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Abstract. New information inequalities on new generalized f - divergence measure in terms

of Relative Arithmetic- Geometric divergence and Renyi's entropy have been derived for com-

paring two discrete probability distributions and further, some results for the Triangular discrim-

ination, Chi- square divergence and Relative J- divergence have been obtained.

1 Introduction

Without essential loss of insight, we have restricted ourselves to discrete probability distribu-

tions, so let Gn = {P = (p1, p2, p3, ..., pn) : pi > 0,
∑n

i=1 pi = 1}, n ≥ 2 be the set of all

complete �nite discrete probability distributions. If we take pi ≥ 0 for some i = 1, 2, 3..., n,
then we have to suppose that 0f (0) = 0f

(
0
0

)
= 0.

For real, continuous, convex function f : (0,∞) → (−∞,∞) and P = (p1, p2, ..., pn) , Q =
(q1, q2, ..., qn) ∈ Gn, Jain and Saraswat [5] introduced the following new generalized f - diver-
gence measure

Sf (P,Q) =
n∑

i=1

qif

(
pi + qi
2qi

)
, (1.1)

where pi and qi are probabilities. The advantage of this generalized divergence is that many

divergence measures can be obtained from this generalized measure by suitably de�ning the

function f .
Now we are stating the followings theorems for evaluating the new information inequalities in

the next section.

Theorem 1.1. (Cerone etc. all [1]) Let f : [a, b] ⊂ (0,∞) → (−∞,∞) be an absolutely

continuous function on [a, b] with b > a > 0. Then for any x ∈ [a, b], we have∣∣∣∣∣f (x)x
(b− a)−

∫ b

a

f (t)

t
dt

∣∣∣∣∣ ≤ 2

[
log

x

B
+

A− x

x

]
∥f ′l − f∥∞, (1.2)

where B ≡ B (a, b) =
√
ab and A ≡ A (a, b) = a+b

2
are Geometric and Arithmetic mean of a

and b respectively, l is the identity function, i.e., l (x) = x ∀ x ∈ [a, b] and

∥f ′l − f∥∞ = ess sup
t∈[a,b]

| (f ′l − f) (t) | < ∞.

The constant 2 is best possible.

Theorem 1.2. (Dragomir [3]) Let f : [a, b] → (−∞,∞) be continuous function on [a, b] and
differentiable on (a, b) with b > a and [a, b] not containing 0. Then for any x ∈ [a, b], we have∣∣∣∣∣f (x)x

A− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ b− a

|x|

[
1

4
+

(
x−A

b− a

)2
]
∥f ′l − f∥∞. (1.3)
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The constant 1
4
is best possible.

Now we extend the work on Sf (P,Q) and derive the new information inequalities for com-

paring two discrete probability distributions in section 2, and also obtain interesting results in

section 3 by using these new inequalities. Several means, like: Arithmetic mean, Geometric

mean, Harmonic mean, Logarithmic mean, Centroidal mean, Root mean square, and Identric

mean are being used for summarize the calculations only.

2 New information inequalities

Now, we derive new information inequalities in terms of the Relative Arithmetic- Geometric

divergence and Renyi's entropy separately by using theorems 1.1 and 1.2 respectively. The

results are on the similar lines to the results presented by (Cerone etc. all [1]) and (Dragomir

[3]) respectively.

Proposition 2.1. Let f : [α, β] ⊂ (0,∞) → (−∞,∞) be an absolutely continuous and convex

function on [α, β] with 0 < α ≤ 1 ≤ β < ∞, α ̸= β. Then we have the following inequality

involving Sf (P,Q) and G (P,Q) between probability distributions P,Q ∈ Gn:∣∣∣∣∣Sf (P,Q)−
1

β − α

∫ β

α

f (t)

t
dt

∣∣∣∣∣ ≤ 2

β − α
[G (Q,P )− logB +A− 1] ∥f ′l − f∥∞, (2.1)

where Sf (P,Q) is de�ned by (1.1) and

G (P,Q) =
n∑

i=1

(
pi + qi

2

)
log

pi + qi
2pi

(2.2)

is the Relative Arithmetic- Geometric divergence (Taneja [8]).

Proof: Put a = α, b = β such that 0 < α ≤ 1 ≤ β < ∞ with α ̸= β and x = pi+qi
2qi

,

i = 1, 2..., n in inequality (1.2), we obtain∣∣∣∣∣f
(
pi + qi
2qi

)
2 (β − α) qi

pi + qi
−

∫ β

α

f (t)

t
dt

∣∣∣∣∣ ≤ 2

[
log

pi + qi
2qi

− logB +
2Aqi − pi − qi

pi + qi

]
∥f ′l−f∥∞.

Now multiply the above expression by pi+qi
2(β−α) for i = 1, 2..., n, we obtain∣∣∣∣∣qif

(
pi + qi
2qi

)
− (pi + qi)

1

2 (β − α)

∫ β

α

f (t)

t
dt

∣∣∣∣∣
≤ 1

β − α

[
(pi + qi) log

(
pi + qi
2qi

)
− (pi + qi) logB + 2Aqi − pi − qi

]
∥f ′l − f∥∞.

Now sum over all from i = 1 to n and consider
∑n

i=1 pi =
∑n

i=1 qi = 1, we get the desired

inequality (2.1) in terms of the Relative Arithmetic- Geometric divergence.

Proposition 2.2. Let f : [α, β] ⊂ (0,∞) → (−∞,∞) be continuous convex function on [α, β]
and differentiable on (α, β) with 0 < α ≤ 1 ≤ β < ∞, α ̸= β. Then we have the following

inequality involving Sf (P,Q) and R2 (P,Q) between probability distributions P,Q ∈ Gn:∣∣∣∣∣Sf (P,Q)−
2

β2 − α2

∫ β

α

f (t) dt

∣∣∣∣∣
≤ β − α

2 (α+ β)

[
1+

1

(β − α)
2
{R2 (P,Q) + 4 (A− 1)

2 − 1}

]
∥f ′l − f∥∞,

(2.3)

where

R2 (P,Q) =
n∑

i=1

p2i
qi

(2.4)

is the Renyi's entropy of second order (Renyi [7]).
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Proof: Put a = α, b = β such that 0 < α ≤ 1 ≤ β < ∞ with α ̸= β and x = pi+qi
2qi

,

i = 1, 2..., n in inequality (1.3), we obtain∣∣∣∣∣f
(
pi + qi
2qi

)
2Aqi
pi + qi

− 1

β − α

∫ β

α

f (t) dt

∣∣∣∣∣
≤ 2 (β − α) qi

pi + qi

[
1

4
+

1

4 (β − α)
2
q2i

(pi + qi − 2Aqi)
2

]
∥f ′l − f∥∞.

Now multiply the above expression by pi+qi
2A for i = 1, 2..., n, we obtain∣∣∣∣∣qif

(
pi + qi
2qi

)
− (pi + qi)

1

2A (β − α)

∫ β

α

f (t) dt

∣∣∣∣∣
≤ β − α

4A

[
qi +

1

(β − α)
2

(
p2i
qi

+ qi + 2pi + 4A2qi − 4Api − 4Aqi

)]
∥f ′l − f∥∞.

Now sum over all from i = 1 to n and consider
∑n

i=1 pi =
∑n

i=1 qi = 1, we get the desired

inequality (2.3) in terms of the Renyi's entropy of second order.

3 Results by using obtained new inequalities

In this section, we obtain new results on existing divergence measures; Triangular discrimination,

Chi- square divergence and Relative J- divergence, in terms of Relative Arithmetic Geometric

divergence and Renyi's entropy of second order separately.

Result 3.1. For P,Q ∈ Gn and 0 < α ≤ 1 ≤ β < ∞ with α ̸= β, we have∣∣∣∣D (P,Q)− 2

(
1+

1

B2
− 2L

)∣∣∣∣ ≤ 4F1 sup
t∈[α,β]

g1 (t) . (3.1)

∣∣∣∣D (P,Q)−
2

A
(A+ L− 2)

∣∣∣∣ ≤ F2 sup
t∈[α,β]

g1 (t) , (3.2)

where L ≡ L (α, β) = log β−logα
β−α is the Logarithmic mean of α and β with α ̸= β, also

F1 ≡
1

β − α
[G (Q,P )− logB +A− 1]

and

F2 ≡
β − α

α+ β

[
1+

1

(β − α)
2
{R2 (P,Q) + 4 (A− 1)

2 − 1}

]
and D (P,Q), supt∈[α,β] g1 (t) are evaluated below in the proof.

Proof: Let us consider

f (t) =
(t− 1)

2

t
, t ∈ (0,∞) , f (1) = 0, f ′ (t) =

t2 − 1

t2
and f ′′ (t) =

2

t3
.

Since f ′′ (t) > 0 ∀ t > 0 and f (1) = 0, so f (t) is strictly convex and normalized function

respectively. Now for f (t), we obtain

Sf (P,Q) =
1

2

n∑
i=1

(pi − qi)2

pi + qi
=

1

2
D (P,Q) , (3.3)

where D (P,Q) is the Triangular discrimination (Dacunha- Castelle etc. all [2]). Also∫ β

α

f (t) dt =

∫ β

α

(t− 1)
2

t
dt =

∫ β

α

t2 − 2t+ 1

t
dt =

[
t2

2
− 2t+ log t

]β
α

=
1

2

(
β2 − α2

)
− 2 (β − α) + (logβ − logα) .

(3.4)
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∫ β

α

f (t)

t
dt =

∫ β

α

(t− 1)
2

t2
dt =

∫ β

α

t2 − 2t+ 1

t2
dt =

[
t− 1

t
− 2 log t

]β
α

= (β − α) +
β − α

αβ
− 2 (logβ − logα) .

(3.5)

Let

g1 (t) = |(f ′l − f) (t)| =

∣∣∣∣∣ t2 − 1

t2
t− (t− 1)

2

t

∣∣∣∣∣ = 2

t
|t− 1| =

{
2
t (t− 1) if t ≥ 1
2
t (1− t) if 0 < t < 1

,

and

g′1 (t) =

{
2
t2

if t ≥ 1

− 2
t2

if 0 < t < 1
.

It is clear that g′1 (t) < 0 in (0, 1) and > 0 in (1,∞), i.e., g1 (t) is strictly decreasing in (0, 1) and
strictly increasing in (1,∞), so

∥f ′l − f∥∞ = sup
t∈[α,β]

|(f ′l − f) (t)| = sup
t∈[α,β]

g1 (t)

=

{
max [g1 (α) , g1 (β)] =

g1(α)+g1(β)+|g1(α)−g1(β)|
2

if 0 < α < 1

g1 (β) if α = 1

=

{
(1−α)

α + (β−1)
β +

∣∣∣ (1−α)
α − (β−1)

β

∣∣∣ if 0 < α < 1

2(β−1)
β if α = 1

=

{
β−α
αβ + 2

∣∣ 1
H − 1

∣∣ if 0 < α < 1
2(β−1)

β if α = 1
,

(3.6)

where H ≡ H (α, β) = 2αβ
α+β is the Harmonic mean of α and β.

The results (3.1) and (3.2) are obtained after putting (3.3), (3.4), (3.5), and (3.6) in inequalities

(2.1) and (2.3) respectively.

Result 3.2. For P,Q ∈ Gn and 0 < α ≤ 1 ≤ β < ∞ with α ̸= β, we have∣∣χ2 (P,Q)− 4 (A+ L− 2)
∣∣ ≤ 8F1 sup

t∈[α,β]
g2 (t) . (3.7)

∣∣χ2 (P,Q)− 4 (A+R− 2)
∣∣ ≤ 2F2 sup

t∈[α,β]
g2 (t) , (3.8)

where R ≡ R (α, β) =
2(α2+αβ+β2)

3(α+β) is the Centroidal mean of α and β. Also F1, F2 de�ned

earlier and χ2 (P,Q), supt∈[α,β] g2 (t) are evaluated below in the proof.

Proof: Let us consider

f (t) = (t− 1)
2
, t ∈ (0,∞) , f (1) = 0, f ′ (t) = 2 (t− 1) and f ′′ (t) = 2.

Since f ′′ (t) > 0 ∀ t > 0 and f (1) = 0, so f (t) is strictly convex and normalized function

respectively. Now for f (t), we obtain

Sf (P,Q) =
1

4

n∑
i=1

(pi − qi)2

qi
=

1

4
χ2 (P,Q) , (3.9)

where χ2 (P,Q) is the Chi- square divergence (Pearson [6]). Also∫ β

α

f (t) dt =

∫ β

α

(t− 1)
2
dt =

∫ β

α

(
t2 − 2t+ 1

)
dt =

[
t3

3
− t2 + t

]β
α

=
1

3
(β − α)

(
α2 + αβ + β2

)
−
(
β2 − α2

)
+ (β − α) .

(3.10)
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∫ β

α

f (t)

t
dt =

∫ β

α

(t− 1)
2

t
dt =

∫ β

α

(
t+

1

t
− 2

)
dt =

[
t2

2
+ log t− 2t

]β
α

=
β2 − α2

2
+ (logβ − logα)− 2 (β − α) .

(3.11)

Let

g2 (t) = |(f ′l − f) (t)| =
∣∣∣2 (t− 1) t− (t− 1)

2
∣∣∣ = (t+ 1) |t− 1| =

{
t2 − 1 if t ≥ 1

−t2 + 1 if 0 < t < 1
,

and

g′2 (t) =

{
2t if t ≥ 1

−2t if 0 < t < 1
.

It is clear that g′2 (t) < 0 in (0, 1) and > 0 in (1,∞), i.e., g2 (t) is strictly decreasing in (0, 1) and
strictly increasing in (1,∞), so

∥f ′l − f∥∞ = sup
t∈[α,β]

|(f ′l − f) (t)| = sup
t∈[α,β]

g2 (t)

=

{
max [g2 (α) , g2 (β)] =

g2(α)+g2(β)+|g2(α)−g2(β)|
2

if 0 < α < 1

g2 (β) if α = 1

=

{
β2−α2

2
+

∣∣1− S2
∣∣ if 0 < α < 1

β2 − 1 if α = 1
,

(3.12)

where S ≡ S (α, β) =
√

α2+β2

2
is the Root mean square of α and β.

The results (3.7) and (3.8) are obtained after putting (3.9), (3.10), (3.11), and (3.12) in inequali-

ties (2.1) and (2.3) respectively.

Result 3.3. For P,Q ∈ Gn and 0 < α ≤ 1 ≤ β < ∞ with α ̸= β, we have∣∣∣∣JR (P,Q)− 2 log
I (α, β)

BL

∣∣∣∣ ≤ 4F1 sup
t∈[α,β]

g3 (t) . (3.13)

∣∣∣∣JR (P,Q)−
2 log I (α, β)

A
− log I

(
α2, β2

)∣∣∣∣ ≤ F2 sup
t∈[α,β]

g3 (t) , (3.14)

where I (α, β) = 1
e

(
ββ

αα

) 1

β−α

, α ̸= β is the Identric mean of α and β. Also F1, F2 de�ned earlier

and JR (P,Q), supt∈[α,β] g3 (t) are evaluated below in the proof.

Proof: Let us consider

f (t) = (t− 1) log t, t ∈ (0,∞) , f (1) = 0, f ′ (t) =
t− 1

t
+ log t and f ′′ (t) =

t+ 1

t2
.

Since f ′′ (t) > 0 ∀ t > 0 and f (1) = 0, so f (t) is strictly convex and normalized function

respectively. Now for f (t), we obtain

Sf (P,Q) =
1

2

n∑
i=1

(pi − qi) log

(
pi + qi
2qi

)
=

1

2
JR (P,Q) , (3.15)

where JR (P,Q) is the Relative J- divergence (Dragomir etc. all [4]). Also∫ β

α

f (t) dt =

∫ β

α

(t− 1) log tdt =
1

2

[
(t− 1)

2
log t− t2

2
− log t+ 2t

]β
α

=
1

2

[(
β2 logβ − α2 logα

)
− 2 (β logβ − α logα)−

β2 − α2

2
+ 2 (β − α)

]
.

(3.16)
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α

f (t)

t
dt =

∫ β

α

(t− 1) log t

t
dt =

∫ β

α

(
log t− log t

t

)
dt

= (β logβ − α logα)−
1

2
(logβ − logα) log (αβ)− (β − α) .

(3.17)

Let

g3 (t) = |(f ′l − f) (t)| =
∣∣∣∣( t− 1

t
+ log t

)
t− (t− 1) log t

∣∣∣∣
= |−1+ t+ log t| =

{
−1+ t+ log t if t ≥ 1

1− t− log t if 0 < t < 1
,

and

g′3 (t) =

{
1+ 1

t if t ≥ 1

−1− 1
t if 0 < t < 1

.

It is clear that g′3 (t) < 0 in (0, 1) and > 0 in (1,∞), i.e., g3 (t) is strictly decreasing in (0, 1) and
strictly increasing in (1,∞), so

∥f ′l − f∥∞ = sup
t∈[α,β]

|(f ′l − f) (t)| = sup
t∈[α,β]

g3 (t)

=

{
max [g3 (α) , g3 (β)] =

g3(α)+g3(β)+|g3(α)−g3(β)|
2

if 0 < α < 1

g3 (β) if α = 1

=

{
|1− logB −A|+ log β−logα

2
+ β−α

2
if 0 < α < 1

−1+ β + logβ if α = 1
.

(3.18)

The results (3.13) and (3.14) are obtained after putting (3.15), (3.16), (3.17), and (3.18) in in-

equalities (2.1) and (2.3) respectively.
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