# A SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS DEFINED BY A LINEAR OPERATOR 

Hasan Bayram and Sibel Yalçın<br>Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 30C45; Secondary 30C50.
Keywords and phrases: Harmonic, univalent, modified generalized Salagean operator, multiplier transformation.


#### Abstract

In the present paper, we investigate some basic properties of a subclass of harmonic functions defined by multiplier transformations. Such as, coefficient inequalities, distortion bounds and extreme points.


## 1 Introduction

Let $H$ denote the family of continuous complex valued harmonic functions which are harmonic in the open unit disk $U=\{z:|z|<1\}$ and let $A$ be the subclass of $H$ consisting of functions which are analytic in $U$. A function harmonic in $U$ may be written as $f=h+\bar{g}$, where $h$ and $g$ are members of $A$. We call $h$ the analytic part and $g$ co-analytic part of $f$. A necessary and sufficient condition for $f$ to be locally univalent and sense-preserving in $U$ is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ (see Clunie and Sheil-Small [4]). To this end, without loss of generality, we may write

$$
\begin{equation*}
h(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad \text { and } \quad g(z)=\sum_{k=1}^{\infty} b_{k} z^{k} . \tag{1.1}
\end{equation*}
$$

Let $S H$ denote the family of functions $f=h+\bar{g}$ which are harmonic, univalent, and sensepreserving in $U$ for which $f(0)=f_{z}(0)-1=0$. One shows easily that the sense-preserving property implies that $\left|b_{1}\right|<1$. The subclass $S H^{0}$ of $S H$ consists of all functions in $S H$ which have the additional property $f_{\bar{z}}(0)=0$.

In 1984 Clunie and Sheil-Small [4] investigated the class $S H$ as well as its geometric subclasses and obtained some coefficient bounds. Since then, there have been several related papers on $S H$ and its subclasses. Also note that $S H$ reduces to the class $S$ of normalized analytic univalent functions in $U$, if the co-analytic part of $f$ is identically zero.

For $f \in S$, the differential operator $D^{n}\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)$ of $f$ was introduced by Salagean [8]. For $f=h+\bar{g}$ given by (1.1), Jahangiri et al. [7] defined the modified Salagean operator of $f$ as

$$
D^{n} f(z)=D^{n} h(z)+(-1)^{n} \overline{D^{n} g(z)}
$$

where

$$
D^{n} h(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k} \text { and } D^{n} g(z)=\sum_{k=1}^{\infty} k^{n} b_{k} z^{k}
$$

Next, for functions $f \in A$, Cho and Srivastava [2] defined multiplier transformations. For $f=h+\bar{g}$ given by (1.1), we define the modified multiplier transformation of $f$

$$
\begin{gather*}
I_{\gamma, \beta}^{0} f(z)=D^{0} f(z)=h(z)+\overline{g(z)} \\
I_{\gamma, \beta}^{1} f(z)=\frac{\gamma D^{0} f(z)+\beta D^{1} f(z)}{\gamma+\beta}=\frac{\gamma(h(z)+\overline{g(z)})+\beta\left(z h^{\prime}(z)-\overline{z g^{\prime}(z)}\right)}{\gamma+\beta}  \tag{1.2}\\
I_{\gamma, \beta}^{n} f(z)=I_{\gamma, \beta}^{1}\left(I_{\gamma, \beta}^{n-1} f(z)\right) \cdot\left(n \in \mathbb{N}_{0}\right) \tag{1.3}
\end{gather*}
$$

Where $\beta \geq \gamma \geq 0$. If $f$ is given by (1.1), then from (1.2) and (1.3) we see that

$$
\begin{equation*}
I_{\gamma, \beta}^{n} f(z)=z+\sum_{k=2}^{\infty}\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n} a_{k} z^{k}+(-1)^{n} \sum_{k=1}^{\infty}\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n} \overline{b_{k} z^{k}} \tag{1.4}
\end{equation*}
$$

Also if $f$ is given by (1.1), then we have

$$
\begin{aligned}
I_{\gamma, \beta}^{n} f(z) & :=f * \underbrace{\left(\phi_{1}(z)+\overline{\phi_{2}(z)}\right) * \ldots *\left(\phi_{1}(z)+\overline{\phi_{2}(z)}\right)}_{n \text { times }} \\
& =h * \underbrace{\phi_{1}(z) * \ldots * \phi_{1}(z)}_{n \text { times }}+\overline{g * \underbrace{\phi_{2}(z) * \ldots * \phi_{2}(z)}_{n \text { times }}}
\end{aligned}
$$

where " $*$ " denotes the usual Hadamard product or convolution of power series and

$$
\phi_{1}(z)=\frac{(\gamma+\beta) z-\gamma z^{2}}{(\gamma+\beta)(1-z)^{2}}, \quad \phi_{2}(z)=\frac{(\gamma-\beta) z-\gamma z^{2}}{(\gamma+\beta)(1-z)^{2}}
$$

By specializing the parametres $\gamma$ and $n$, we obtain the following operators studied by various authors:
for $f \in A$,
(i) $I_{0,1}^{n} f(z)=D^{n} f(z)([8])$,
(ii) $I_{\lambda}^{n} f(z)([2],[3],[5])$,
(iii) $I_{1,1}^{n}=I^{n} f(z)([11])$,
for $f \in H$,
(iv) $I_{0,1}^{n} f(z)=D^{n} f(z)$ ([7]),
(v) $I_{\gamma, 1}^{n} f(z)=I_{\gamma}^{n} f(z)([12])$.

Denote by $S H(\gamma, \beta, n, \alpha)$ the subclass of $S H$ consisting of functions $f$ of the form (1.1) that satisfy the condition

$$
\begin{equation*}
\Re\left(\frac{I_{\gamma, \beta}^{n+1} f(z)}{I_{\gamma, \beta}^{n} f(z)}\right) \geq \alpha, \quad 0 \leq \alpha<1 \tag{1.5}
\end{equation*}
$$

where $I_{\gamma, \beta}^{n} f(z)$ is defined by (1.4).
We let the subclass $\overline{S H}(\gamma, \beta, n, \alpha)$ consisting of harmonic functions $f_{n}=h+\bar{g}_{n}$ in $S H$ so that $h$ and $g_{n}$ are of the form

$$
\begin{equation*}
h(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}, g_{n}(z)=(-1)^{n} \sum_{k=1}^{\infty} b_{k} z^{k}, \quad a_{k}, b_{k} \geq 0 \tag{1.6}
\end{equation*}
$$

By suitably specializing the parameters, the classes $S H(\gamma, \beta, n, \alpha)$ reduces to the various subclasses of harmonic univalent functions. Such as,
(i) $S H(0,1,0,0)=S H^{*}(0)([1], ~[9], ~[10])$,
(ii) $S H(0,1,0, \alpha)=S H^{*}(\alpha)([6])$,
(iii) $S H(0,1,1,0)=K H(0)([1]$, [9], [10]),
(iv) $S H(0,1,1, \alpha)=K H(\alpha)([6])$,
(v) $S H(0,1, n, \alpha)=H(n, \alpha)([7])$,
(vi) $S H(\gamma, 1, n, \alpha)=S H(\gamma, n, \alpha)([12])$.

Define $S H^{0}(\gamma, \beta, n, \alpha):=S H(\gamma, \beta, n, \alpha) \cap S H^{0}$ and

$$
\overline{S H}^{0}(\gamma, \beta, n, \alpha):=\overline{S H}(\gamma, \beta, n, \alpha) \cap S H^{0}
$$

## 2 Main results

Theorem 2.1. Let $f=h+\bar{g}$ be so that $h$ and $g$ are given by (1.1) with $b_{1}=0$. Furthermore, let

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}-\alpha\right)\left|a_{k}\right|+\sum_{k=2}^{\infty}\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}+\alpha\right)\left|b_{k}\right| \leq 1-\alpha \tag{2.1}
\end{equation*}
$$

where $0 \leq \gamma \leq \beta / 2, n \in \mathbb{N}_{0}, \frac{\gamma}{\gamma+\beta} \leq \alpha \leq \frac{\beta}{\gamma+\beta}$. Then $f$ is sense-preserving, harmonic univalent in $U$ and $f \in S H^{0}(\gamma, \beta, n, \alpha)$.

Proof. If $z_{1} \neq z_{2}$,

$$
\begin{aligned}
\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right| & \geq 1-\left|\frac{g\left(z_{1}\right)-g\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right|=1-\left|\frac{\sum_{k=2}^{\infty} b_{k}\left(z_{1}^{k}-z_{2}^{k}\right)}{\left(z_{1}-z_{2}\right)+\sum_{k=2}^{\infty} a_{k}\left(z_{1}^{k}-z_{2}^{k}\right)}\right| \\
& >1-\frac{\sum_{k=2}^{\infty} k\left|b_{k}\right|}{1-\sum_{k=2}^{\infty} k\left|a_{k}\right|} \geq 1-\frac{\sum_{k=2}^{\infty} \frac{\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}+\alpha\right)}{1-\alpha}\left|b_{k}\right|}{1-\sum_{k=2}^{\infty} \frac{\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}-\alpha\right)}{1-\alpha}\left|a_{k}\right|} \geq 0
\end{aligned}
$$

which proves univalence. Note that f is sense preserving in U . This is because

$$
\begin{aligned}
\left|h^{\prime}(z)\right| & \geq 1-\sum_{k=2}^{\infty} k\left|a_{k}\right||z|^{k-1}>1-\sum_{k=2}^{\infty} \frac{\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}-\alpha\right)}{1-\alpha}\left|a_{k}\right| \\
& \geq \sum_{k=2}^{\infty} \frac{\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}+\alpha\right)}{1-\alpha}\left|b_{k}\right|>\sum_{k=2}^{\infty} k\left|b_{k}\right||z|^{k-1} \geq\left|g^{\prime}(z)\right|
\end{aligned}
$$

Using the fact that $\Re(w) \geq \alpha$ if and only if $|1-\alpha+w| \geq|1+\alpha-w|$, it suffices to show that

$$
\begin{equation*}
\left|(1-\alpha) I_{\gamma, \beta}^{n} f(z)+I_{\gamma, \beta}^{n+1} f(z)\right|-\left|(1+\alpha) I_{\gamma, \beta}^{n} f(z)-I_{\gamma, \beta}^{n+1} f(z)\right| \geq 0 . \tag{2.2}
\end{equation*}
$$

Substituting for $I_{\gamma, \beta}^{n} f(z)$ and $I_{\gamma, \beta}^{n+1} f(z)$ in (2.2), we obtain

$$
\begin{aligned}
& \left|(1-\alpha) I_{\gamma, \beta}^{n} f(z)+I_{\gamma, \beta}^{n+1} f(z)\right|-\left|(1+\alpha) I_{\gamma, \beta}^{n} f(z)-I_{\gamma, \beta}^{n+1} f(z)\right| \\
\geq & 2(1-\alpha)|z|-\sum_{k=2}^{\infty}\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}+1-\alpha\right)\left|a_{k}\right||z|^{k} \\
& -\sum_{k=2}^{\infty}\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}-1+\alpha\right)\left|b_{k}\right||z|^{k} \\
& -\sum_{k=2}^{\infty}\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}-1-\alpha\right)\left|a_{k}\right||z|^{k} \\
& -\sum_{k=2}^{\infty}\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}+1+\alpha\right)\left|b_{k}\right||z|^{k} \\
> & 2(1-\alpha)|z|\left\{1-\sum_{k=2}^{\infty}\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}-\alpha\right)\left|a_{k}\right|\right. \\
& \left.-\sum_{k=2}^{\infty}\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}+\alpha\right)\left|b_{k}\right|\right\} .
\end{aligned}
$$

This last expression is non-negative by (2.1), and so the proof is complete.
Theorem 2.2. Let $f_{n}=h+\bar{g}_{n}$ be given by (1.6) with $b_{1}=0$. Then $f_{n} \in \overline{S H}^{0}(\gamma, \beta, n, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}-\alpha\right) a_{k}+\sum_{k=2}^{\infty}\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}+\alpha\right) b_{k} \leq 1-\alpha \tag{2.3}
\end{equation*}
$$

where $0 \leq \gamma \leq \beta / 2, n \in \mathbb{N}_{0}, \frac{\gamma}{\gamma+\beta} \leq \alpha \leq \frac{\beta}{\gamma+\beta}$.

Proof. The "if" part follows from Theorem 1 upon noting that $\overline{S H}^{0}(\gamma, \beta, n, \alpha) \subset S H^{0}(\gamma, \beta, n, \alpha)$. For the "only if" part, we show that $f_{n} \notin \overline{S H}^{0}(\gamma, \beta, n, \alpha)$ if the condition (2.3) does not hold. Note that a necessary and sufficient condition for $f_{n}=h+\bar{g}_{n}$ given by (1.6), to be in $\overline{S H}^{0}(\gamma, \beta, n, \alpha)$ is that the condition (1.5) to be satisfied. This is equivalent to

$$
\Re\left\{\frac{(1-\alpha) z-\sum_{k=2}^{\infty}\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}-\alpha\right) a_{k} z^{k}-\sum_{k=2}^{\infty}\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}+\alpha\right) b_{k} \bar{z}^{k}}{z-\sum_{k=2}^{\infty}\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n} a_{k} z^{k}+\sum_{k=2}^{\infty}\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n} b_{k} \bar{z}^{k}}\right\} \geq 0
$$

The above condition must hold for all values of $z,|z|=r<1$. Upon choosing the values of $z$ on the positive real axis where $0 \leq z=r<1$ we must have

$$
\begin{equation*}
\frac{(1-\alpha)-\sum_{k=2}^{\infty}\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}-\alpha\right) a_{k} r^{k-1}-\sum_{k=2}^{\infty}\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}+\alpha\right) b_{k} r^{k-1}}{1-\sum_{k=2}^{\infty}\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n} a_{k} r^{k-1}+\sum_{k=2}^{\infty}\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n} b_{k} r^{k-1}} \geq 0 \tag{2.4}
\end{equation*}
$$

If the condition (2.3) does not hold, then the numerator in (2.4) is negative for $r$ sufficiently close to 1 . Hence there exist $z_{0}=r_{0}$ in $(0,1)$ for which the quotient in $(2.4)$ is negative. This contradicts the required condition for $f_{n} \in \overline{S H}^{0}(\gamma, \beta, n, \alpha)$ and so the proof is complete.
Theorem 2.3. Let $f_{n}$ be given by (1.6). Then $f_{n} \in \overline{S H}^{0}(\gamma, \beta, n, \alpha)$ if and only if

$$
f_{n}(z)=\sum_{k=1}^{\infty}\left(X_{k} h_{k}(z)+Y_{k} g_{n_{k}}(z)\right)
$$

where

$$
h_{1}(z)=z, \quad h_{k}(z)=z-\frac{1-\alpha}{\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}-\alpha\right)} z^{k}(k=2,3, \ldots),
$$

and

$$
g_{n_{1}}(z)=z, \quad g_{n_{k}}(z)=z+(-1)^{n} \frac{1-\alpha}{\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}+\alpha\right)} \bar{z}^{k}(k=2,3, \ldots)
$$

$X_{k} \geq 0, Y_{k} \geq 0, \sum_{k=1}^{\infty}\left(X_{k}+Y_{k}\right)=1,0 \leq \gamma \leq \beta / 2, n \in \mathbb{N}_{0}, \frac{\gamma}{\gamma+\beta} \leq \alpha \leq \frac{\beta}{\gamma+\beta}$.
In particular, the extreme points of $\overline{S H}^{0}(\gamma, \beta, n, \alpha)$ are $\left\{h_{k}\right\}$ and $\left\{g_{n_{k}}\right\}$.
Proof. For functions $f_{n}$ of the form (1.6) we have

$$
\begin{aligned}
f_{n}(z)= & \sum_{k=1}^{\infty}\left(X_{k} h_{k}(z)+Y_{k} g_{n_{k}}(z)\right) \\
= & \sum_{k=1}^{\infty}\left(X_{k}+Y_{k}\right) z-\sum_{k=2}^{\infty} \frac{1-\alpha}{\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}-\alpha\right)} X_{k} z^{k} \\
& +(-1)^{n} \sum_{k=2}^{\infty} \frac{1-\alpha}{\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}+\alpha\right)} Y_{k} \bar{z}^{k}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \frac{\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}-\alpha\right)}{1-\alpha}\left(\frac{1-\alpha}{\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}-\alpha\right)} X_{k}\right) \\
& +\sum_{k=2}^{\infty} \frac{\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}+\alpha\right)}{1-\alpha}\left(\frac{1-\alpha}{\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}+\alpha\right)} Y_{k}\right) \\
= & \sum_{k=2}^{\infty} X_{k}+\sum_{k=2}^{\infty} Y_{k}=1-X_{1}-Y_{1} \leq 1
\end{aligned}
$$

and so $f_{n} \in \overline{S H}^{0}(\gamma, \beta, n, \alpha)$. Conversely, if $f_{n} \in \overline{S H}^{0}(\gamma, \beta, n, \alpha)$, then

$$
a_{k} \leq \frac{1-\alpha}{\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}-\alpha\right)}
$$

and

$$
b_{k} \leq \frac{1-\alpha}{\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}+\alpha\right)}
$$

Set

$$
\begin{aligned}
& X_{k}=\frac{\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}-\alpha\right)}{1-\alpha} a_{k},(k=2,3, \ldots) \\
& Y_{k}=\frac{\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}+\alpha\right)}{1-\alpha} b_{k},(k=2,3, \ldots)
\end{aligned}
$$

and

$$
X_{1}+Y_{1}=1-\left(\sum_{k=2}^{\infty} X_{k}+Y_{k}\right)
$$

where $X_{k}, Y_{k} \geq 0$. Then, as required, we obtain

$$
f_{n}(z)=\left(X_{1}+Y_{1}\right) z+\sum_{k=2}^{\infty} X_{k} h_{k}(z)+\sum_{k=2}^{\infty} Y_{k} g_{n_{k}}(z)=\sum_{k=1}^{\infty}\left(X_{k} h_{k}(z)+Y_{k} g_{n_{k}}(z)\right)
$$

Theorem 2.4. Let $f_{n} \in \overline{S H}^{0}(\gamma, \beta, n, \alpha)$. Then for $|z|=r<1$ and $0 \leq \gamma \leq \beta / 2, n \in \mathbb{N}_{0}$, $\frac{\gamma}{\gamma+\beta} \leq \alpha \leq \frac{\beta}{\gamma+\beta}$ we have

$$
\left|f_{n}(z)\right| \leq r+\frac{(1-\alpha)}{\left(\frac{2 \beta+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{2 \beta+\gamma}{\gamma+\beta}-\alpha\right)} r^{2}
$$

and

$$
\left|f_{n}(z)\right| \geq r-\frac{(1-\alpha)}{\left(\frac{2 \beta+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{2 \beta+\gamma}{\gamma+\beta}-\alpha\right)} r^{2}
$$

Proof. We only prove the right hand inequality. The proof for the left hand inequality is similar and will be omitted. Let $f_{n} \in \overline{S H}^{0}(\gamma, \beta, n, \alpha)$. Taking the absolute value of $f_{n}$ we have

$$
\begin{aligned}
\left|f_{n}(z)\right| & \leq r+\sum_{k=2}^{\infty}\left(a_{k}+b_{k}\right) r^{2} \\
& \leq r+\frac{(1-\alpha) r^{2}}{\left(\frac{2 \beta+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{2 \beta+\gamma}{\gamma+\beta}-\alpha\right)} \sum_{k=2}^{\infty}\left\{\frac{\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}-\alpha\right)}{1-\alpha} a_{k}+\frac{\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}+\alpha\right)}{1-\alpha} b_{k}\right\} \\
& \leq r+\frac{(1-\alpha)}{\left(\frac{2 \beta+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{2 \beta+\gamma}{\gamma+\beta}-\alpha\right)} r^{2}
\end{aligned}
$$

The following covering result follows from the left hand inequality in Theorem 2.4.
Corollary 2.5. Let $f_{n}$ of the form (1.6) be so that $f_{n} \in \overline{S H}^{0}(\gamma, \beta, n, \alpha)$, where $0 \leq \gamma \leq \beta / 2$, $n \in \mathbb{N}_{0}, \frac{\gamma}{\gamma+\beta} \leq \alpha \leq \frac{\beta}{\gamma+\beta}$. Then

$$
\left\{w:|w|<1-\frac{(1-\alpha)}{\left(\frac{2 \beta+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{2 \beta+\gamma}{\gamma+\beta}-\alpha\right)}\right\} \subset f_{n}(U)
$$

Theorem 2.6. The class $\overline{S H}^{0}(\gamma, \beta, n, \alpha)$ is closed under convex combinations.
Proof. Let $f_{n_{i}} \in \overline{S H}^{0}(\gamma, \beta, n, \alpha)$ for $i=1,2, \ldots$, where $f_{n_{i}}$ is given by

$$
f_{n_{i}}(z)=z-\sum_{k=2}^{\infty} a_{k_{i}} z^{k}+(-1)^{n} \sum_{k=2}^{\infty} b_{k_{i}} \bar{z}^{k} .
$$

Then by (2.3),

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}-\alpha\right)}{1-\alpha} a_{k_{i}}+\sum_{k=2}^{\infty} \frac{\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}+\alpha\right)}{1-\alpha} b_{k_{i}} \leq 1 \tag{2.5}
\end{equation*}
$$

For $\sum_{i=1}^{\infty} t_{i}=1,0<t_{i}<1$, the convex combination of $f_{n_{i}}$ may be written as

$$
\sum_{i=1}^{\infty} t_{i} f_{n_{i}}(z)=z-\sum_{k=2}^{\infty}\left(\sum_{i=1}^{\infty} t_{i} a_{k_{i}}\right) z^{k}+(-1)^{n} \sum_{k=2}^{\infty}\left(\sum_{i=1}^{\infty} t_{i} b_{k_{i}}\right) \bar{z}^{k}
$$

Then by (2.5),

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \frac{\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}-\alpha\right)}{1-\alpha}\left(\sum_{i=1}^{\infty} t_{i} a_{k_{i}}\right)+\sum_{k=2}^{\infty} \frac{\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}+\alpha\right)}{1-\alpha}\left(\sum_{i=1}^{\infty} t_{i} b_{k_{i}}\right) \\
& =\sum_{i=1}^{\infty} t_{i}\left\{\sum_{k=2}^{\infty} \frac{\left(\frac{\beta k+\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k+\gamma}{\gamma+\beta}-\alpha\right)}{1-\alpha} a_{k_{i}}+\frac{\left(\frac{\beta k-\gamma}{\gamma+\beta}\right)^{n}\left(\frac{\beta k-\gamma}{\gamma+\beta}+\alpha\right)}{1-\alpha} b_{k_{i}}\right\} \\
& \leq \sum_{i=1}^{\infty} t_{i}=1 .
\end{aligned}
$$

This is the condition required by (2.3) and so $\sum_{i=1}^{\infty} t_{i} f_{n_{i}}(z) \in \overline{S H}^{0}(\gamma, \beta, n, \alpha)$.

## References

[1] Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie-Sklodowska Sect. A 44 1-7 (1990).
[2] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling 37 39-49 (2003).
[3] N. E. Cho and T. H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc. 40 399-410 (2003).
[4] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 3-25 (1984).
[5] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 746-765 (1972).
[6] J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl. 235 470-477 (1999).
[7] J. M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Salagean-type harmonic univalent functions, South J. Pure Appl. Math. 2 77-82 (2002).
[8] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. Springer- Verlag Heidelberg 1013 362-372 (1983),
[9] H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220, 283-289 (1998).
[10] H. Silverman and E. M. Silvia, Subclasses of harmonic univalent functions, N. Z. J. Math. 28, 275-284 (1999).
[11] B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, Current topics in analytic function theory, (Edited by H.M. Srivastava and S. Owa), World Sci. Publishing, 371-374, Singapore, (1992).
[12] E. Yasar and S. Yalcin, Certain properties of a subclasses of harmonic functions Appl. Math. Inf. Sci. 7 1749-1753 (2013).

## Author information

Hasan Bayram and Sibel Yalçın, Department of Mathematics, Faculty of Arts and Science, Uludag University, 16059, Bursa, TURKEY.
E-mail: hbayram@uludag.edu.tr and syalcin@uludag.edu.tr
Received: January 28, 2016.
Accepted: May 22, 2016.

