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Abstract. For any (unital commutative) principal ideal ringA, we produce a set ofA-algebra
isomorphism class representatives of the ramified (unital minimal) ring extensions of A. Spe-
cial attention is paid to the case of a finite principal ideal ring. The first step in this process
involves sharpening some of our earlier results from the case where A is a finite special princi-
pal ideal ring. One consequence of this work is the completion of the classification, up to ring
isomorphism, of the commutative (unital) rings having a unique proper (unital) subring.

1 Introduction

The titular classification is given in Proposition 2.5, with its application to the case of finite base
rings being isolated in Corollary 2.6. One offshot is the completion, in Remark 2.7 (b), of the
probabilistic studies that were begun in [3, Corollary 3.6]. In short, this paper completely solves
all the fundamental questions about ramified (minimal ring) extensions of a special principal
ideal ring (SPIR) or, more generally, of a principal ideal ring (PIR), that underlay [3, Section 3].
The results for SPIRs are largely accomplished with the aid of Theorem 2.1 and its application
to the case of finite base rings in Corollary 2.2. These two results serve to generalize and sharpen
[3, Theorem 3.4]. Indeed, Theorem 2.1 (g) establishes that the specific examples of ramified ex-
tensions of any given finite SPIR, A, which were found in [3, Theorem 3.4] are, up to A-algebra
isomorphism, the only possible ramified extensions of A and that the possible finiteness of A is
irrelevant in this regard. Moreover, in case the given SPIR, A, is finite, the “at least" assertion
in [3, Theorem 3.4 (f)] (estimating the number of A-algebra ismorphism classes represented by
ramified extensions of A) is sharpened and generalized in Theorem 2.1 (h) and Corollary 2.2 by
revisiting more deeply some group-theoretic and some number-theoretic aspects of the approach
in [3]. One should perhaps also alert the reader that Theorem 2.1 (g) features what is arguably
the hardest proof in this paper.

To carry out the task of extending the classification (from Theorem 2.1) of the relevant alge-
bra isomorphism classes from the context of base rings that are SPIRs to the context where the
base rings are arbitrary PIRs (in Proposition 2.5), we apply the fact that ramified (minimal ring)
extensions behave well with respect to finite direct products of base rings (as in [3, Lemma 2.2
(b)]). By using this methodology from [3, Lemma 2.2 (b)] and combining our present results
with some other earlier work, Corollary 2.8 completes the project of classifying, up to ring iso-
morphism, the commutative (unital) rings having a unique proper (unital) subring. This project
had been begun in [1], it was completed for rings of characteristic 0 in [1, Theorem 5], and it
was settled for rings of positive characteristic for all but one case in [1, Theorem 13]. The con-
text for that one open case involves classifying (up to isomorphism) the ramified (minimal ring)
extensions of rings of the form Z/pnZ (with p prime and n ≥ 2), thus explaining in part our
recent interest in the ramified extensions of SPIRs.

This paragraph collects some notational conventions and the next paragraph collects some
background on minimal ring extensions that will be useful below. All rings and algebras consid-
ered here are commutative and unital, typically nonzero; all inclusions of rings, ring extensions
and algebra/ring homomorphisms are unital. If A is a ring, then Max(A) denotes the set of all
maximal ideals of A. As usual, |U| denotes the cardinal number of a set U ; ⊂ denotes proper
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inclusion; and X and Y denote commuting, algebraically independent indeterminates over the
ambient ring(s). Also, it will be convenient to modify the SPIR concept as defined in [18, page
245], by adding the restriction that no field will be considered to be an SPIR here (although all
fields are, of course, PIRs). Finally, we would mention [12] as a suitable reference for the basics
about the idealization construction.

If A ⊂ B are (distinct) rings then we say, following [10], that A ⊂ B is a minimal ring
extension if there is no ring C such that A ⊂ C ⊂ B. A minimal ring extension A ⊂ B is either
integrally closed (in the sense that A is integrally closed in B) or integral. We can mostly ignore
integrally closed minimal ring extensions here since, for any minimal ring extension A ⊂ B
such that A is a finite ring, B is also finite [1, Proposition 7] and any ring extension whose
“top” ring is finite must be integral (cf. [16, Theorem XIII.1], [4, Lemma 2.1 (c)]). (By using
a deep noncommutative result on rng extensions, due independently to Klein [14] and Laffey
[15], it was recently shown in [6, Lemma 2.1 (c)] that if A ⊂ B is a minimal ring extension
of possibly noncommutative rings, in the obvious sense, and A is finite, then B is also finite.)
The first classification result on minimal ring extensions was due to Ferrand-Olivier [10, Lemme
1.2]: if k is a field, then a nonzero k-algebra B is a minimal ring extension of k (when we
view k ⊆ B via the injective structural map k → B) if and only if B is k-algebra isomorphic
to (exactly one of) a minimal field extension of k, k × k or k[X]/(X2). Now let A ⊂ B be
an integral ring extension, with its conductor M := (A : B) (:= {b ∈ B | bB ⊆ A}). A
standard homomorphism theorem shows that A ⊂ B is a minimal ring extension if and only if
A/M ⊂ B/MB (= B/M ) is a minimal ring extension. In fact (cf. also [10, Lemme 1.2 and
Proposition 4.1], [7, Lemma II.3]), the above-mentioned classification result of Ferrand-Olivier
leads to the following trichotomy: A ⊂ B is a (an integral) minimal ring extension if and only
if M ∈ Max(A) and (exactly) one of the following three conditions holds: A ⊂ B is said to
be respectively ramified, decomposed, or inert if B/MB (= B/M ) is isomorphic, as an algebra
over the field k := A/M , to k[X]/(X2), k × k, or a minimal field extension of k. It is known
that if A is any finite ring that is not a field, then the (cardinal) number of A-algebras that can
be represented by a ramified (resp., decomposed) extension of A is finite. To see this, combine
the (essentially unique) expression of A as a direct product of finitely many local rings (cf. [18,
Theorem 3, page 205]) and an above-mentioned result about finite direct products [3, Lemma 2.2
(b)] with [4, Corollary 2.4 (a)]. The answer to the analogous question about inert extensions is
more delicate (cf. [3, Theorem 2.5] and [4, Theorem 2.3]). Fortunately for the present work, an
SPIR (which is not a field) has no inert extensions [1, Proposition 8] and an SPIR (A,M) admits
a unique class of A-algebras represented by decomposed extensions of A, with representative
A×A/M [1, Proposition 10].

Any unexplained material is standard, as in [11], [13].

2 Results

We begin with two results that significantly sharpen the statement of [3, Theorem 3.4]. Theorem
2.1 deletes the riding assumption from [3, Theorem 3.4] that the given SPIR (A,M) is finite. In
our opinion, the new foundational result in this paper is Theorem 2.1 (h), as it classifies, up to
algebra isomorphism, the ramified (minimal ring extensions) of any SPIR (that is not a field).
This classification result is made possible by Theorem 2.1 (g), whose proof is arguably the most
technically demanding in this paper. Corollary 2.2 gives a complete treatment for the special
case of Theorem 2.1 where the given SPIR is finite. That includes replacing the earlier estimates
from [3, Theorem 3.4 (f)] with equalities. We should mention that part (i) of Theorem 2.1 is
being included not only for the sake of completeness but also for readers interested in pursuing
probabilistic studies in the spirit of [3, Corollary 3.6] (bearing in mind that the earlier estimates
in those probabilistic studies can be sharpened to equalities by combining Theorem 2.1 (i) with
the formulas in Corollary 2.2).

Theorem 2.1. Let (A,M) be an SPIR (but not a field). Let α (≥ 2) denote the index of nilpotence
of M (so that Mα = 0 6= Mα−1). Fix π ∈ M such that Aπ = M . For each u ∈ U(A), let
Bu := A[X]/(πX,X2 − uπα−1). Then:

(a) If u ∈ U(A), then the canonical A-algebra homomorphism A→ Bu is an injection, and
we use that fact to view A ⊆ Bu.



Classifying the ramified extensions of a PIR 39

(b) If u ∈ U(A), then A 6= Bu and A ⊂ Bu is a ramified (minimal ring) extension.
(c)A ⊂ A(+)A/M is a ramified (minimal ring) extension (when the idealization A(+)A/M

is viewed as a ring extension of A via the canonical injective A-algebra homomorphism A →
A(+)A/M given by a 7→ (a, a+M)).

(d) If u ∈ U(A), then Bu is not A-algebra isomorphic to A(+)A/M .
(e) Let u, v ∈ U(A). Then the following three conditions are equivalent:

(1) Bu and Bv are A-algebra isomorphic;
(2) There exists σ ∈ S∗ such that u− σ2v ∈M ;
(3) uv−1 is a quadratic residue modulo M (in the sense that there exists w ∈ U(A) such

that u− w2v ∈M).
In the following, let K := A/M ; let K∗ := K \ {0}, the multiplicative abelian group

consisting of the nonzero elements of K; and let K∗2 be the subgroup of K∗ consisting of the
squares of the elements of K∗.

(f) Let u, v ∈ U(A) (= A \M). Then Bu and Bv are A-algebra isomorphic if and only if
u+M and v +M represent the same coset of K∗2 in K∗.

(g) Let A ⊂ B be a ramified (minimal ring) extension. Then B is A-algebra isomorphic to
either A(+)A/M or Bu for some u ∈ U(A).

(h) LetR denote the collection of A-algebra isomorphism classes that can be represented by
rings B such that A ⊂ B is a ramified (minimal ring) extension. Write K∗ as the disjoint union
∪i∈I K∗2(ui +M); that is, for certain elements ui ∈ A \M , {ui +M | i ∈ I} is a set of coset
representatives for the cosets of K∗2 in K∗. Then one set of (A-algebra isomorphism class)
representatives for R is found by taking the (disjoint) union of the singleton set {A(+)A/M}
with (the disjoint union) ∪i∈I Bui . Thus, R is a set and its cardinal number is

|R| = 1 + |I| = 1 + [K∗ : K∗2],

where the above addition is that of cardinal numbers.
(i) The decomposed (minimal ring) extensions of A constitute a unique A-algebra isomor-

phism class, with A × A/M as a representative of it. There do not exist any inert or integrally
closed minimal ring extensions of A.

Proof. The proofs for (a)-(e) that were given in [3, Theorem 3.4] apply verbatim here, as those
proofs did not use the hypothesis that A is finite.

(f) We have that u+M and v+M represent the same coset of K∗2 in K∗ if and only if there
exists w ∈ A \M such that u +M = (w +M)2(v +M); that is, if and only if there exists
w ∈ U(A) such that u− w2v ∈M ; that is, by (e), if and only if Bu ∼= Bv as A-algebras.

(g) Suppose that B is not A-algebra isomorphic to A(+)A/M . It will suffice to prove that
B is A-algebra isomorphic to Bu for some u ∈ U(A). As A ⊂ B is ramified, B is quasi-local
and its maximal ideal, say N , satisfies N2 ⊆ M ⊂ N . Moreover, the generator-and-relations
characterization of ramified extensions (cf. [9, Proposition 2.12], [2, Lemma 2.1]) supplies
y ∈ N \ A such that B = A[y], yM ⊆ M and y2 ∈ M . Note that the literature’s condition
that y3 ∈ M is implied by the other conditions here, since y3 = yy2 ∈ yM ⊆ M . Also, since
M = Aπ, the condition that yM ⊆ M is equivalent to πy ∈ M . Since B is not A-algebra
isomorphic to A(+)A/M , it follows from a characterization of idealizations [5, Lemma 3.1 (b)]
that either y2 6= 0 or πy 6= 0 (or both).

Suppose first that y2 6= 0 and πy 6= 0. We claim that πy = π2w for some w ∈ A. (It
follows from this claim that α ≥ 3, as πy 6= 0 by hypothesis.) This claim can be established
by adapting the reasoning in the second paragraph of the proof of [1, Proposition 12 (a)]. For
the sake of completeness, we next provide the details. Suppose, on the contrary, that no such w
exists. Then, as A is an SPIR, the factorization theory for SPIRs (as in [18, page 245]) supplies
λ ∈ U(A) such that πy = πλ, whence (y − λ)π = 0. As y − λ ∈ N + U(B) ⊆ U(B), we have

π = 1 · π = ((y − λ)−1(y − λ))π = (y − λ)−1((y − λ)π) = (y − λ)−1 · 0 = 0,

which is a contradiction to the factorization theory for SPIRs since α ≥ 2. This proves the
claim that πy = π2w for some w ∈ A. With suitable w in hand, consider z := y − πw. As
πw ∈ M ⊆ A, we have z ∈ N \ A. Since A ⊂ B is a minimal ring extension, it follows that
A[z] = B. Also, zM ⊆ yM + πwM ⊆M +M =M . Moreover, since we know that πy = π2w
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with y2 ∈M , we get

z2 = (y − πw)2 = y2 − 2wπy + π2w2 = y2 − 2wπ2w + π2w2 = y2 − π2w2 ∈M.

Consequently, by replacing y with z, we can assume (for the subcase where y2 6= 0), by abus de
langage, that πy = 0 (and also that y2 6= 0 and, in addition, y3 = 0 since y3 = yy2 ∈ yM =
yπA = 0).

By adapting the reasoning in the proof of the next-to-last assertion in the statement of [1,
Proposition 12 (a)], we get u, v ∈ U(A) and uniquely determined integers i, j such that 1 ≤
i, j ≤ α, y2 = uπi and πy = vπj , along with the fact that if i < α− 2, then j < α/2. However,
since πy = 0 forces j = α and α > α/2, we can conclude that i ≥ α − 2. If i = α − 1, we get
that B ∼= Bu. (The preceding assertion is rather subtle. By the universal mapping property of
factor algebras, there is a surjective A-algebra homomorphism, say ϕ, from Bu to B that sends
ξ := X + (πX,X2 − uπα−1) to y. It remains to check that the kernel of ϕ is 0. Recall (cf. the
reasoning in [2, pages 3463-3464]) that the “ramified" property of A ⊂ Bu = A + Sξ ensures
that if a1, a2 ∈ A and σ1, σ2 ∈ S are such that a1 +σ1ξ = a2 +σ2ξ, then a1 = a2 and σ1 = σ2. A
similar comment holds for the addition in B = A+Sy. Since ϕ(a+ σξ) = a+ σy for all a ∈ A
and all σ ∈ S, it is now easy to check that ker(ϕ) = 0.) Therefore, without loss of generality,
i = α − 2; that is, y2 = uπα−2. Next, note that the factorization theory for SPIRs ensures that
uπα−1 6= 0. However,

uπα−1 = π(uπα−2) = πy2 = (πy)y = 0y = 0,

a contradiction.
It remains only to consider the case where y2 = 0 and πy 6= 0. Recall that A ⊂ B = A[y] is

ramified and πy ∈M . We have πy = vπj for some v ∈ U(A) and a uniquely determined integer
j such that 1 ≤ j ≤ α − 1. We claim that if α = 2, then no such data can arise. If the claim
fails, then j = 1, whence πy = vπ, and so (y − v)π = 0. As explained above, this leads to the
contradiction that π = 0 (by using the fact that y − v ∈ U(B)). This proves the claim, and so
we can henceforth assume, without loss of generality, that α ≥ 3. We will complete the proof of
(g) by reducing to the case that was settled earlier. In other words, we will show that if α ≥ 3
and A ⊂ B = A[y] is ramified with y2 = 0 and 0 6= πy ∈ M , then there exists z ∈ N such that
B = A[z], πz = 0 and z2 ∈M .

As πy is a nonzero element of M , the factorization theory for SPIRs provides an element
w ∈ A such that πy = wπ2. (Note that the preceding step required that α ≥ 3.) We will show
that z := y − πw has the desired properties that were listed above. Of course, A[z] = B since
z ∈ N \A. Also, it is clear that πz = 0. Finally, since y2 = 0, we get

z2 = −2(πy)w + π2w2 ∈M2A+M2A ⊂M.

This completes the proof of (g).
(h) In view of the standard definition of the sum of two cardinal numbers, it suffices to

combine parts (g), (c), (b), (d) and (f) of the present result.
(i) These assertions were established in Propositions 10, 8 and 7, respectively, of [1].

Corollary 2.2. Let (A,M) be a finite SPIR. Then K := A/M can be identified with Fq for some
q = pn, with p a prime number and n ≥ 2. Let α (≥ 2) denote the index of niplotence of M and
choose π ∈ M such that M = Aπ. For each u ∈ U(A), let Bu := A[X]/(πX,X2 − uπα−1).
Let R denote the collection of A-algebra isomorphism classes that can be represented by rings
B such that A ⊂ B is a ramified (minimal ring) extension. Then:

(a) Suppose that 2 ∈ M (equivalently, the characteristic of A is even; equivalently, p = 2;
equivalently, |K| is even). Then one set, call it C, of (A-algebra isomorphism class) representa-
tives for R consists of A(+)A/M and B1, and so |R| = 2.

(b) Suppose that 2 6∈ M (equivalently, the characteristic of A is odd; equivalently, p 6= 2;
equivalently, |K| is odd). Pick v ∈ U(A) such that v is a quadratic nonresidue modulo M (in
the sense that there does not exist w ∈ U(A) such that v − w2 ∈ M). Then one set, call it D, of
(A-algebra isomorphism class) representatives forR consists of A(+)A/M , B1 and Bv, and so
|R| = 3.
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Proof. Since A is a finite (nonzero) local ring but not a field, |A| = pd for some prime number p
and some integer d ≥ 2. By Lagrange’s Theorem and the Fundamental Theorem of Arithmetic,
|M | = pe for some positive integer e < d; and |K| = |A|/|M | = pn with n := d − e, whence
K can be identified with Fq where q := pn. Also, the characteristic of A is ps for some positive
integer s (cf. [16, pages 1-3]). Hence p · 1 ∈ M (as M is a prime ideal of A). By expressing
the integral greatest common divisor of 2 and p as an integral linear combination and arguing
as in the proof of [3, Theorem 3.4 (f)], we see that: 2 ∈ M ⇔ p = 2 ⇔ the characteristic of
A (namely, ps) is even ⇔ |K| (namely, q = pn) is even. Similarly, 2 6∈ M ⇔ p 6= 2 ⇔ the
characteristic of A is odd ⇔ |K| is odd. This completes the proofs of the initial assertions in
both (a) and (b). In view of parts (e), (f), (g) and (h) of Theorem 2.1, it remains only to establish
the following facts: if p = 2, then [K∗ : K∗2] = 1; and if p 6= 2, then the asserted element v
exists and [K∗ : K∗2] = 2.

Suppose first that p = 2. As K ∼= F2n , each ξ ∈ K∗ satisfies ξ2n

= ξ, whence ξ = (ξ2n−1
)2 ∈

K∗2. Hence [K∗ : K∗2] = 1 in this case, thus completing the proof of (a).
In the remaining case, p 6= 2. Given λ, µ ∈ K∗, we have that µ2 = λ2 if and only if

µ ∈ {λ,−λ}. As p 6= 2, each λ ∈ K∗ satisfies λ 6= −λ. Consequently |K∗2| = |K∗|/2, whence
[K∗ : K∗2] = |K∗|/|K∗2| = 2. It follows from Theorem 2.1 (f) that, since |K∗2| = |K∗|/2 <
|K∗|, we can choose v ∈ A \M (= U(A)) such that v +M ∈ K∗ \ K∗2 (and so Bv is not
A-algebra isomorphic to B1). This completes the proof of (b).

Before enlarging the context to base rings that are not necessarily quasi-local, we next collect
some comments that pertain to the above context where the base rings were SPIRs.

Remark 2.3. (a) In the interest of full disclosure, we next identify a minor error in the proof
of the “at least" assertion in [3, Theorem 3.4 (f)]. The context of that result involved a finite
SPIR (A,M), where |A| = pm and |M | = pt for some odd prime number p and some positive
integers t < m. Of course, by arguing as in the second sentence of the above proof of Corollary
2.2, we see that the number of nonzero elements of A/M is then pm−t − 1. Unfortunately,
the proof of [3, Theorem 3.4 (f)] misidentified that number as being pm − pt − 1. Fortunately,
the statement of all of [3, Theorem 3.4] is correct. In addition, the “at least" assertion in the
statement of [3, Theorem 3.4 (f)] (whose proof was actually not seriously affected by the above
error) has been improved to a complete answer to the underlying question in Corollary 2.2 (b).
That improvement permits us to sharpen the assertions of [3, Corollaries 3.6 and 3.7]. We will
say more about such sharpenings while working in a more general context in Remark 2.7 (b).

(b) The “complete answer to the underlying question" that was mentioned in (a) was made
possible by applying Theorem 2.1 (h) and calculating the group-theoretic index [K∗ : K∗2] for
finite fields K, where this index turns out to be either 1 or 2, depending on whether the integer
|K| is even or odd. One should note that this index can have qualitatively different values when
K is an infinite field. For instance, [Q∗ : Q∗2] = ℵ0. (A consideration of the infinite field Q
is not out of place when considering SPIRs, as it is, up to isomorphism, the residue field of the
SPIR Q[X]/(X2).) To prove this, it follows (from the infinitude of the set of prime numbers)
that it suffices to show that if p1 and p2 are distinct prime numbers, then p1 6∈ Q∗2p2. This, in
turn, is an easy consequence of the Fundamental Theorem of Arithmetic.

(c) Calculating the above group-theoretic index is not simply a matter of noticing the char-
acteristic of an ambient ring. For instance, consider A := Fq(Y )[X]/(X2) for any prime-power
q. Up to isomorphism, the residue ring of this SPIR is Fq(Y ). As an easy degree argument
shows that Y 6∈ F (Y )∗2 for any field F , we get that [F (Y )∗ : F (Y )∗2] > 1. In particular,
[Fq(Y )∗ : Fq(Y )∗2] > 1 for any prime-power q. If such q is even, we saw in the proof of Corol-
lary 2.2 that [F∗q : F∗2q ] equals 1 and, hence, is unequal to [Fq(Y )∗ : Fq(Y )∗2] (> 1). One could
say more about the value of [F ∗ : F ∗2] for various historically important kinds of fields F . But
our main purpose in presenting the variety of behavior in (b) and (c) was to alert potential users of
Theorem 2.1 (h) and Corollary 2.2 that one needs to be careful in addressing the group-theoretic
specifics of any application. This completes the remark.

To prepare for the generalization of Theorem 2.1 from the context where the base ring A is
an SPIR to the context where A is an arbitrary PIR, it will be convenient to next state a result
that was mentioned above concerning the good behavior of minimal ring extensions with respect
to finite direct products.
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Lemma 2.4. ([3,Lemma 2.2]) (a) Let A ⊂ B1 be a minimal ring extension and let B2 be an A-
algebra such that B1 ∼= B2 as A-algebras. Then A ⊂ B2 is a minimal ring extension. Moreover,
A ⊂ B1 is ramified (resp., decomposed; resp., inert) if and only if A ⊂ B2 is ramified (resp.,
decomposed; resp., inert).

(b) Let A = A1 × · · · × An be a finite direct product of nonzero rings (where possibly
Ai ∼= Aj for some i 6= j). Let A ⊆ B be a ring extension. Then B is A-algebra isomorphic to
B1× · · · ×Bn where, for each j, Aj ⊆ Bj is a ring extension and Bj is uniquely determined up
to Aj-algebra isomorphism. Pick/fix such B1, . . . , Bn. Then A ⊂ B is a minimal ring extension
if and only if there exists a (necessarily unique) index i such that Ai ⊂ Bi is a minimal ring
extension and Aj = Bj for all j 6= i. Moreover, when these conditions hold, A ⊂ B is the
same kind of minimal ring extension (this is, integrally closed, ramified, decomposed, or inert)
as Ai ⊂ Bi.

Proposition 2.5 next gives the promised generalization of Theorem 2.1. For any PIR, A,
Proposition 2.5 classifies (up to A-algebra isomorphism) the rings B such that A ⊂ B is a
ramified (minimal ring) extension.

Proposition 2.5. Let A be a PIR. It is known (cf. [18,Theorem 33, pages 245− 246]) that A is
ring isomorphic to a finite direct product

∏n
i=1 Ai where each Ai is either a field, a principal

ideal domain (PID) which is not a field, or an SPIR (which is not a field). Fix one such direct
product. Let S1 (resp., S2; resp., S3) be the set of indexes i such that Ai is a field (resp., a
PID which is not a field; resp., an SPIR (which is not a field)). Put n1 := |S1|, n2 := |S2| and
n3 := |S3|; of course, n1 + n2 + n3 = n. For each i ∈ S3, let Mi denote the maximal ideal of Ai
and put Ki := Ai/Mi. Let R denote the collection of A-algebra isomorphism classes that can
be represented by rings B such that A ⊂ B is a ramified (minimal ring) extension. Then one set,
let us call it C, of (A-algebra isomorphism class) representatives for R can be found by having
each i = 1, . . . , , n contribute at least one member to C, as follows. Each contribution that is
due to such an index i is an alteration of the above direct product description of A in which the
occurrence of Ai is replaced by a ring that properly contains Ai. Each i ∈ S1 contributes one
member of C determined by replacing Ai with Ai[X]/(X2) (which is Ai-algebra isomorphic to
Ai(+)Ai because this kind of Ai is a field). Each i ∈ S2 contributes |Max(Ai)| members of C
determined by the replacement ofAi with the elements of the formAi(+)Ai/M asM varies over
Max(Ai). If i ∈ S3 and {uij | j ∈ Ij} is a chosen subset of Ai \Mi such that {uij +M | i ∈ Ij}
is a set of coset representatives for the cosets of K∗2i in K∗i , then i contributes 1 + [K∗i : K∗2i ]
members of C determined by the replacement of Ai with Ai(+)Ai/Mi or with Buij

(adapting
notation from Theorem 2.1 for use here with the base ring Ai) as j varies over Ij . Thus, R is a
set and its cardinal number is

|R| = n1 +
∑
i∈S2

|Max(Ai)|+ n3 +
∑
i∈S3

[K∗i : K∗2i ],

where the above addition is that of cardinal numbers.

Proof. In view of Lemma 2.4, it suffices to establish the following three facts. If i ∈ S1 (resp.,
i ∈ S2 ; resp., i ∈ S3) then the collection of Ai-algebra isomorphism classes represented by
ramified extensions of Ai has cardinality 1, with representative Ai[X]/(X2) (resp., is in one-
to-one correspondence with Max(Ai) where the typical M ∈ Max(Ai) corresponds to the Ai-
algebra isomorphism class represented by Ai(+)Ai/M ; resp., has cardinality 1 + [K∗i : K∗2i ],
with representatives Ai(+)Ai/Mi and the Buij

as j varies over Ij). For the first of these facts,
apply the Ferrand-Olivier classification of the minimal ring extensions of a field [10, Lemme
1.2]. For the second of these facts, apply the classification, due to Shapiro and the author [9,
Corollary 2.5 and Proposition 2.12] (cf. also [8, Theorem 2.7 and Remark 2.8 (a)] and [17]),
of the minimal ring extensions of an integral domain which is not a field. For the third of these
facts, apply Theorem 2.1 (h). The proof is complete.

In view of the length of the statement of Proposition 2.5, we will present only one corollary of
it, leaving interested readers to formulate additional corollaries that may be more suited to their
needs. Corollary 2.6 presents the application of Proposition 2.5 to finite PIRs. Its specification
of A-isomorphism class representatives is relatively concise and has a number-theoretic flavor
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that neatly generalizes the results on finite SPIR base rings in Corollary 2.2 (which, in turn,
generalized results on base rings of the form Z/p2Z with which our work in this direction had
begun in [1, Proposition 12 (e), (f)]).

Corollary 2.6. Let A be a finite PIR. Fix a finite direct product description of A as
∏n
i=1 Ai

where each Ai is either a (finite) field or a (finite) SPIR (which is not a field). Let T1 be the
set of indexes i such that Ai is a field. Let T2 be the set of indexes i such that Ai is an SPIR
(but not a field) and the characteristic of Ai is even. Let T3 be the set of indexes i such that
Ai is an SPIR (but not a field) and the characteristic of Ai is odd. Put ν1 := |T1|, ν2 := |T2|
and ν3 := |T3|; of course, ν1 + ν2 + ν3 = n. For each i ∈ T2 ∪ T3, let Mi = Aiπi denote
the maximal ideal of Ai, put Ki := Ai/Mi, and let αi (≥ 2) denote the index of nilpotence of
Mi. Let R denote the collection of A-algebra isomorphism classes that can be represented by
rings B such that A ⊂ B is a ramified (minimal ring) extension. Then one set, let us call it C, of
(A-algebra isomorphism class) representatives forR can be found by having each i = 1, . . . , , n
contribute at least one member to C, as follows. Each contribution that is due to such an index
i is an alteration of the above direct product description of A in which the occurrence of Ai
is replaced by a ring that properly contains Ai. Each i ∈ T1 contributes one member of C
determined by replacing Ai with Ai[X]/(X2). Each i ∈ T2 contributes two distinct members
of C determined by replacing Ai with Ai(+)Ai/Mi or Ai[X]/(πiX,X2 − παi−1

i ). Each i ∈ T3
contributes three pairwise distinct members of C determined by replacing Ai with Ai(+)Ai/Mi,
Ai[X]/(πiX,X2 − παi−1

i ) or Ai[X]/(πiX,X2 − viπαi−1
i ), where vi is a preassigned element

of U(Ai) which is a quadratic nonresidue modulo Mi (in the sense that there does not exist
w ∈ U(Ai) such that vi − w2 ∈ Mi). Then the number of A-algebra isomorphism classes
represented by ramified (minimal ring) extensions of A is

|R| = n+ ν2 + 2ν3 = ν1 + 2ν2 + 3ν3,

where the above addition is that of cardinal numbers.

Proof. We apply Proposition 2.5. Using some notation from that result, we have that T1 = S1
(and so ν1 = n1); S2 is empty since every finite integral domain is a field (and so n2 = 0); and
S3 is the disjoint union T2∪T3 (and so n3 = ν2 +ν3). By combining parts (e)-(h) of Theorem 2.1
with Corollary 2.2 (b), we obtain the asserted contributions to C that are attributable to each index
i ∈ T2 (resp., i ∈ T3) and the fact that the number of such contributions (including Ai(+)Ai/Mi)
from each such i is 2 (resp., 3). Hence, by Proposition 2.5,

|R| = n1 +
∑
i∈S2

|Max(Ai)|+ n3 +
∑
i∈S3

[K∗i : K∗2i ] = ν1 + 0 + ν2 + ν3 +
∑

i∈T2∪T3

[K∗i : K∗2i ] =

ν1 + ν2 + ν3 +
∑
i∈T2

1 +
∑
i∈T3

2 = n+ 1 · |T2|+ 2 · |T3| = n+ ν2 + 2ν3 = ν1 + 2ν2 + 3ν3.

The proof is complete.

Remark 2.7. (a) One may ask how “effectively" one can apply Corollary 2.6. In that regard, note
that the proof of Corollary 2.6 made heavy use of Theorem 2.5 and that the proof of Theorem
2.5 made significant use of [18, Theorem 33, pages 245-246]. The proof of the latter result
used a primary decomposition of 0 in a given PIR (hence Noetherian ring) R. In our opinion,
determining whether a use of Corollary 2.6 is “effective" may often depend on how “effectively"
one can carry out the above-mentioned primary decomposition for the data at hand. We will
leave further analysis along these lines to specialists in computer algebra and related packages,
as that area has shown extensive activity in recent decades in developing primary decompositions
for certain appropriate Noetherian rings.

(b) The above work allows us to pursue a probabilistic study of the minimal ring extensions of
a finite ring more generally and more sharply than in [3]. LetA be a finite ring. Fix an expression
of A as a finite direct product

∏n
j=1 Aj of (necessarily finite) local rings Aj . (As is well known,

this can be done in essentially only one way, apart from reordering the direct factors Aj or
replacing them with isomorphic copies.) Further restrict A so that none of the Aj is a field; this
restriction is equivalent to requiring that no localization of A (at a prime ideal of A) is a field. By
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combining Lemma 2.2 with some of the results from [4] that were mentioned in the Introduction,
we see that the collection E of A-algebra isomorphism classes that can be represented by a ring
B such that A ⊂ B is a minimal ring extension is a finite set. Impose the uniform distribution on
E . For each j, let ρj (resp., δj ; resp., θj) denote the (finite) number of Aj-algebra isomorphism
classes that can be represented by a ramified (resp., decomposed; resp., inert) minimal ring
extension ofAj . Then, by Lemma 2.2, the (finite) number ofA-algebra isomorphism classes that
can be represented by a ramified (resp., decomposed; resp., inert) extension ofA is ρ :=

∑n
j=1 ρj

(resp., δ :=
∑n
j=1 δj ; resp., θ :=

∑n
j=1 θj). Then |E| = ρ+ δ + θ. Furthermore, the probability

that a random A-algebra isomorphism class that can be represented by a minimal ring extension
of A is actually represented by a ramified (resp., decomposed; resp., inert) extension of A is
ρ/(ρ + δ + θ); resp., δ/(ρ + δ + θ); resp., θ/(ρ + δ + θ). Implementing the above formulas
precisely ultimately requires one to know the values of ρj , δj and θj for each j. While δj can be
determined by using [5, Theorem 2.6], the above general context admits only estimates for ρj
and θj at this time. For that reason, we next focus on the subcontext that addresses PIRs, where
our work will provide exact calculations of ρ, δ and θ.

Let us focus on the case where the above ring A is a PIR. In other words, we are studying a
finite PIR, A, none of whose localizations (at a prime ideal of A) is a field. We have identified A
with a fixed finite direct product

∏n
j=1 Aj , where each Aj is a finite SPIR (and no Aj is a field).

The symbols E , ρj , δj , θj , ρ, δ and θ will retain their respective meanings from the preceding
paragraph. Let e denote the number of indexes j such that the characteristic of Aj is even; of
course, the characteristic of Aj is odd for each of the other n − e indexes j . Therefore by
Corollary 2.2, ρj = 2 for e values of j and ρj = 3 for the other n− e values of j. It follows that
ρ = 2e+ 3(n− e) = 3n− e. Moreover, for each j, we have that δj = 1 [1, Proposition 10] and
θj = 0 [1, Proposition 8] . Consequently, δ = n and θ = 0, whence |E| = ρ+δ+θ = 4n−e. We
now have the following formulas for the probability that a random A-algebra isomorphism class
that can be represented by a minimal ring extension of A is actually represented by a ramified
(resp., decomposed; resp., inert) extension of A:

ρ =
3n− e
4n− e

, δ =
n

4n− e
and θ = 0.

The above displayed formula for ρ generalizes and sharpens the “at least" assertions in [3,
Corollary 3.6] (where A had been taken to be a finite SPIR), while also sharpening the assertion
in [3, Corollary 3.7] that ρ ≥ 2/3 (for A as above). One may get the impression from [3, items
3.6-3.8] that 2/3 ≤ ρ ≤ 3/4 in general (that is, for any finite PIR, A, none of whose localizations
at a prime ideal is a field). This impression is actually a theorem. (Proof: Since 0 ≤ e ≤ n, it
follows easily that 2/3 ≤ (3n − e)/(4n − e) ≤ 3/4.) The above formula for ρ can also be used
to prove the following realization result (whose proof is left to the reader).

Theorem. Let r ∈ Q such that 2/3 ≤ r ≤ 3/4. Then there exists a finite PIR, A, none of
whose localizations (at a prime ideal of A) is a field, such that r is the probability that a random
A-algebra isomorphism class which can be represented by a minimal ring extension of A is
actually represented by a ramified extension of A. Indeed, if r ∈ Q such that 2/3 ≤ r ≤ 3/4 and
if A∗ is a ring that is (isomorphic to) a finite direct product

∏n∗

j=1 A
∗
j of finite SPIRs A∗j , where

exactly e∗ of the indexes j are such that A∗j has even characteristic (and so each of the other
n∗−e∗ indexes j is such thatA∗j has odd characteristic) and where the n∗ SPIR direct factors may
be listed with repetition, then a necessary and sufficient condition for r to be the probability that
a random A∗-algebra isomorphism class which can be represented by a minimal ring extension
of A∗ is actually represented by a ramified extension of A∗ is that (3 − 4r)/(1 − r) = e∗/n∗.
It follows that each r as above can be obtained as the associated probability ρ for denumerably
many (pairwise nonisomorphic) finite PIRs.

(c) Much of the above is considered good news by the author. For instance, it was explained
in (b) how the results in this paper generalize and sharpen [3, items 3.6-3.8]. In addition, Remark
2.3 (a) documented that a minor error in the proof of [3, Theorem 3.4 (f)] did not deter us from
generalizing and sharpening [3, Theorem 3.4] (in Theorem 2.1 and Corollary 2.2). Moreover,
the completeness of the information obtained in those results allowed us to prove the titular
classification (in Proposition 2.5) and its application to finite rings (in Corollary 2.6). No doubt,
there is serendipity in the fact that the above-mentioned minor error did not prevent this paper
from solving the more general problems that underlay [3, Section 3]. However, not all errors are
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minor and not all errors are followed by only good news. Often, serendipity is not to be expected
when one finds an error in earlier work. We next give some facts that illustrate the points made
in the preceding two sentences.

If A = Fp[X] for some prime number p, it follows from Corollary 2.2 that the number of A-
algebra isomorphism classes that can be represented by a ramified extension ofA is 2 (resp., 3) if
p = 2 (resp., p 6= 2). This conclusion was also made recently in the first paragraph of [5, Remark
3.10 (d)]. However, it contradicts the statement of [1, Proposition 11]. In fact, [1, Proposition
11] is incorrect, and the second paragraph of [5, Remark 3.10 (d)] pinpoints the error in the
published “proof" of [1, Proposition 11] (namely, the author’s failure to recognize that when
p 6= 2, certain ramified extensions of A that are isomorphic as rings could fail to be isomorphic
asA-algebras). Thus, contrary to the (erroneous) statement of [1, Proposition 11] (but in keeping
with the statement of Corollary 2.2), the number of A-algebra isomorphism classes that can be
represented by a ramified extension of A depends on the parity of p. In this regard, we must also
report that our use of the (erroneous) statement of [1, Proposition 11] caused the statement of [3,
Example 3.9] to be incorrect. Accordingly, one should delete [3, Example 3.9] and the sentence
that immediately precedes the statement of that (erroneous) result. This completes the remark.

In closing, we use the above results to finish a classification project that was begun in [1].

Corollary 2.8. (1) ([1,Theorem 5]) Up to isomorphism, the rings R of characteristic zero that
have exactly one proper subring can be classified as the rings satisfying (exactly) one of the
following conditions:

(i) R = Z[1/p], where p is a prime number (which is uniquely determined by R);
(ii) R = Z× Fp, where p is a prime number (which is uniquely determined by R);
(iii) R = Z(+)Fp, where p is a prime number (which is uniquely determined by R).
(2) (cf. ([1,Theorem 15]) One set C of isomorphism class representatives of the rings R

of positive characteristic that have exactly one proper subring can be constructed as follows.
The prime ring of R is isomorphic to the direct product

∏k
i=1 Z/p

αi
i Z, where p1, p2, . . . , pk

are pairwise distinct prime numbers for some positive integer k and α = α1, α2, . . . , αk are
positive integers (and possibly αi1 = αi2 for some i1 6= i2). Fix one such direct product that is
isomorphic to the prime ring of R. Then a list of the elements of C (without any repetitions up
to isomorphism) can be obtained. For each index i such that αi = 1 (resp., αi ≥ 2 and pi = 2;
resp., αi ≥ 2 and pi 6= 2), there are exactly ℵ0 (resp., 2; resp., 3) members of C in accordance
with the following specifications. The elements of C are the rings obtained in the form of the
direct product

i−1∏
j=1

Z/pαj

j Z× E ×
k∏

j=i+1

Z/pαj

j Z,

as i successively takes on the values of 1, . . . , k (and, as usual, empty direct products should be
ignored), where the ring E successively satisfies those of the following nine conditions that are
pertinent for the index i (noting also that if αi = 1, then denumerably many E are generated in
using condition (a) as, in that situation, q can be any prime number):

(a) (αi = 1 and) E = Fpqi , where q is a prime number;
(b) (αi = 1 and) E = Fpi × Fpi;
(c) (αi = 1 and) E = Fpi [X]/(X2);
(d) αi ≥ 2 and E = Z/pαi

i Z× Fpi;
(e) αi ≥ 2, pi = 2 and E = Z/pαi

i Z(+)Fpi;
(f) αi ≥ 2, pi = 2 and E = B1 = (Z/pαi

i Z)[X]/(piX,X2 − pαi−1
i );

(g) αi ≥ 2, pi 6= 2 and E = Z/pαi
i Z(+)Fpi;

(h) αi ≥ 2, pi 6= 2 and E = B1 = (Z/pαi
i Z)[X]/(piX,X2 − pαi−1

i );
(i) αi ≥ 2, pi 6= 2 and E = Bv = (Z/pαi

i Z)[X]/(piX,X2 − pαi−1
i v), where v ∈ U(A) is a

preassigned element such that v +M ∈ F∗pi \ F
∗2
pi .

Moreover, in (a)-(i), the parameters p1, p2, . . . , pk, α1, α2, . . . , αk are determined by R.

Proof. The statement of (1) is essentially that of [1, Theorem 2.5]. The formulation of the
wording at the outset of the statement of (2) differs slightly from the wording that was used in
the statement of [1, Theorem 15]. This change in wording has been made here, in keeping with
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Lemma 2.4, to make clear that each relevant isomorphism class has exactly one representative
generated when one constructs C by following the above-stated procedure. Apart from this
(which we see as a) minor change, conditions (a)-(d) in the statement of (2) are unchanged
from the statement of [1, Theorem 2.5]. On the other hand, the above five conditions (e)-(i) in
the statement of (2) are the required sharpening of the remaining condition from the statement of
[1, Theorem 15], namely, the condition stipulating that Z/pαi

i Z ⊂ E is a ramified extension. To
prove that this sharpening has been achieved, it suffices to combine Lemma 2.4 with Corollary
2.2. (Note that in applying Corollary 2.2 to obtain conditions (f), (h) and (i), we have taken πi
to be the coset represented by pi.) Also, the final assertion was taken directly from [1, Theorem
15]. This completes the proof.
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