \in M_{11}$. Then, by theorem 1.1, $\left(y-\left(x_{11}+u_{11}\right)\right) \gamma M_{12}=0$ implies $y-\left(u_{11}+v_{11}\right)=0$, that is, $y=u_{11}+v_{11}$. So we obtain that $\varphi\left(u_{11}+v_{11}\right)=\varphi\left(u_{11}\right)+\varphi\left(v_{11}\right)$ for all $u_{11}, v_{11} \in M_{11}$.
Theorem 2.5. Let M be a prime Γ-ring, N be a Γ-ring and $\varphi: M \rightarrow N$ be multiplicative isomorphism. Then φ is additive on $M_{11}+M_{12}$.
Proof. Let $x, y \in M_{11}+M_{12}$. For any $a, b \in M_{11}$ and $c, d \in M_{12}$, we have $x=a+c, y=b+d$. Then

$$
\begin{aligned}
\varphi(x+y) & =\varphi((a+c)+(b+d)) \\
& =\varphi((a+b)+(c+d)), a+b \in M_{11} \text { and } c+d \in M_{12} \\
& =\varphi(a+b)+\varphi(c+d), \text { by Theorem 2.2. (i), since } a+b \in M_{11}, \\
& c+d \in M_{12} \\
& =\varphi(a)+\varphi(b)+\varphi(c)+\varphi(d), \text { by Theorem 2.4. and Theorem 2.3. } \\
& =\varphi(a+c)+\varphi(b+d), \text { by Theorem 2.2.(i) } \\
& =\varphi(x)+\varphi(y) .
\end{aligned}
$$

Theorem 2.6. Let M be a prime Γ-ring, N be a Γ-ring. Then any multiplicative gamma isomorphism φ of M onto N is additive.
Proof: Since $\varphi(x)+\varphi(y) \in N$ for $x, y \in M$ and φ is onto, we have an element $z \in M$ such that $\varphi(z)=\varphi(x)+\varphi(y)$.

Let $t \in e \gamma M$. Since

$$
\begin{aligned}
e \gamma M & =e_{1} \gamma M \\
& =e_{1} \gamma\left(e_{1} \gamma M \gamma e_{1}+e_{1} \gamma M \gamma e_{2}+e_{2} \gamma M \gamma e_{1}+e_{2} \gamma M \gamma e_{2}\right) \\
& =e_{1} \gamma M \gamma e_{1}+e_{1} \gamma M \gamma e_{2} \\
& =M_{11}+M_{12},
\end{aligned}
$$

we obtain

$$
\begin{aligned}
\varphi(t \gamma z) & =\varphi(t) \gamma \varphi(z) \\
& =\varphi(t) \gamma(\varphi(x)+\varphi(y)) \\
& =\varphi(t) \gamma \varphi(x)+\varphi(t) \gamma \varphi(y) \\
& =\varphi(t \gamma x)+\varphi(t \gamma y) \\
& =\varphi(t \gamma x+t \gamma y), \text { by Theorem 2.5. }
\end{aligned}
$$

So, since φ is one-to-one, we have $t \gamma z=t \gamma x+t \gamma y$. Then $t \gamma(z-(x+y))=0$ or $\operatorname{e\gamma } M \gamma(z-(x+y))=0$. By Theorem 1.1. (ii), we have $z=x+y$. Then we obtained that $\varphi(x+y)=\varphi(x)+\varphi(y)$ for all $x, y \in M$.
Definition 2.2. A gamma ring M is called a Boolean gamma ring if $m \gamma m=m$ for all $m \in M$,$\gamma \in \Gamma$.
Theorem 2.7. Let M be a Boolean gamma ring. Then $m=-m$ for all $m \in M$.
Proof. Since M Boolean gamma ring, $(m+m) \gamma(m+m)=m+m$. Then we have

$$
\begin{aligned}
m+m & =(m+m) \gamma(m+m) \\
& =m \gamma m+m \gamma m+m \gamma m+m \gamma m \\
& =m+m+m+m .
\end{aligned}
$$

Using the cancellation rule in the gamma ring M, we get $m+m=0$ or $m=-m$.
Theorem 2.8. If M is a Boolean gamma ring, then M is commutative.
Proof. Since M Boolean gamma ring, $(m+n) \gamma(m+n)=m+n$. Then we have

$$
\begin{aligned}
m+n & =(m+n) \gamma(m+n) \\
& =m \gamma m+m \gamma n+n \gamma m+n \gamma n \\
& =m+m \gamma n+n \gamma m+n .
\end{aligned}
$$

Using the cancellation rule in the gamma ring M, we get $m \gamma n+n \gamma m=0$. Hence, by Theorem 2.7, we obtain $m \gamma n=n \gamma m$.
Theorem 2.9: Let M be a Boolean Γ-ring and N arbitrary gamma ring. Then any multiplicative isomorphism φ of M onto N is additive.
Proof: Let φ multiplicative mapping from M onto N. Then N is also a Boolean gamma ring.

Let x and y arbitrary elements in M. Since $\varphi(x)+\varphi(y) \in N$ and φ is onto, there exist $m \in M$ so that $\varphi(m)=\varphi(x)+\varphi(y)$. The following equations can be obtained using mapping φ is multiplicative,

$$
\begin{align*}
& \varphi(x \gamma m+y \gamma m)=\varphi((x+y) \gamma m) \\
&=\varphi(x+y) \gamma \varphi(m) \\
&=\varphi(x+y) \gamma(\varphi(x)+\varphi(y)) \tag{1}\\
&=\varphi(x+y) \gamma \varphi(x)+\varphi(x+y) \gamma \varphi(y)) \\
&=\varphi(x \gamma x+y \gamma x)+\varphi(x \gamma y+y \gamma y) \\
&= \varphi(x+y \gamma x)+\varphi(x \gamma y+y) \\
& \varphi(x \gamma m)=\varphi(x) \gamma \varphi(m) \\
&=\varphi(x) \gamma(\varphi(x)+\varphi(y)) \\
&=\varphi(x \gamma x)+\varphi(x \gamma y) \tag{2}\\
&=\varphi(x)+\varphi(x \gamma y)
\end{align*}
$$

and similarly

$$
\begin{equation*}
\varphi(y \gamma m)=\varphi(y)+\varphi(x \gamma y) \tag{3}
\end{equation*}
$$

Our aim is to show $\varphi(x+y)=\varphi(x)+\varphi(y)$ for all $x, y \in M$. In the above equalities, if $x \gamma y=0$ (so $y \gamma x=0$ by commutativity), we have for (1), (2) and (3)

$$
\begin{gather*}
\varphi(x \gamma m+y \gamma m)=\varphi(x)+\varphi(y)=\varphi(m) \tag{4}\\
\varphi(x \gamma m)=\varphi(x) \tag{5}\\
\varphi(y \gamma m)=\varphi(y) \tag{6}
\end{gather*}
$$

respectively. Since the mapping φ is one-to-one, equations (4), (5) and (6) imply $x \gamma m+y \gamma m=m$, $x \gamma m=x$ and $y \gamma m=y$. It follows that $m=x+y$ and thus we obtain

$$
\begin{equation*}
\varphi(x+y)=\varphi(x)+\varphi(y) \tag{7}
\end{equation*}
$$

If $x \gamma y=y$, then we get the following for (1), (2) and (3), respectively,

$$
\begin{align*}
& \varphi(x \gamma m+y \gamma m)=\varphi(x+y)+\varphi(y+y) \\
&=\varphi(x+y)+\varphi(0) \text { by Teorem 2.7. } \tag{8}\\
&=\varphi(x+y) \\
& \varphi(x \gamma m)=\varphi(x)+\varphi(y)=\varphi(m) \tag{9}\\
& \varphi(y \gamma m)=\varphi(y+y)=0 \tag{10}
\end{align*}
$$

Since the mapping is one-to-one, equations (8), (9) and (10) imply
$x \gamma m+y \gamma m=x+y, x \gamma m=m$ and $y \gamma m=0$.Thus, since $m=x+y$, it follows that $\varphi(x+y)=\varphi(x)+\varphi(y)$.
Now, $x+y$ can be written as $x+y=(x+x \gamma y)+(y+x \gamma y)$ and also we have $(x+x \gamma y) \gamma(y+x \gamma y)=0$ by Theorem 2.7. So, using the result of the first case in the above, we obtain

$$
\begin{equation*}
\varphi(x+y)=\varphi((x+x \gamma y)+(y+x \gamma y))=\varphi(x+x \gamma y)+\varphi(y+x \gamma y) \tag{11}
\end{equation*}
$$

Furthermore, since $x \gamma(x \gamma y)=x \gamma y$ and $y \gamma(x \gamma y)=x \gamma y$ (by comutativity), using the result of the second case in the above, we have

$$
\begin{equation*}
\varphi(x+x \gamma y)=\varphi(x)+\varphi(x \gamma y), \varphi(y+x \gamma y)=\varphi(y)+\varphi(x \gamma y) \tag{12}
\end{equation*}
$$

Substituting the obtained equations in (12) to (11), we obtain

$$
\varphi(x+y)=\varphi(x)+\varphi(y)
$$

for all $x, y \in M$.

References

[1] Barnes, W., On the Г-Rings of Nobusawa, Pasific J.Math, 18 (1966), 411-22.
[2] Chakraborty, S., Paul, A.C., On jordan isomorphisms of 2-torsion free prime gamma rings, Novi Sad J. Math., Vol.40, No.2, 2010, 1-5.
[3] Johnson, R. E., Rings with unique addition, Proc. Amer. Math. Soc. 9 (1958), 57-61.
[4] Luh, J., On the theory of simple gamma rings, Michigan Math. J., Volume 16, Issue 1 (1969), 65-75.
[5] Nobusawa, N., On a generalization of the ring theory, Osaka J. Math. 1 (1964), 81-89.
[6] Wallance, S., Martindale, When are multiplicative mappings additive, Proc. Amer. Math. Soc. 21(1969) 695-698.
[7] Mukherjee, R.N., Some results on Г-Rings, Indian J. Pure Apply. Math., 34(6) : 991-994.
[8] Rickart, C.E., One-to-one mappings of ring and lattices, Bull. Amer.Math.Soc. 54 (1948), 758-764.
[9] Soytürk, M., The commutativity in prime gamma rings with derivation, Tr. J. Mathematics, 18 (1994), 149-155.

Author information

Kenan Çağlar DÜKEL and Yılmaz ÇEVEN, Department of Mathematics, Faculty of Arts and Sciences, Süleyman Demirel University, 32260 Isparta, Turkey, U. S. A..
E-mail: kenancaglardukel@yandex.com-yilmazceven@sdu.edu.tr
Received: January 6, 2016.
Accepted: September 11, 2016.

