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Abstract. In this paper, some results given by Martindale III and Rickart are generalized
to the I'—rings. Using generalized Peirce decomposition of a I'—ring given by Mukherjee, it
is obtained that any multiplicative isomorphism of I'—ring M onto an arbitrary I'—ring N is
additive.

1 Introduction and Preliminaries

Let R and S be arbitrary associative rings (not necessarily with identity elements). A one-to-
one mapping o of R onto S such that o(zy) = o(x)o(y) forall z,y € R is called a multiplicative
isomorphism of R onto S. The question of when a multiplicative isomorphism is additive has
been considered by Rickart [8] and also by Johnson [3]. Martindale III is generalized the main
theorem of Rickart’s paper in [6] and removed a condition from the theorem. Martindale III,
using Peirce decomposition of a ring, showed that any multiplicative isomorphism of R onto an
arbitrary ring S is additive.

The concept of a I'—ring was introduced by Nobusawa in [5] as a generalization of the ring
theory and generalized by Barnes [1] as follows: Let (M, +) and (T, +) be additive Abelian
groups. If there exists a mapping M x I' x M — M ( the image of (a, «,b) is denoted by aab
where a,b € M and « € T') satisfying the conditions

(i) (z+y)az =zaz+yaz,
(i) za(y+ 2) = zay + zaz,
(iii) z(a+ B8)z = vaz + z0z,
(iv) za(yBz) = (zay)Bz
forall z,y,zin M and «, B in I, then M is called a I'-ring.

Every ring is a I'—ring and many notions on the ring theory are generalized to the I'—ring.

Mukherjee [7] is generalized and extended some results on I'—rings obtained by some re-
searchers.

In this paper, some results given by Martindale IIT and Rickart are generalized to the T'—rings.
Using generalized Peirce decomposition of a I'—ring given by Mukherjee, it is obtained that any
multiplicative isomorphism of I'—ring M onto an arbitrary I'—ring /N is additive.

AT —ring M is said to be a prime gamma ring if and only if aI' MT'b = O for a,b € M implies
a=0orb=0and M is called completely prime if and only if aI'b = 0 implies a = 0 or b = 0.
Theorem 1.1. [9] Let M be a prime gamma ring. U be a nonzero ideal of M. Then, fora,b € M,

(i) if UTa=0o0ral’'U =0thena =0,

(i) if al'UTb =0thena =0o0rb =0.

An element e in a I'-ring is said to be an idempotent, if there exists v € I" such that eye = e.
In this case we also say that e is y-idempotent.

The following result can be termed as generalized Peirce Decomposition of a gamma ring
M.

Theorem 1.2. [7] If e is an idempotent of M then
M =eyMye®eyM~(1 —e) ® (1 —e)yMye @ (1 — e)yM~(1 —e).

In this Theorem, taking e, e, instead of e and 1 — e, respectively, we can write the Peirce
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Decomposition of a gamma ring M as
M = e;yM~e, e yMye,DeryMye,BeryyMye,.
Then letting M;;= e;yM~e;, we may write M as
M =MyeMp&Mn®&Moy.

It is also known that e;ve;= e;, if i = j, and e;ve;= 0, if i # j.

2 The Main Part

Definition 2.1. Let M and N gamma rings. A one-to-one mapping ¢ of M onto N such that
w(zvy) = o(x)yp(y) for all x,y € M will be called a multiplicative isomorphism of M onto
N.

In this part, e is an idempotent element of M such that e # 0 and e # 1 (M need not have an
identity) and ¢ is a multiplicative isomorphism of M onto V. Alsoe;j=eand ep=1—e.
Theorem 2.1. Let M and N be two I'-rings. Then ¢(0) = 0.

Proof. Since 0 € N and ¢ is onto, p(z) = 0 for some z € M. Then we have

©(0) = (0yz) = (0)yp(x) = 0.

Theorem 2.2. Let M be a prime I'-ring, N be a I'-ring. Then
(@) oz +a12) = (7)) + (215),
(ii) p(zy+z21) = (7)) + (7)),
(iii) p(z9y+712) = (7)) + P(215),
(V) (20 +721) = (7)) + ()
where z;;€ M,;.

Proof. (i) For z11,2z,€ M, since p(x;) + ¢(z,) € N and ¢ is onto, we have an element
y€ M such that ¢(y) = ¢(z;)+ ¢(z,). Taking z;1=erymye;, zip=erymye, and
a11= eyynyey, foraj € My, where e; is an idempotent element and e;= 1 — e1, we have (z1; +
T12)Yay = 11741, + T12ya;; = w1170, since x1pvaq; = 0. Then we get, |
elyvay) = e(y)rel(ar)

= (<P(x11) + 80(3312))’780(%1)

= ‘P(xll)'YSO(an) + @(%2)’7’@(“11)

= p(wyyan) + e(y7ar)

= ¢((z);+712)70y;) + ©(0)

= o((z1;+x12)70y;)-

Hence we obtain yya;; = (z11+ 212)va;; since ¢ is one to one. Similarly we can see
that yya,= (x,,+ z12)vay, for apne Mio, yyas = (z,,+x12)va,, for azi€ Moy, yyar,= (x,+
x12)7a,, for axne M. Hence since
aiitaptaz+an=a € M, it is obtained that (y — (z,;+z12))yM = 0. Since M is a prime
I'-ring, by Theorem 1.1, we have y — (x,+x12) = 0 or y = x;;+ x12. That is

o1+ z12) = @) + 0(3,).

(i) It is obtained M~(y — (x;,;+x12)) = 0 with similar operations. Since M is a prime I'-
ring, by Theorem 1.1, we get p(x;,+ z21) = @(x1,) + ¢(x,, ), consequently.
(iii) and (iv) is can be seen similarly.

Theorem 2.3. Let M be a prime I'-ring, NV be a I'-ring. Then

90(“124'1112) = %O(Uu) + 99(”12)

for all U2, V12€ M.
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Proof: Since ¢(uy,) + ¢(v,) € N and ¢ is onto, we have an element y € M such that
o(y) = p(uy,) + ¢(vy,). Forajj€ My, taking aj1= ejynyey, uin= e;ymye, and vip= ejyrye,,
we have uipyaq;= 0 and vjpva;; = 0. Hence
eyyay) = ey)relay)
= (90(“12) + @(%2))'790(@11)
= ‘P(ulz)“ﬂp(au) + p(vp)re(ay;)
upvay) + e(vpvan)

o
(0) +(0)

.0

Since ¢ is one to one, we get yya;;= 0. Similarly, we see that yya,;,= O for ajp€ M1 Also
for as1= exykye € Mo, using the fact that ey yay; = 0, e1yv1yYay = vi2va21 and u12yvyyay;= 0,
we obtain

e(yyay,)

e(y)re(ay)

[p(ugp) + (v1p)] ve(ay;)

[pler) + @(up)] v [play) + e(viyvas)]
(e;+u12)ve(ay; +v127ay; ), by Theorem 2.2 (i) and (ii)

((e;Fu12)v(ay +vi2vas )

[(u12 + vi2)yay] .

Hence since ¢ is one to one, we get yyay = (uy,+vi2)ya,,. Similarly we see that
yyay= (u;,+v12)va,,. Therefore, it follows that (y — (u;,+v12))yM = 0, and so by Theorem
1.1,y = upp+ovro, that is p(uiz + vi2) = (uy,) + ©(vy,).

Theorem 2.4. Let M be a prime I'-ring, N be a I'ring. Then ¢ (u;,4+v11) = ¢(uq) + ¢(vq;)
for all w11, v;€ M.
Proof. Since ¢(u;;)+ ¢(v;;) € N and ¢ is onto, we have an element y € M such that
o(y) = p(uy;) + ¢(vq;)- For aine M, we get, since ujiya,, vi1yan€ M,
plyrap) = e)relan)
= [o(uyy) + o(vyy)] ve(ay,)
= @(ug)yelary) + (o) ye(a,)
= p(uyyyary) + (v van)
= ¢(uyyva1,+v117a1,), by Theorem 2.3.

Since ¢ is one to one, this shows that yya;,= ui1va;,+v117a1,. Thatis, (y — (u;+v11))ya,=0
or (y — (z,+un))yM ,= 0. Now lety = yy;+y1+Y21+¥sp. Then since e1yu; = uir, e1yvy = vi1,
ey = Y11, €17912= Y12, €17y21= 0 and e1yy, = 0, we obtain

e(y) =opluy) +o(vy)
= p(e;vuir) +(egvvn)
= p(e))re(uy) + @le))ve(vy)
(e))7 [e(un1) + o(vn)]
(
(e

¥
¥
¥

~

e)7e(y)
DYty +Ya1 )

= [61’7(911 +yi2 +yu + yzz)}

= e(y1tyn)
Since ¢ is one to one, we have y = y;;+y;,. Furthermore, we get

e(y) = euy) +e(vy)
= p(uyyver) + (vy7ver), since uiye; = uir, and viye; = vig
= 90(“11)'7%0(61) + 90(1)11)’7 (e )
= (‘P(Un) + @(Uu))'ﬂp( 1)
= p(y)vele)
= (Y1 +y12)re(e)
= o((y1+y12)7e;)

P
=
= ple
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= o(yvertynver)
= ¢(yy,), since y1pye,;= 0.

Since ¢ is one to one, we have y = y,;€ M. Therefore y — (z,;+u11) € M,;. Then, by
theorem 1.1, (y — (@, +u11))yM,,= 0 implies y — (uy,+v11) = 0, thatis, y = u;;+v;1. So we
obtain that ¢(u,;+v11) = ¢(uy;) + ¢(vy;) for all uyy, vire M.

Theorem 2.5. Let M be a prime I'-ring, N be a I'-ring and ¢ : M — N be multiplicative
isomorphism. Then ¢ is additive on M1+ M.
Proof. Let =,y € M,;+Mi,.Foranya,b € M, and¢,d € M,, wehave x =a+c, y = b+d.
Then
la+y) =ella+o)+(b+d)
:ap((a—l—b)—{—(c—!—d)),a—i-be Miyiandc+d e My
= p(a+b)+ ¢(c+d), by Theorem 2.2. (i), since a + b € M1y,
c+de M
= p(a) + ¢(b) + ©(c) + ¢(d), by Theorem 2.4. and Theorem 2.3.
= p(a+c¢)+ ¢(b+ d), by Theorem 2.2.(i)
= p(x) +o(y).
Theorem 2.6. Let M be a prime I'-ring, IV be a I'-ring. Then any multiplicative gamma isomor-

phism ¢ of M onto N is additive.
Proof: Since p(z) + ¢(y) € N for z,y € M and ¢ is onto, we have an element z € M such

that p(2) = ¢(x) + ¢ (y).
Lett € eyM. Since
eyM =evM
= ery(eryMrye teryMyes+eyyMyei+eyyMrye,)
= e1yMyet+eiyMne,
= My + M2,
we obtain
p(ty2)

t)ve(2)

)y(e(x) + ¢(y))

tve(z) +o(t)ye(y)

tyx) + o(tyy)

(tyz + tyy), by Theorem 2.5.

So, since ¢ is one-to-one, we have t¢yz =tyx + tyy. Then ty(z — (z+y)) =0 or
eyM~(z — (x +y)) = 0. By Theorem 1.1. (ii), we have z = z + y. Then we obtained that
oz +y) =¢(z) +¢(y) forall z,y € M.

Definition 2.2. A gamma ring M is called a Boolean gamma ring if mym = m for allm € M
~eT.
’i‘yheorem 2.7. Let M be a Boolean gamma ring. Then m = —m for all m € M.
Proof. Since M Boolean gamma ring, (m + m)y(m + m) = m + m. Then we have
m+m = (m+m)y(m+m)
= mym + mym + mym + mym

(
(
(
(

¥
14
¥
¥
¥

=m-+m-+m-+m.
Using the cancellation rule in the gamma ring M, we get m +m = 0 or m = —m.
Theorem 2.8. If M is a Boolean gamma ring, then M is commutative.
Proof. Since M Boolean gamma ring, (m + n)y(m + n) = m + n. Then we have
m+n =(m+n)y(m+n)
= mym + myn + nym + nyn
=m -+ myn + nym + n.
Using the cancellation rule in the gamma ring M, we get myn + nym = 0. Hence, by The-
orem 2.7, we obtain myn = nym.
Theorem 2.9: Let M be a Boolean I'—ring and N arbitrary gamma ring. Then any multi-

plicative isomorphism ¢ of M onto N is additive.
Proof: Let ¢ multiplicative mapping from M onto N. Then N is also a Boolean gamma ring.
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Let z and y arbitrary elements in M. Since ¢(z) + ¢(y) € N and ¢ is onto, there exist m € M
so that ¢(m) = p(z) + »(y). The following equations can be obtained using mapping ¢ is
multiplicative,

p(aym+yym) =

T yhrele) + oo + v)ve() M

vz + yyx) + o(xvy + yyy)
z+yyx) + e(eyy +y),

( )
)+ ()
¢

2
(my) @)

e
+
and similarly

e(yym) = ¢(y) + o(z7y). 3)

Our aim is to show p(z + y) = ¢(x) + ¢(y) forall z,y € M. In the above equalities, if zyy = 0
(so yyz = 0 by commutativity), we have for (1), (2) and (3)

p(zym +yym) = p(z) + o(y) = ¢(m), “4)
p(zym) = p(z), (5)
e(yym) = ¢(y) (6)

respectively. Since the mapping  is one-to-one, equations (4), (5) and (6) imply zym + yym = m,
zym = x and yym = y. It follows that m = x + y and thus we obtain

ez +y) =)+ o). (7)
If vy = y, then we get the following for (1), (2) and (3), respectively,

plxym+yym) = +y)+e(y+y)

= o(z +y) + ©(0) by Teorem 2.7. 8

= p(x +y),
p(zym) = p(x) + ¢(y) = p(m), )
o(yym) = o(y +y) = 0. (10)

Since the mapping is one-to-one, equations (8), (9) and (10) imply

xym+yym =z +y, xym =m and yym = 0.Thus, since m =z + y, it follows that
ez +y) = o) + o(y).
Now, z+y can be written as x+y=(z+ayy)+ (y+2yy) and also we have
(z 4+ zvy)v(y + zyy) = 0 by Theorem 2.7. So, using the result of the first case in the above, we
obtain

p(z +y) = p((x +zvy) + (y + 27y)) = ¢z + 27y) + (y + 27y). (11)
Furthermore, since zy(zyy) = xyy and yy(zyy) = zyy (by comutativity), using the result of
the second case in the above, we have

oz + zyy) = () + o(z7y), 0y + 27y) = ¢(y) + o(z7y). (12)
Substituting the obtained equations in (12) to (11), we obtain

p(r+y) = e(r) +¢(y)
forall z,y € M.
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