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Abstract. In the present paper, we investigate some basic properties of a subclass of har-
monic functions defined by multiplier transformations. Such as, coefficient inequalities, distor-
tion bounds and extreme points.

1 Introduction

Let H denote the family of continuous complex valued harmonic functions which are harmonic
in the open unit disk U = {z: |z| < 1} and let A be the subclass of H consisting of functions
which are analytic in U. A function harmonic in U may be written as f = h+g, where h and g are
members of A. We call h the analytic part and g co-analytic part of f. A necessary and sufficient
condition for f to be locally univalent and sense-preserving in U is that |h/(z)| > |¢'(2)]| (see
Clunie and Sheil-Small [4]). To this end, without loss of generality, we may write

h(z) =z + Zakzk and g¢(z) = Zbkzk. (1.1)
k=1

k=2

Let SH denote the family of functions f = h + g which are harmonic, univalent, and sense-
preserving in U for which f(0) = f,(0) — 1 = 0. One shows easily that the sense-preserving
property implies that |b;| < 1. The subclass SH® of SH consists of all functions in SH which
have the additional property f;(0) = 0.

In 1984 Clunie and Sheil-Small [4] investigated the class SH as well as its geometric sub-
classes and obtained some coefficient bounds. Since then, there have been several related papers
on SH and its subclasses. Also note that SH reduces to the class S of normalized analytic
univalent functions in U, if the co-analytic part of f is identically zero.

For f € S, the differential operator D™ (n € Ny = NU{0}) of f was introduced by Salagean
[8]. For f = h + g given by (1.1), Jahangiri et al. [7] defined the modified Salagean operator of

fas

D"f(z) = D"h(z) + (—1)"D"g(z),
where
D"h(z) =z + Zk"akzk and D"g(z) = Zk”bkzk.
k=2 k=1

Next, for functions f € A, Cho and Srivastava [2] defined multiplier transformations. For
f = h+ g given by (1.1), we define the modified multiplier transformation of f

19 5f(2) = D°f(2) = h(z) + 9(2),

_AD°f(2) + BD'f(2) _ v(h(2) +9(2)) + B(zH'(2) *W), (1.2)

1
Fraf(2) v+8 v+8

I f(z) =1L 4 (W,EV(Z)) - (n € Ny) (1.3)
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Where § > ~v > 0. If f is given by (1.1), then from (1.2) and (1.3) we see that
_ Bk +~ k _1\n S Bk —~ nik
z+z<7+5> z+(1)k§<7+5>bkz. (1.4)
Also if f is given by (1.1), then we have
If;’ﬁf(z) o= fx <¢1(2) + ¢2(z)) % ...k (d)l(z) + ¢2(z))

n times

= hxd1(2) x..x1(2) + g% Pa(2) * ... % Pa(2),

n times n times

where "x" denotes the usual Hadamard product or convolution of power series and

(y+8)z =77 (v = B)z —~?*
(v +B)(1 = 2)* (r+8)(1 =27

By specializing the parametres v and n, we obtain the following operators studied by various
authors:

for f € A,

() I, f(2) = D" f(2) (I8D),

(i) I3 f(2) (121, [3LISD),

(iii) 17y = 1" f(2) ([11]),

for f € H,

() Ig., f(2) = D" f(2) ([7D),

(v) I"lf( ) =17f(2) ([12D).

Denote by SH(~, 8, n, @) the subclass of SH consisting of functions f of the form (1.1) that

satisfy the condition

I”'Hf(z)

R >a, 0<ax<l1 (1.5)
,5 f(z)

¢1(z) = $a(2) =

where I7 ; f(2) is defined by (1.4).

We let the subclass SH (7, 3,n, ) consisting of harmonic functions f,, = h + g,, in SH so
that h and g,, are of the form

=z— Zakz gn(2) = Zbkz ag, b > 0. (1.6)

By suitably specializing the parameters, the classes SH (7, 3,n,a) reduces to the various
subclasses of harmonic univalent functions. Such as,

(i) SH(0,1,0,0) = SH*(0) ([1], [91, [10]),

(i) SH(0,1,0,a) = SH*(a) ([6]),

(iii) SH(0,1,1,0) = K H(0) (1], [9], [10]),

(iv) SH(0,1,1,0) = K H(a) ([6]),

(v) SH(0,1,n,0) = H(n, a) (7)),

(vi) SH (v, l,n a) = SH(y,n,a) ([12]).

Define SH (v, B,n, @) := S (7 B,n,a) N SH and

)=

SH (7)67”7 (’77ﬂ7n,04)mSH0.

2 Main results
Theorem 2.1. Let f = h + g be so that h and g are given by (1.1) with by = 0. Furthermore, let
= ﬁk+7>"<ﬁk+v ) (ﬁk v)”(ﬁk—v >
+ +allg <1-—a, (2.1)
;<w+/3 v+ 8 i’ Z v+B8) \v+5 i
where 0 < v < /2, n € Ny,
inUand f € SH(v,,n, ).

+ T Sas< 5 . Then f is sense-preserving, harmonic univalent
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Proof. If 2y # 2z,

> b (o — 23)
k=2

‘f(zl)_f(ZZ) S ]_‘9(21)—9(22) 1
h(z1) = h(z) h(z1) = h(z) (51— 22) + Soap (2 — 25)
)
oS 0 (Bk—y\"(Bk—v
S kbl > G2 G ve)
> 1= kz%)o >1- kzzoo Bkty \" [ Bkiy > 0)
1= Yklal 13 GG
) >

which proves univalence. Note that f is sense preserving in U. This is because

oo (M)” (m _ a)
y+8 Y+B

> k—1
()| > 1—Zk|ak||2| >1—Z —a |a]
k=2 k=2
oo (BE=2\" (BE=~ o
(vw) (vw +O‘> -
> —a |bk| > Zklbkl 121" > 1g'(2)] .
k=2 k=2

Using the fact that ®(w) > « if and only if |1 — o + w| > |1 + « — w|, it suffices to show
that
(1= )2 £ (o) + 15 ()| = | (1 + @) 17 () = 1 £(2)] 2 0 22)

Substituting for I7 5 f(2) and I ,’;El f(z) in (2.2), we obtain
(1= )t () + I ()| = |1+ @) 12 £ (2) - 12541 (2)]

o (BE+\" Bkt K
2(1 —a)lz| — ) < +1—a) lak||#]
z; v+ 8 v+ B

NN .
k=2(7+ﬁ> (557 1o mls

Y

= [Pk +~ Bk +
S (8 (5

v+ 8
— (Bk=~\" (Bk—~
> (%5

1 bl 12|
oy + +04>|k||z|

B
> [ Bk " Bk
> 2(1—a)|z|{l—z<ﬁ’y_:‘;) (ﬁ’y_:‘;_a> lag|
Bk —\" ( Bk —~
_Z<v+ﬂ> (v+6 +O‘>b’“|}'

This last expression is non-negative by (2.1), and so the proof is complete. O

Theorem 2.2. Let f, = h+,, be given by (1.6) with by = 0. Then f, € SH (v, 8,n,«) if and
only if

Z(ik:ﬁg (ik:ﬁv_“) “’“*Z@Z_ﬂv) (i%;”) slme 29
k=2 _

k=2

whereOSfySﬁ/ZneNo,w%ﬁgagm.
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Proof. The "if" part follows from Theorem 1 upon noting thatﬁo(v7 B,n,a) C SH(v, B,n,a).
For the "only if" part, we show that f, ¢ ﬁo(v,ﬁ,n,a) if the condition (2.3) does not
hold. Note that a necessary and sufficient condition for f, = h 4 g, given by (1.6), to be
in 54H0(7, B, n, ) is that the condition (1.5) to be satisfied. This is equivalent to

[ee]

 ( Bk " Bk k=~ \" ( 8k— _
(l—oz)z—kz_:2 (/ijﬁ'y) ([i:ﬁw —a) akzk_g_%(ﬁvﬂgy) (ﬁ*wg +a> bk

S~ (81" ok 4 S (B=2\" b 5k B
Z—kg(m) ax2 +,§2(W) biZ

The above condition must hold for all values of z, |z| = r < 1. Upon choosing the values of z
on the positive real axis where 0 < z = r < | we must have

o0 n o0 n
_ _ Bk+y Bk+y _ k—1 Bk—v Bk—y k—1
(1-a)- 3% (357) (55 -a)at -3 (55) (55 +a)ow
oo n oo n
_ Bk+y k—1 Bk—vy k—1
! 1;::2 ( v+8 ) apTt T+ 1;::2 ( V+B ) by

>0 (2.4)

If the condition (2.3) does not hold, then the numerator in (2.4) is negative for r sufficiently
close to 1. Hence there exist zo = ro in (0, 1) for which the quotient in (2.4) is negative. This

contradicts the required condition for f,, € SH (v, 8,n, «) and so the proof is complete. O

Theorem 2.3. Let f,, be given by (1.6). Then f,, € SH (v, 8,n,a) if and only if
fa(2) = 32 (Xkhi(2) + Yign, () ,

k=1
where
hl(Z) =z, hk(Z) =z — M%Zk (k = 2,3, )7
Y+8 Y+8
and
= = 1y l-a k(. _
gni(2) =2 gm(2) = 24 (S iy T (=230,

sz()?YkZOyZ(Xk"'Yk):la0§7§5/27n€N077%5§a§%~
=1

In particular, the extreme points of SH (v, 8,n,«) are {hy} and {gn, }.

Proof. For functions f,, of the form (1.6) we have

fa(z) = (Xihi(2) + Yign, (2))
k=1
— (X + Y2) X"
Z K+ k Z B+~ " Bk4+y — ke
=1 k=2\"~+8 y+8
oo
1—
nz ﬁj Yk.Ek.
—y
2<v+ﬂ) (%7 +0)
Then
oo (B \" Bty _
Z(’Hﬁ) (’y+ﬁ a) -« X,
1 —a Bk+y\" ( Bkt ’
(57 (25
o (BE=2\" (Bk=y
+Z(W+B) (7+6 +a) I —a v,
~ -« s\ (B2 o)
k=2 y+8 y+B

oo

= ZXHiYk:l—XI—HSI
k=2 k=2
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and so f, € SH (v, 8,n,«). Conversely, if f, € SH (v, 8,n,a), then

2 < 11—«
ICORCE
r+B v+6
and :
—
bk >~ n
Bk—~ Bk—~
( v+8 ) ( v+8 + a)
Set N
Bty (ﬁk+7 a)
Xk_(’y+/8)1’2—6 ak,(k;*23, )
(ﬁk—w)n (ﬂk—v + a)
Y, =\ AP by, (k= 2,3
11—«
and

X1+Y1=1—<

k=2

where X, Y, > 0. Then, as required, we obtain

fn(z) = (X1 + Yl)Z + ithk(Z

k=2

V43 Vigu (2
k=2

ZXk + Yk)

M8

ke
Il

1

(thk(z) + Yign, (Z)) :

O

Theorem 24. Let f, € SH (v,8,n,a). Then for |z] =7 < 1and 0 < v < /2, n € Ny,

i B
e <a< 1B we have
and

|fn(z)| 27T =

(

2B+y

v+B

(1-a)

(

2B+y
Y+8

) (

284y
v+8

2

_Q)T

Proof. ' We only prove the right hand inequality. The proof for the left hand inequality is similar
and will be omitted. Let f,, € SH (v, 8,n, «). Taking the absolute value of f,, we have

|fn(z)| < r+ (ak+bk)r2

0o
k=2

(1—a)r?

(

Bk+y
y+6

" (Brty _
Y+B

°)

r+

(1-a)

28+ \" (2847 _
7+B v+8

°)

2847 \" (2814
v+8 v+8

=)

k

>

oo

2

2

.

1-«

ak +

The following covering result follows from the left hand inequality in Theorem 2.4.

O

Corollary 2.5. Let f,, of the form (1.6) be so that f,, € SH (v, ,n,a), where 0 < v < 3/2,

0

nENo, 4B

SOZS ’YTﬁ Then
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Theorem 2.6. The class SH (7, 3,n,a) is closed under convex combinations.

Proof. Let f,,, € SH (v,8,n,a) fori = 1,2, ..., where f,, is given by

fm —Z_Zakz + _] "Zbkz

Then by (2.3),
i (i:éy) 1 (_i:éjg'y — a) ax. + i (%) 1 (_112—; + a) b <1 s

o0
For > t; = 1,0 < t; < 1, the convex combination of f,,, may be written as

Thi

i=1

iti =23 <Zt . ) s (Zt b, )

k=2 k=2

Then by (2.5),

e AL CE TN

k=2
Bry \" (Bhty _ Bk=~\" ( Bk—y
> ('Hﬁ) ('v+ﬁ a) 7+[3) <w+l3 +a)
E ak, +
]l —« ]l —«

by,

i

IA

o0

Dt

i=1 | k=2
o0

s is the condition required by (2.3) and so > ¢; f,,(2) € SH (v, 8,n, ). i

i=1
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