ADDITIVITY OF MULTIPLICATIVE ISOMORPHISMS IN GAMMA RINGS

Kenan Çağlar DÜKEL and Yılmaz ÇEVEN

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 16Y99, 16W20; Secondary 03G05.

Keywords and phrases: Gamma rings, idempotent element, Peirce decomposition, multiplicative isomorphism.

Abstract. In this paper, some results given by Martindale III and Rickart are generalized to the Γ -rings. Using generalized Peirce decomposition of a Γ -ring given by Mukherjee, it is obtained that any multiplicative isomorphism of Γ -ring M onto an arbitrary Γ -ring N is additive.

1 Introduction and Preliminaries

Let R and S be arbitrary associative rings (not necessarily with identity elements). A one-toone mapping σ of R onto S such that $\sigma(xy) = \sigma(x)\sigma(y)$ for all $x, y \in R$ is called a multiplicative isomorphism of R onto S. The question of when a multiplicative isomorphism is additive has been considered by Rickart [8] and also by Johnson [3]. Martindale III is generalized the main theorem of Rickart's paper in [6] and removed a condition from the theorem. Martindale III, using Peirce decomposition of a ring, showed that any multiplicative isomorphism of R onto an arbitrary ring S is additive.

The concept of a Γ -ring was introduced by Nobusawa in [5] as a generalization of the ring theory and generalized by Barnes [1] as follows: Let (M, +) and $(\Gamma, +)$ be additive Abelian groups. If there exists a mapping $M \times \Gamma \times M \to M$ (the image of (a, α, b) is denoted by $a\alpha b$ where $a, b \in M$ and $\alpha \in \Gamma$) satisfying the conditions

(i) $(x+y)\alpha z = x\alpha z + y\alpha z$,

(ii) $x\alpha(y+z) = x\alpha y + x\alpha z$,

(iii) $x(\alpha + \beta)z = x\alpha z + x\beta z$,

(iv) $x\alpha(y\beta z) = (x\alpha y)\beta z$

for all x, y, z in M and α, β in Γ , then M is called a Γ -ring.

Every ring is a Γ -ring and many notions on the ring theory are generalized to the Γ -ring.

Mukherjee [7] is generalized and extended some results on Γ -rings obtained by some researchers.

In this paper, some results given by Martindale III and Rickart are generalized to the Γ -rings. Using generalized Peirce decomposition of a Γ -ring given by Mukherjee, it is obtained that any multiplicative isomorphism of Γ -ring M onto an arbitrary Γ -ring N is additive.

A Γ -ring M is said to be a prime gamma ring if and only if $a\Gamma M\Gamma b = 0$ for $a, b \in M$ implies a = 0 or b = 0 and M is called completely prime if and only if $a\Gamma b = 0$ implies a = 0 or b = 0.

Theorem 1.1. [9] Let M be a prime gamma ring. U be a nonzero ideal of M. Then, for $a, b \in M$, (i) if $U\Gamma a = 0$ or $a\Gamma U = 0$ then a = 0,

(ii) if $a\Gamma U\Gamma b = 0$ then a = 0 or b = 0.

An element e in a Γ -ring is said to be an idempotent, if there exists $\gamma \in \Gamma$ such that $e\gamma e = e$. In this case we also say that e is γ -idempotent.

The following result can be termed as generalized Peirce Decomposition of a gamma ring M.

Theorem 1.2. [7] If e is an idempotent of M then

 $M = e\gamma M\gamma e \oplus e\gamma M\gamma (1-e) \oplus (1-e)\gamma M\gamma e \oplus (1-e)\gamma M\gamma (1-e).$

In this Theorem, taking e_1, e_2 instead of e and 1 - e, respectively, we can write the Peirce

Decomposition of a gamma ring M as

 $M = e_1 \gamma M \gamma e_1 \oplus e_1 \gamma M \gamma e_2 \oplus e_2 \gamma M \gamma e_1 \oplus e_2 \gamma M \gamma e_2.$

Then letting $M_{ij} = e_i \gamma M \gamma e_j$, we may write M as

$$M = M_{11} \oplus M_{12} \oplus M_{21} \oplus M_{22}$$

It is also known that $e_i \gamma e_j = e_i$, if i = j, and $e_i \gamma e_j = 0$, if $i \neq j$.

2 The Main Part

Definition 2.1. Let *M* and *N* gamma rings. A one-to-one mapping φ of *M* onto *N* such that $\varphi(x\gamma y) = \varphi(x)\gamma\varphi(y)$ for all $x, y \in M$ will be called a multiplicative isomorphism of *M* onto *N*.

In this part, e is an idempotent element of M such that $e \neq 0$ and $e \neq 1$ (M need not have an identity) and φ is a multiplicative isomorphism of M onto N. Also $e_1 = e$ and $e_2 = 1 - e$. **Theorem 2.1**. Let M and N be two Γ -rings. Then $\varphi(0) = 0$.

Proof. Since $0 \in N$ and φ is onto, $\varphi(x) = 0$ for some $x \in M$. Then we have

$$\varphi(0) = \varphi(0\gamma x) = \varphi(0)\gamma\varphi(x) = 0.$$

Theorem 2.2. Let M be a prime Γ -ring, N be a Γ -ring. Then

 $\begin{array}{l} (\mathrm{i}) \ \varphi(x_{11} + x_{12}) = \varphi(x_{11}) + \varphi(x_{12}), \\ (\mathrm{ii}) \ \varphi(x_{11} + x_{21}) = \varphi(x_{11}) + \varphi(x_{21}), \\ (\mathrm{iii}) \ \varphi(x_{22} + x_{12}) = \varphi(x_{22}) + \varphi(x_{12}), \\ (\mathrm{iv}) \ \varphi(x_{22} + x_{21}) = \varphi(x_{22}) + \varphi(x_{21}) \\ \text{where} \ x_{ij} \in M_{ij}. \end{array}$

Proof. (i) For $x_{11}, x_{12} \in M$, since $\varphi(x_{11}) + \varphi(x_{12}) \in N$ and φ is onto, we have an element $y \in M$ such that $\varphi(y) = \varphi(x_{11}) + \varphi(x_{12})$. Taking $x_{11} = e_1 \gamma m \gamma e_1$, $x_{12} = e_1 \gamma m \gamma e_2$ and $a_{11} = e_1 \gamma n \gamma e_1$, for $a_{11} \in M_{11}$, where e_1 is an idempotent element and $e_2 = 1 - e_1$, we have $(x_{11} + x_{12})\gamma a_{11} = x_{11}\gamma a_{11} + x_{12}\gamma a_{11} = x_{11}\gamma a_{11}$ since $x_{12}\gamma a_{11} = 0$. Then we get, ,

$$\begin{split} \varphi(y\gamma a_{11}) &= \varphi(y)\gamma\varphi(a_{11}) \\ &= (\varphi(x_{11}) + \varphi(x_{12}))\gamma\varphi(a_{11}) \\ &= \varphi(x_{11})\gamma\varphi(a_{11}) + \varphi(x_{12})\gamma\varphi(a_{11}) \\ &= \varphi(x_{11}\gamma a_{11}) + \varphi(x_{12}\gamma a_{11}) \\ &= \varphi((x_{11} + x_{12})\gamma a_{11}) + \varphi(0) \\ &= \varphi((x_{11} + x_{12})\gamma a_{11}). \end{split}$$

Hence we obtain $y\gamma a_{11} = (x_{11} + x_{12})\gamma a_{11}$ since φ is one to one. Similarly we can see that $y\gamma a_{12} = (x_{11} + x_{12})\gamma a_{12}$ for $a_{12} \in M_{12}$, $y\gamma a_{21} = (x_{11} + x_{12})\gamma a_{21}$ for $a_{21} \in M_{21}$, $y\gamma a_{22} = (x_{11} + x_{12})\gamma a_{22}$ for $a_{22} \in M_{22}$. Hence since

 $a_{11}+a_{12}+a_{21}+a_{22}=a \in M$, it is obtained that $(y - (x_{11}+x_{12}))\gamma M = 0$. Since M is a prime Γ -ring, by Theorem 1.1, we have $y - (x_{11}+x_{12}) = 0$ or $y = x_{11}+x_{12}$. That is

$$\varphi(x_{11} + x_{12}) = \varphi(x_{11}) + \varphi(x_{12}).$$

(ii) It is obtained $M\gamma(y - (x_{11} + x_{12})) = 0$ with similar operations. Since M is a prime Γ -ring, by Theorem 1.1, we get $\varphi(x_{11} + x_{21}) = \varphi(x_{11}) + \varphi(x_{21})$, consequently.

(iii) and (iv) is can be seen similarly.

Theorem 2.3. Let M be a prime Γ -ring, N be a Γ -ring. Then

$$\varphi(u_{12} + v_{12}) = \varphi(u_{12}) + \varphi(v_{12})$$

for all $u_{12}, v_{12} \in M_{12}$.

Proof: Since $\varphi(u_{12}) + \varphi(v_{12}) \in N$ and φ is onto, we have an element $y \in M$ such that $\varphi(y) = \varphi(u_{12}) + \varphi(v_{12})$. For $a_{11} \in M_{11}$, taking $a_{11} = e_1\gamma n\gamma e_1$, $u_{12} = e_1\gamma m\gamma e_2$ and $v_{12} = e_1\gamma r\gamma e_2$, we have $u_{12}\gamma a_{11} = 0$ and $v_{12}\gamma a_{11} = 0$. Hence

$$\begin{split} \varphi(y\gamma a_{11}) &= \varphi(y)\gamma\varphi(a_{11}) \\ &= (\varphi(u_{12}) + \varphi(v_{12}))\gamma\varphi(a_{11}) \\ &= \varphi(u_{12})\gamma\varphi(a_{11}) + \varphi(v_{12})\gamma\varphi(a_{11}) \\ &= \varphi(u_{12}\gamma a_{11}) + \varphi(v_{12}\gamma a_{11}) \\ &= \varphi(0) + \varphi(0) \\ &= 0 \end{split}$$

Since φ is one to one, we get $y\gamma a_{11} = 0$. Similarly, we see that $y\gamma a_{12} = 0$ for $a_{12} \in M_{12}$. Also for $a_{21} = e_2\gamma k\gamma e_1 \in M_{21}$, using the fact that $e_1\gamma a_{21} = 0$, $e_1\gamma v_{12}\gamma a_{21} = v_{12}\gamma a_{21}$ and $u_{12}\gamma v_{12}\gamma a_{21} = 0$, we obtain

$$\begin{split} \varphi(y\gamma a_{21}) &= \varphi(y)\gamma\varphi(a_{21}) \\ &= [\varphi(u_{12}) + \varphi(v_{12})]\gamma\varphi(a_{21}) \\ &= [\varphi(e_1) + \varphi(u_{12})]\gamma[\varphi(a_{21}) + \varphi(v_{12}\gamma a_{21})] \\ &= \varphi(e_1 + u_{12})\gamma\varphi(a_{21} + v_{12}\gamma a_{21}), \text{ by Theorem 2.2 (i) and (ii)} \\ &= \varphi((e_1 + u_{12})\gamma(a_{21} + v_{12}\gamma a_{21})) \\ &= \varphi[(u_{12} + v_{12})\gamma a_{21}]. \end{split}$$

Hence since φ is one to one, we get $y\gamma a_{21} = (u_{12}+v_{12})\gamma a_{21}$. Similarly we see that $y\gamma a_{22} = (u_{12}+v_{12})\gamma a_{22}$. Therefore, it follows that $(y - (u_{12}+v_{12}))\gamma M = 0$, and so by Theorem 1.1., $y = u_{12}+v_{12}$, that is $\varphi(u_{12}+v_{12}) = \varphi(u_{12}) + \varphi(v_{12})$.

Theorem 2.4. Let
$$M$$
 be a prime Γ -ring, N be a Γ -ring. Then $\varphi(u_{11}+v_{11}) = \varphi(u_{11}) + \varphi(v_{11})$ for all $u_{11}, v_{11} \in M_{11}$.

Proof. Since $\varphi(u_{11}) + \varphi(v_{11}) \in N$ and φ is onto, we have an element $y \in M$ such that $\varphi(y) = \varphi(u_{11}) + \varphi(v_{11})$. For $a_{12} \in M_{12}$, we get, since $u_{11}\gamma a_{12}$, $v_{11}\gamma a_{12} \in M_{12}$,

$$\begin{split} \varphi(y\gamma a_{12}) &= \varphi(y)\gamma\varphi(a_{12}) \\ &= [\varphi(u_{11}) + \varphi(v_{11})]\,\gamma\varphi(a_{12}) \\ &= \varphi(u_{11})\gamma\varphi(a_{12}) + \varphi(v_{11})\gamma\varphi(a_{12}) \\ &= \varphi(u_{11}\gamma a_{12}) + \varphi(v_{11}\gamma a_{12}) \\ &= \varphi(u_{11}\gamma a_{12} + v_{11}\gamma a_{12}), \text{ by Theorem 2.3.} \end{split}$$

Since φ is one to one, this shows that $y\gamma a_{12} = u_{11}\gamma a_{12} + v_{11}\gamma a_{12}$. That is, $(y - (u_{11} + v_{11}))\gamma a_{12} = 0$ or $(y - (x_{11} + u_{11}))\gamma M_{12} = 0$. Now let $y = y_{11} + y_{12} + y_{21} + y_{22}$. Then since $e_1\gamma u_{11} = u_{11}$, $e_1\gamma v_{11} = v_{11}$, $e_1\gamma y_{11} = y_{11}$, $e_1\gamma y_{12} = y_{12}$, $e_1\gamma y_{21} = 0$ and $e_1\gamma y_{22} = 0$, we obtain

$$\begin{split} \varphi(y) &= \varphi(u_{11}) + \varphi(v_{11}) \\ &= \varphi(e_1\gamma u_{11}) + \varphi(e_1\gamma v_{11}) \\ &= \varphi(e_1)\gamma\varphi(u_{11}) + \varphi(e_1)\gamma\varphi(v_{11}) \\ &= \varphi(e_1)\gamma\varphi(u_{11}) + \varphi(v_{11})] \\ &= \varphi(e_1)\gamma\varphi(y) \\ &= \varphi(e_1)\gamma\varphi(y_{11} + y_{12} + y_{21} + y_{22}) \\ &= \varphi[e_1\gamma(y_{11} + y_{12} + y_{21} + y_{22})] \\ &= \varphi(y_{11} + y_{12}). \end{split}$$

Since φ is one to one, we have $y = y_{11} + y_{12}$. Furthermore, we get
 $\varphi(y) &= \varphi(u_{11}) + \varphi(v_{11}) \\ &= \varphi(u_{11}) + \varphi(v_{11})$, since $u_{11}\gamma e_1 = u_{11}$, and $v_{11}\gamma e_1 = v_{11} \\ &= \varphi(u_{11})\gamma\varphi(e_1) + \varphi(v_{11})\gamma\varphi(e_1) \\ &= (\varphi(u_{11}) + \varphi(v_{11}))\gamma\varphi(e_1) \\ &= \varphi(y)\gamma\varphi(e_1) \end{split}$

$$= \varphi(y)\gamma\varphi(e_1) = \varphi(y_{11}+y_{12})\gamma\varphi(e_1)$$

$$= \varphi((y_{11} + y_{12})\gamma e_1)$$

 $= \varphi(y_{11}\gamma e_1 + y_{12}\gamma e_1)$ = $\varphi(y_{11})$, since $y_{12}\gamma e_1 = 0$.

Since φ is one to one, we have $y = y_{11} \in M_{11}$. Therefore $y - (x_{11} + u_{11}) \in M_{11}$. Then, by theorem 1.1, $(y - (x_{11} + u_{11}))\gamma M_{12} = 0$ implies $y - (u_{11} + v_{11}) = 0$, that is, $y = u_{11} + v_{11}$. So we obtain that $\varphi(u_{11} + v_{11}) = \varphi(u_{11}) + \varphi(v_{11})$ for all $u_{11}, v_{11} \in M_{11}$.

Theorem 2.5. Let M be a prime Γ -ring, N be a Γ -ring and $\varphi : M \to N$ be multiplicative isomorphism. Then φ is additive on $M_{11}+M_{12}$.

Proof. Let $x, y \in M_{11} + M_{12}$. For any $a, b \in M_{11}$ and $c, d \in M_{12}$, we have x = a + c, y = b + d. Then

$$\begin{aligned} \varphi(x+y) &= \varphi((a+c) + (b+d)) \\ &= \varphi((a+b) + (c+d)), a+b \in M_{11} \text{ and } c+d \in M_{12} \\ &= \varphi(a+b) + \varphi(c+d), \text{ by Theorem 2.2. (i), since } a+b \in M_{11}, \\ &c+d \in M_{12} \\ &= \varphi(a) + \varphi(b) + \varphi(c) + \varphi(d), \text{ by Theorem 2.4. and Theorem 2.3.} \\ &= \varphi(a+c) + \varphi(b+d), \text{ by Theorem 2.2.(i)} \\ &= \varphi(x) + \varphi(y). \end{aligned}$$

Theorem 2.6. Let M be a prime Γ -ring, N be a Γ -ring. Then any multiplicative gamma isomorphism φ of M onto N is additive.

Proof: Since $\varphi(x) + \varphi(y) \in N$ for $x, y \in M$ and φ is onto, we have an element $z \in M$ such that $\varphi(z) = \varphi(x) + \varphi(y)$.

Let
$$t \in e\gamma M$$
. Since
 $e\gamma M = e_1\gamma M$
 $= e_1\gamma(e_1\gamma M\gamma e_1 + e_1\gamma M\gamma e_2 + e_2\gamma M\gamma e_1 + e_2\gamma M\gamma e_2)$
 $= e_1\gamma M\gamma e_1 + e_1\gamma M\gamma e_2$
 $= M_{11} + M_{12},$
we obtain
 $\varphi(t\gamma z) = \varphi(t)\gamma\varphi(z)$
 $= \varphi(t)\gamma(\varphi(x) + \varphi(y))$
 $= \varphi(t)\gamma\varphi(x) + \varphi(t)\gamma\varphi(y)$
 $= \varphi(t\gamma x) + \varphi(t\gamma y)$
 $= \varphi(t\gamma x + t\gamma y),$ by Theorem 2.5.

So, since φ is one-to-one, we have $t\gamma z = t\gamma x + t\gamma y$. Then $t\gamma(z - (x + y)) = 0$ or $e\gamma M\gamma(z - (x + y)) = 0$. By Theorem 1.1. (ii), we have z = x + y. Then we obtained that $\varphi(x + y) = \varphi(x) + \varphi(y)$ for all $x, y \in M$.

Definition 2.2. A gamma ring M is called a Boolean gamma ring if $m\gamma m = m$ for all $m \in M$, $\gamma \in \Gamma$.

Theorem 2.7. Let M be a Boolean gamma ring. Then m = -m for all $m \in M$.

Proof. Since M Boolean gamma ring, $(m+m)\gamma(m+m) = m+m$. Then we have

 $m + m = (m + m)\gamma(m + m)$ = $m\gamma m + m\gamma m + m\gamma m + m\gamma m$ = m + m + m + m.

Using the cancellation rule in the gamma ring M, we get m + m = 0 or m = -m.

Theorem 2.8. If *M* is a Boolean gamma ring, then *M* is commutative. **Proof.** Since *M* Boolean gamma ring, $(m + n)\gamma(m + n) = m + n$. Then we have

 $m+n = (m+n)\gamma(m+n)$ = $m\gamma m + m\gamma n + n\gamma m + n\gamma n$ = $m + m\gamma n + n\gamma m + n$.

Using the cancellation rule in the gamma ring M, we get $m\gamma n + n\gamma m = 0$. Hence, by Theorem 2.7, we obtain $m\gamma n = n\gamma m$.

Theorem 2.9: Let M be a Boolean Γ -ring and N arbitrary gamma ring. Then any multiplicative isomorphism φ of M onto N is additive.

Proof: Let φ multiplicative mapping from M onto N. Then N is also a Boolean gamma ring.

Let x and y arbitrary elements in M. Since $\varphi(x) + \varphi(y) \in N$ and φ is onto, there exist $m \in M$ so that $\varphi(m) = \varphi(x) + \varphi(y)$. The following equations can be obtained using mapping φ is multiplicative,

$$\varphi(x\gamma m + y\gamma m) = \varphi((x + y)\gamma m)
= \varphi(x + y)\gamma\varphi(m)
= \varphi(x + y)\gamma(\varphi(x) + \varphi(y))
= \varphi(x + y)\gamma\varphi(x) + \varphi(x + y)\gamma\varphi(y))
= \varphi(x\gamma x + y\gamma x) + \varphi(x\gamma y + y\gamma y)
= \varphi(x + y\gamma x) + \varphi(x\gamma y + y),$$
(1)

$$\begin{aligned}
\varphi(x\gamma m) &= \varphi(x)\gamma\varphi(m) \\
&= \varphi(x)\gamma(\varphi(x) + \varphi(y)) \\
&= \varphi(x\gamma x) + \varphi(x\gamma y) \\
&= \varphi(x) + \varphi(x\gamma y),
\end{aligned}$$
(2)

and similarly

$$\varphi(y\gamma m) = \varphi(y) + \varphi(x\gamma y). \tag{3}$$

Our aim is to show $\varphi(x + y) = \varphi(x) + \varphi(y)$ for all $x, y \in M$. In the above equalities, if $x\gamma y = 0$ (so $y\gamma x = 0$ by commutativity), we have for (1), (2) and (3)

$$\varphi(x\gamma m + y\gamma m) = \varphi(x) + \varphi(y) = \varphi(m), \tag{4}$$

$$\varphi(x\gamma m) = \varphi(x),\tag{5}$$

$$\varphi(y\gamma m) = \varphi(y) \tag{6}$$

respectively. Since the mapping φ is one-to-one, equations (4), (5) and (6) imply $x\gamma m + y\gamma m = m$,

 $x\gamma m = x$ and $y\gamma m = y$. It follows that m = x + y and thus we obtain

$$\varphi(x+y) = \varphi(x) + \varphi(y). \tag{7}$$

If $x\gamma y = y$, then we get the following for (1), (2) and (3), respectively,

$$\varphi(x\gamma m + y\gamma m) = \varphi(x+y) + \varphi(y+y)$$

= $\varphi(x+y) + \varphi(0)$ by Teorem 2.7. (8)
= $\varphi(x+y)$,

$$\varphi(x\gamma m) = \varphi(x) + \varphi(y) = \varphi(m), \tag{9}$$

$$\varphi(y\gamma m) = \varphi(y+y) = 0. \tag{10}$$

Since the mapping is one-to-one, equations (8), (9) and (10) imply

 $x\gamma m + y\gamma m = x + y$, $x\gamma m = m$ and $y\gamma m = 0$. Thus, since m = x + y, it follows that $\varphi(x + y) = \varphi(x) + \varphi(y)$.

Now, x + y can be written as $x + y = (x + x\gamma y) + (y + x\gamma y)$ and also we have $(x + x\gamma y)\gamma(y + x\gamma y) = 0$ by Theorem 2.7. So, using the result of the first case in the above, we obtain

$$\varphi(x+y) = \varphi((x+x\gamma y) + (y+x\gamma y)) = \varphi(x+x\gamma y) + \varphi(y+x\gamma y).$$
(11)

Furthermore, since $x\gamma(x\gamma y) = x\gamma y$ and $y\gamma(x\gamma y) = x\gamma y$ (by comutativity), using the result of the second case in the above, we have

$$\varphi(x + x\gamma y) = \varphi(x) + \varphi(x\gamma y), \\ \varphi(y + x\gamma y) = \varphi(y) + \varphi(x\gamma y).$$
(12)

Substituting the obtained equations in (12) to (11), we obtain

$$\varphi(x+y) = \varphi(x) + \varphi(y)$$

for all $x, y \in M$.

References

- [1] Barnes, W., On the Γ-Rings of Nobusawa, Pasific J.Math, 18 (1966), 411-22.
- [2] Chakraborty, S., Paul, A.C., On jordan isomorphisms of 2-torsion free prime gamma rings, Novi Sad J. Math., Vol.40, No.2, 2010, 1-5.
- [3] Johnson, R. E., Rings with unique addition, Proc. Amer. Math. Soc. 9 (1958), 57-61.
- [4] Luh, J., On the theory of simple gamma rings, Michigan Math. J., Volume 16, Issue 1 (1969), 65-75.
- [5] Nobusawa, N., On a generalization of the ring theory, Osaka J. Math. 1 (1964), 81-89.
- [6] Wallance, S., Martindale, *When are multiplicative mappings additive*, Proc. Amer. Math. Soc. 21(1969) 695-698.
- [7] Mukherjee, R.N., Some results on Γ-Rings, Indian J. Pure Apply. Math., 34(6): 991-994.
- [8] Rickart, C.E., One-to-one mappings of ring and lattices, Bull. Amer.Math.Soc. 54 (1948), 758-764.
- [9] Soytürk, M., The commutativity in prime gamma rings with derivation, Tr. J. Mathematics, 18 (1994), 149-155.

Author information

Kenan Çağlar DÜKEL and Yılmaz ÇEVEN, Department of Mathematics, Faculty of Arts and Sciences, Süleyman Demirel University, 32260 Isparta, Turkey, U. S. A.. E-mail: kenancaglardukel@yandex.com-yilmazceven@sdu.edu.tr

Received: January 6, 2016.

Accepted: September 11, 2016.